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NORMAL LOG CANONICAL DEL PEZZO SURFACES
OF RANK ONE WITH UNIQUE SINGULAR POINTS

HIDEO KOJIMA

Abstract. Normal del Pezzo surfaces of rank one with only rational log canonical

singularities are studied. We classify such surfaces with unique singular points.

Moreover, by using the classification result and the results in [11], we study the

fundamental groups of their smooth parts.

1. Introduction

Throughout this paper, we work over the complex number field C. A normal del

Pezzo surface means a normal projective surface whose anticanonical divisor is an

ample Q-Cartier divisor. A normal del Pezzo surface is said to have rank one if its

Picard number equals one.

Normal del Pezzo surfaces have been studied by many mathematicians and we

have many significant results on such surfaces. For details, see [14, §1] and papers

given in References of [14]. Here we recall some results on the fundamental groups of

the smooth parts of normal del Pezzo surfaces. Let X be a normal del Pezzo surface

and Xreg := X \ SingX its smooth part. In [8] and [9], Gurjar and Zhang proved

that, if X has only log terminal singularities, then the fundamental group of Xreg is

finite. Fujiki, Kobayashi and Lu [5] gave an another and very short proof of the main

result of [8] and [9]. Zhang [22] proved that, if X has only log canonical singularities,

then Xreg has finite fundamental group or is affine ruled, i.e., it contains A1 ×C for

an affine curve C as a Zariski open subset. In fact, he proved more general results.

Recently, the author and Takahashi studied normal del Pezzo surfaces of rank one

with only rational log canonical singularities. In [13], they proved some elementary

results on normal del Pezzo surfaces of rank one with only rational singularities,

which are generalizations of some results in [21, §2], and classified the minimal

compactifications of the affine plane A2 with only log canonical singularities. In
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[14], they proved that every normal del Pezzo surface of rank one with only rational

log canonical singularities has at most five singular points. Later on, the author [12]

determined such surfaces with five singular points. Here we note that Belousov [3]

(see [4] for another proof) proved that every normal del Pezzo surface of rank one

with only log terminal singularities can have at most four singular points.

In this paper, we classify the normal del Pezzo surfaces of rank one with only ratio-

nal log canonical singularities and with unique singular points. Moreover, by using

the classification result, we study the fundamental groups of some open rational

surfaces. The main result of this paper is the following.

Theorem 1.1. Let X be a normal del Pezzo surface of rank one with only rational

log canonical singularities and π : (V,D) → X the minimal resolution of X, where

D is the reduced exceptional divisor. Assume that #SingX = 1 and the unique

singular point on X is not log terminal. Then the following assertions hold true.

(1) The weighted dual graph of D is given as (n) for n = 1, 2, 3 in Fig. 1.1, where

we omit the weight corresponding to a (−2)-curve.

(2) There exists a P1-fibration Φ : V → P1 in such a way that the configuration

of D as well as all singular fibers is given as (n) for n = 1, 2, 3 in Fig.

1.2, where a dotted line stands for a (−1)-curve; a solid line stands for a

component of D; the self-intersection number of a (−2)-curve is omitted; a

line with ∗ on it is not a fiber component of the vertical P1-fibration on V .

(3) The fundamental group of Xreg is Z/2Z (resp. Z/2Z, (1)) if the dual graph

of D is given as (1) (resp. (2), (3)) in Fig. 1.1.

(4) All the cases are realizable.

In Theorem 1.1, we assume further that the unique singular point on X is not log

terminal because the case where the unique singular point on X is log terminal was

determined by the author [11].

By using Theorem 1.1, the results in [11] and the minimal model theory for normal

projective surfaces with only log canonical singularities due to Fujino [6] and Tanaka

[20], we obtain the following result.

Theorem 1.2. Let X be a normal complete rational surface with unique singular

point. Suppose that the singular point on X is log canonical and κ(Xreg) = −∞.

Then the fundamental group of Xreg is finite and is a residue group of Z ⊕ Z. In

particular, the fundamental group of Xreg is abelian.

Let X be a normal projective rational surface with unique singular point. Gurjar

and Zhang [10] proved that if κ(Xreg) ≤ 1 and the singular point onX is log terminal
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then Xreg has finite fundamental group. Theorem 1.2 includes their result in the

case κ(Xreg) = −∞.

2. Preliminaries

2.1. A (−n)-curve is a smooth projective rational curve with self-intersection num-

ber −n. A reduced effective divisor D is called an SNC-divisor if it has only simple

normal crossings. In this paper, we employ the following notations:

π1(T ): the fundamental group of T .

KX : the canonical divisor on X.

ρ(X): the Picard number of X.

Xreg : the smooth locus of X.

#D: the number of all irreducible components in SuppD.

κ(S): the logarithmic Kodaira dimension of S (see, e.g., [16] and [17] for the

definition).
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2.2. In order to prove the results in this paper, we frequently use some results on

normal del Pezzo surfaces of rank one with only rational singularities given in [14].

The results in [14, §2] except for [14, Lemma 2.9] are originally given in [13, §3].
Let X be a normal del Pezzo surface of rank one with only rational singularities

and π : (V,D) → X the minimal resolution of X, where D is the reduced exceptional

divisor. Then the canonical divisor KX on X is Q-Cartier and there exists a unique

effective Q-divisor D# such that SuppD# ⊂ SuppD and π∗(KX) ≡ D# +KV . Let

MV(V,D) be the set of all irreducible curves C such that −C(D#+KV ) attains the

smallest positive value (cf. [14, p. 55]). Since X has only rational singularities, D is

an SNC-divisor (cf. [2]) and X is a rational surface by [14, Lemma 2.1 (1)].

Definition 2.1. The pair (V,D) is said to be of the first kind if there exists a curve

C ∈ MV(V,D) such that |C +D+KV | ̸= ∅. It is said to be of the second kind if it

is not of the first kind, namely, |C +D +KV | = ∅ for every curve C ∈ MV(V,D).

2.3. In order to prove Theorem 1.2, we will use the minimal model theory for log

surfaces due to Fujino [6] and Tanaka [20] in §4. For the definition of NE(X) of

a normal variety X, an extremal ray, a Mori fiber space, etc., see [6] and [20]. We

can use the minimal model theory for log surfaces in [6] and [20] since only normal

projective surfaces with at most rational log canonical singularities are studied in

this paper.

We have very useful intersection theory for normal surfaces due to Mumford [18]

and Sakai [19]. The theory can be applied also for the normal surfaces with non Q-

factorial singularities. However, in this paper, we consider the intersection numbers

only for Q-Cartier divisors.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Let X, V and D be the same as in Theorem 1.1. Let C be a curve of MV(V,D)

(see §2 for the definition of MV(V,D)). Since the unique singular point on X is not

log terminal but rational, the weighted dual graph of D is one of the dual graphs

(6)–(8) in [15, p. 58]. We infer from [14, Lemmas 2.5 and 2.6] that C is a (−1)-curve

and |C + D + KV | = ∅. Since the dual graph of C + D is a tree by [16, Lemma

I.2.1.3 (p. 7)], we have CD = 1.

We consider the following cases separately.

Case 1. The dual graph of D is one of (7) and (8) in [15, p. 58]. Let D =
∑r

i=1Di

be the decomposition of D into irreducible components and set ai = −(Di)
2 for

i = 1, . . . , r. In this case, r ≥ 5 and the dual graph of D looks like that in Fig. 3.1.
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In this case, we have D# = 1
2
(D1+D2+Dr−1+Dr)+

∑r−2
i=3 Di (for the definition

of D#, see §2). Since CD = 1 and CD# < −CKV = 1, we may assume that

CD = CD1 = 1. Since the intersection matrix of C +D (resp. D) is not negative

definite (resp. negative definite), we know that a3 = 2 and r ≥ 6. Moreover,

since C + D is a big divisor, we know that a4 = 2 and r ≥ 7. Then the divisor

F := 2(C + D1 + D3) + D2 + D4 defines a P1-fibration Φ := Φ|F | : V → P1, D5

becomes a section of Φ and D −D5 is contained in fibers of Φ.

Suppose that r = 7. Then the fiber F1 of Φ containing D6 is different from that

F2 containing D7. Since C ∈ MV(V,D) and SuppF consists only of C and four

(−2)-curves, it follows from [14, Lemma 2.8] that Fi (i = 1, 2) consists only of one

(−2)-curve and two (−1)-curves. This contradicts ρ(V ) = 1 + #D. Hence r ≥ 8

and the divisor D6 + · · ·+Dr is contained in a fiber, say G, of Φ.

We infer from ρ(V ) = 1 + #D that SuppG consists of D6, . . . , Dr and one (−1)-

curve E and that F and G exhaust the singular fibers of Φ. Then ED = E(D6 +

· · ·+Dr) = 1. So ED = EDj = 1 for j = r−1 or r because E(D#+KV ) < 0. Thus

we know that the dual graph of D (resp. the configuration of C+D and all singular

fibers of Φ) is given as (1) in Fig. 1.1 (resp. Fig. 1.2). Here we note that a ≥ 3, where

a is the number in Fig. 1.1 (1) and Fig. 1.2 (1), because the intersection matrix of

D is negative definite.
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Case 2. The dual graph of D is one of (6) in [15, p. 58]. We treat only the case

where (∆1,∆2,∆3) = (2, 3, 6) with the notations in [15, p. 58]. The other cases can

be treated easier. In fact, we see that the other cases do not take place by using the

following arguments.

From now on, we assume that (∆1,∆2,∆3) = (2, 3, 6). Then the dual graph of D

is given as one of (1)–(4) in Fig. 3.2.

We consider the following cases separately.

Case 2-1. The dual graph of D is given as (1) in Fig. 3.2, where D = D0 +D1 +

D2+D3 is the decomposition of D into irreducible components. Then ρ(V ) = 5 and

D# = D0 +
1
2
D1 +

2
3
D2 +

5
6
D3. Since CD = 1 and CD# < −CKV = 1, we know

that CD = CDi = 1 for some i, 1 ≤ i ≤ 3. Since a0 = −(D0)
2 ≥ 2, the intersection

matrix of C +D is then negative definite. This is a contradiction.

Case 2-2. The dual graph of D is given as (2) in Fig. 3.2, where D = D0 +D1 +

· · · + D4 is the decomposition of D into irreducible components. Then ρ(V ) = 6

and D# = D0 +
1
2
D1 +

2
3
D2 +

1
3
D3 +

5
6
D4. Since CD = 1, CD# < −CKV = 1,

a0 = −(D0)
2 ≥ 2 and the intersection matrix of C +D is not negative definite, we

know that CD = CD2 = 1 and a0 = 2. Then the divisor F0 := 2(C+D2)+D0+D3

defines a P1-fibration Φ := Φ|F0| : V → P1, D1 and D4 become sections of Φ and

D − (D1 + D4) is contained in fibers of Φ. Since ρ(V ) = 6 > 2 + (#F0 − 1) = 5,

there exists another singular fiber F1 of Φ. We infer from [14, Lemma 2.2 (3)] that

F1 = E1 + E ′
1, where E1 and E ′

1 are (−1)-curves and E1E
′
1 = 1. Since D1 is a

section of Φ, we may assume that E1D1 = 0. Then E1D = E1D4 ≤ 1 and so the

intersection matrix of E1 +D is negative definite. This is a contradiction.

Case 2-3. The dual graph of D is given as (3) in Fig. 3.2, where D = D0+ · · ·+D7

is the decomposition of D into irreducible components. Then ρ(V ) = 9 and D# =

D0+
1
2
D1+

5
6
D2+

2
3
D3+

1
2
D4+

1
3
D5+

1
6
D6+

2
3
D7. Since CD = 1, CD# < −CKV = 1,

a0 = −(D0)
2 ≥ 2 and the intersection matrix of C +D is not negative definite, we

know that CD = CDi = 1 for some i, 1 ≤ i ≤ 5. We consider the following subcases

separately.

Subcase 1. i = 1. Then a0 = 2 because the intersection matrix of C + D is not

negative definite. So the divisor F0 := 3(C + D1 + D0) + 2D2 + D3 + D7 defines

a P1-fibration Φ := Φ|F0| : V → P1, D4 becomes a section of Φ and D − D4 is

contained in fibers of Φ. Let F1 be the fiber of Φ containing D5+D6. We infer from

[14, Lemma 2.2 (3)] that SuppF1 consists of the (−2)-curves D5 and D6 and some

(−1)-curves. So #F1 = 4. Then we have

ρ(V ) = 9 ≥ 2 + (#F0 − 1) + (#F1 − 1) = 10,

a contradiction.
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Subcase 2. 3 ≤ i ≤ 5. Then the divisor F0 := 2(C + Di) + Di−1 + Di+1 defines

a P1-fibration Φ := Φ|F0| : V → P1, Di−2 and Di+2 become sections of Φ and

D − (Di−2 + Di+2) is contained in fibers of Φ. Here we note that, if i = 5, then

Di+2 does not exist. Since C ∈ MV(V,D) and SuppF0 consists only of C and three

(−2)-curves, it follows from [14, Lemma 2.8] that every singular fiber of Φ consists

only of (−1)-curves and (−2)-curves. This is a contradiction because D7 is a fiber

component of Φ.

Subcace 3. i = 2. Since the intersection matrix of C +D is not negative definite

and a0 ≥ 2, we see that 2 ≤ a0 ≤ 5.

Suppose that a0 = 5. Then the divisor F0 := 5(C+D2)+4D3+3D4+2D5+D0+D6

defines a P1-fibration Φ := Φ|F0| : V → P1, D1 and D7 become sections of Φ and

D − (D1 + D7) is contained in fibers of Φ. Since ρ(V ) = 9 > 2 + (#F0 − 1) = 8,

there exists another singular fiber F1 of Φ. We infer from [14, Lemma 2.2 (3)] that

F1 = E1 + E ′
1, where E1 and E ′

1 are (−1)-curves and E1E
′
1 = 1. Since D1 is a

section of Φ, we may assume that E ′
1D1 > 0. Then E1D = E1D7 ≤ 1 and so the

intersection matrix of E1 +D is negative definite, which is a contradiction.

Suppose that a0 = 4. Then the divisor F0 := 4(C +D2) + 3D3 + 2D4 +D0 +D5

defines a P1-fibration Φ := Φ|F0| : V → P1, D1, D6 and D7 become sections of Φ and

D− (D1+D6+D7) is contained in fibers of Φ. Since ρ(V ) = 9 > 2+(#F1−1) = 7,

there exists another singular fiber F1 of Φ. We infer from [14, Lemma 2.2 (3)] that

F1 = E1+E ′
1, where E1 and E ′

1 are (−1)-curves and E1E
′
1 = 1. Since D1 is a section

of Φ, we may assume that E1D1 = 1. Since E1(D − (D1 +D6 +D7)) = 0 and the

intersection matrix of E1 + D is not negative definite, E1 must meet at least one

of D6 and D7. Then the divisor E ′
1 + D has negative definite intersection matrix

because E ′
1D = E ′

1(D6 +D7) ≤ 1. This is a contradiction.

Suppose that a0 = 3. Then the divisor F0 := 3(C +D2) + 2D3 +D0 +D4 defines

a P1-fibration Φ := Φ|F0| : V → P1, D1, D5 and D7 become sections of Φ and

D− (D1 +D5 +D7) is contained in fibers of Φ. Let F1 be the fiber of Φ containing

D6. By [14, Lemma 2.2 (3)], SuppF1 consists of D6 and some (−1)-curves. So we

know that F1 = E1+D6+E ′
1, where E1 and E ′

1 are (−1)-curves, E1D6 = E ′
1D6 = 1

and E1E
′
1 = 0. Since E1D

#, E ′
1D

# < 1 and D1 and D7 are sections of Φ, we

may assume that E1D1 = E ′
1D7 = 1. Then −E ′

1(D
# + KV ) = 1 − (2

3
+ 1

6
) = 1

6
.

Since C ∈ MV(V,D) and −C(D# + KV ) = 1
6
= −E ′

1(D
# + KV ), we know that

E ′
1 ∈ MV(V,D). This is a contradiction because |E ′ +D+KV | ̸= ∅ by [16, Lemma

I.2.1.3 (p. 7)] and (V,D) is not of the first kind by [14, Lemma 2.5].

Suppose that a0 = 2. Then the divisor F0 := 2(C + D2) + D0 + D3 defines

a P1-fibration Φ := Φ|F0| : V → P1, D1, D4 and D7 become sections of Φ, and

D− (D1 +D4 +D7) is contained in fibers of Φ. Let F1 be the fiber of Φ containing
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D5 + D6. Since C ∈ MV(V,D) and SuppF0 consists only of C and three (−2)-

curves, it follows from [14, Lemma 2.8] that F1 = E1 + D5 + D6 + E ′
1, where E1

and E ′
1 are (−1)-curves, E1D5 = D6E

′
1 = 1, E1E

′
1 = 0 and E1, E

′
1 ∈ MV(V,D).

Since E1D
#, E ′

1D
# < 1 and D1 and D7 are sections of Φ, we know that E1D1 =

E ′
1D7 = 1. Then |E1+D+KV |, |E ′

1+D+KV | ̸= ∅. This is a contradiction because

E1, E
′
1 ∈ MV(V,D) and (V,D) is not of the first kind by [14, Lemma 2.5].

Therefore, we know that this subcase does not take place.

Case 2-4. The dual graph of D is given as (4) in Fig. 3.2, where D = D0 +D1 +

· · · + D8 is the decomposition of D into irreducible components. Then ρ(V ) = 10

and D# = D0 +
1
2
D1 +

2
3
D2 +

1
3
D3 +

5
6
D4 +

2
3
D5 +

1
2
D6 +

1
3
D7 +

1
6
D8. Note that

a0 = −(D0)
2 ≥ 3 because the intersection matrix of D is negative definite. Since

CD = 1, CD# < 1, a0 ≥ 3 and the intersection matrix of C + D is not negative

definite, we know that CD = CDi = 1 for some i ∈ {2, 4, 5, 6, 7}. We consider the

following subcases separately.

Subcase 1. i = 2. Then a0 = 3 since the intersection matrix of C + D is not

negative definite. So the divisor F0 := 4(C +D2) + 2(D0 +D3) +D1 +D4 defines

a P1-fibration Φ := Φ|F0| : V → P1, D5 becomes a section of Φ and D − D5 is

contained in fibers of Φ. Let F1 be the fiber of Φ containing D6 + D7 + D8. We

infer from [14, Lemma 2.2 (3)] that every irreducible component of SuppF1 other

than D6, D7 and D8 is a (−1)-curve. By considering [14, Lemma 2.7 (1)], we know

that F1 = 2(E1 + D7) + D6 + D8, where E1 is a (−1)-curve with E1D7 = 1 and

E1D6 = E1D8 = 0. Hence the dual graph of D (resp. the configuration of C + D

and all singular fibers of Φ) is given as (2) in Fig. 1.1 (resp. Fig. 1.2).

Subcase 2. i = 6 or 7. By using the same argument as in Subcase 2 of Case

2-3, we know that this subcase does not take place. Here we note that D0 is not a

(−2)-curve.

Subcase 3. i = 5. Then the divisor F0 := 2(C+D5)+D4+D6 defines a P1-fibration

Φ := Φ|F0| : V → P1, D0 and D7 become sections of Φ and D−(D0+D7) is contained

in fibers of Φ. Let F1 and F2 be the fiber of Φ containingD1 andD2+D3, respectively.

Note that F0, F1 and F2 are mutually distinct. We infer from [14, Lemma 2.2

(3)] that F1 and F2 consist only of (−1)-curves and (−2)-curves. So we see that

D8 ̸⊂ SuppF2. If D8 ⊂ SuppF1, then we know that F1 = 2E1 +D1 +D8, where E1

is a (−1)-curve with E1D1 = E1D8 = 1. Then −E1(D
# + KV ) = 1 − (1

2
+ 1

6
) =

1
3
= −C(D#+KV ) and so E1 ∈ MV(V,D). However this is a contradiction because

|E1 +D +KV | ̸= ∅ and (V,D) is not of the first kind by [14, Lemma 2.5]. Suppose

that D8 ̸⊂ SuppF1. Then F1 = E1 + D1 + E ′
1, where E1 and E ′

1 are (−1)-curves,
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E1D1 = E ′
1D1 = 1 and E1E

′
1 = 0. Then at least one of E1 + D and E ′

1 + D has

negative definite intersection matrix, which is a contradiction.

Subcase 4. i = 4. Since the intersection matrix of C +D is not negative definite,

we know that 3 ≤ a0 ≤ 6.

Suppose that a0 = 6. Then the divisor F0 := 10(C+D4)+8D5+6D6+4D7+2(D0+

D8) +D1 +D2 defines a P1-fibration Φ := Φ|F0| : V → P1, D3 becomes a section of

Φ and D −D3 is contained in fibers of Φ. Since ρ(V ) = 10 = 2 + (#F0 − 1), F0 is

the unique singular fiber of Φ. Hence the dual graph of D (resp. the configuration

of C +D and all singular fibers of Φ) is given as (3) in Fig. 1.1 (resp. Fig. 1.2).

Suppose that a0 = 5. Then the divisor F0 := 5(C+D4)+4D5+3D6+2D7+D0+D8

defines a P1-fibration Φ := Φ|F0| : V → P1, D1 and D2 become sections of Φ and

D − (D1 +D2) is contained in fibers of Φ. Let F1 be the fiber of Φ containing D3.

By [14, Lemma 2.2 (3)], SuppF1 consists of D3 and some (−1)-curves. Hence we

know that F1 = E1+D3+E ′
1, where E1 and E ′

1 are (−1)-curves, E1D3 = E ′
1D3 = 1

and E1E
′
1 = 0. We may assume that E ′

1D1 = 1 because D1 is a section of Φ. Then

E1D = E1D3 = 1 and so the intersection matrix of E1+D is negative definite. This

is a contradiction.

Suppose that a0 = 4. Then the divisor F0 := 4(C +D4) + 3D5 + 2D6 +D0 +D7

defines a P1-fibration Φ := Φ|F0| : V → P1, D1, D2 and D8 become sections of Φ and

D− (D1 +D2 +D8) is contained in fibers of Φ. Let F1 be the fiber of Φ containing

D3. Then, by using the same argument as in the subcase a0 = 5, we know that

F1 = E1 + D3 + E ′
1, where E1 and E ′

1 are (−1)-curves, E1D3 = E ′
1D3 = 1 and

E1E
′
1 = 0. We may assume that E1D1 = 1 because D1 is a section of Φ. Then

−E1(D
# +KV ) ≤ 1− (1

2
+ 1

3
) = 1

6
= −C(D# +KV ) and so E1 ∈ MV(V,D). This

is a contradiction because |E1 +D +KV | ̸= ∅ and (V,D) is not of the first kind by

[14, Lemma 2.5].

Suppose that a0 = 3. Then the divisor F0 := 3(C + D4) + 2D5 + D0 + D6

defines a P1-fibration Φ := Φ|F0| : V → P1, D1, D2 and D7 become sections of

Φ and D − (D1 + D2 + D7) is contained in fibers of Φ. Let F1 be the fiber of Φ

containing D3. If SuppF1 contains D8, then it consists of D3, D8 and some (−1)-

curves by [14, Lemma 2.2 (3)]. Hence we know that F1 = 2E1 + D3 + D8, where

E1 is a (−1)-curve with E1D3 = E1D8 = 1. However this is a contradiction because

1 = F1D1 = 2E1D1. So SuppF1 does not contain D8. The argument as in the

subcase a0 = 5 implies that F1 = E1 +D3 + E ′
1, where E1 and E ′

1 are (−1)-curves,

E1D3 = E ′
1D3 = 1 and E1E

′
1 = 0. Since D1 is a section of Φ, we may assume that

E1D1 = 1. Then −E1(D
# + KV ) ≤ 1 − (1

2
+ 1

3
) = 1

6
= −C(D# + KV ) and so

E1 ∈ MV(V,D). This is a contradiction because |E1 +D +KV | ̸= ∅ and (V,D) is

not of the first kind by [14, Lemma 2.5].
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The assertions (1) and (2) of Theorem 1.1 are thus proved.

We calculate π1(V \SuppD) = π1(Xreg), which proves the assertion (3) of Theorem

1.1. Let Φ : V → P1 be the P1-fibration as in the assertion (2) of Theorem 1.1. If

the dual graph of D is given as (3) in Fig. 1.1, then Φ has a unique singular fiber and

V \Supp(D+C), where C is a (−1)-curve and is a component of the unique singular

fiber of Φ (the dotted line in the configuration (3) in Fig. 1.2), is isomorphic to the

affine plane A2. Hence π1(V \ SuppD) = (1). If the dual graph of D is given as (1)

(resp. (2)) in Fig. 1.1, then Φ|V \SuppD : V \ SuppD → P1 becomes an A1-fibration

onto P1, every fiber of Φ|V \SuppD is isomorphic to A1 and Φ|V \SuppD has two multiple

fibers whose multiplicities are (2, 2) (resp. (4, 2)). Hence, we infer from the results

in [7, §5] that π1(V \ SuppD) = Z/2Z.

Finally, we prove the assertion (4) of Theorem 1.1. It is clear that all the config-

urations (1)–(3) in Fig. 1.2 are realized. Let (V,D) be a pair whose configuration is

given as (n) (n ∈ {1, 2, 3}) in Fig. 1.2. We can easily see that the divisor D can be

contracted to a rational log canonical singular point. Let π : V → X be the contrac-

tion of SuppD. Since ρ(V ) = 1 + #D, we have ρ(X) = 1, here we note that KX is

Q-Cartier since π(SuppD) is a rational singular point on X. Let Φ : V → P1 be the

P1-fibration as in the assertion (2) of Theorem 1.1 and let F be a general fiber of Φ.

Then FD = 1 (see Fig. 1.2) and so FD# ≤ 1. Since π∗(KX) ≡ D# +KV , we have

Fπ∗(KX) = F (D# +KV ) ≤ −1. This implies that KX is not nef. Since ρ(X) = 1

and KX is Q-Cartier, we know that −KX is ample. Therefore, the surface X is

a normal del Pezzo surface of rank one with unique rational log canonical singular

point.

The proof of Theorem 1.1 is thus completed.

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2.

Let X be as in Theorem 1.2 and set P := SingX. Let π : (V,D) → X be the

minimal resolution of X, where D is the reduced exceptional divisor. Let D# be

the Q-divisor constructed in §2.

Lemma 4.1. The singular point P is rational.

Proof. Since κ(V \ SuppD) = κ(Xreg) = −∞ by the hypothesis and V is a rational

surface, it follows from [16, Lemma I.2.1.3 (p. 7)] that each irreducible component

of D is a smooth rational curve and the dual graph of D is a tree. So the assertion

follows (cf. [2]). □

By Lemma 4.1 and [1], we know that X is projective and Q-factorial.
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Lemma 4.2. The canonical divisor KX on X is not pseudo-effective. Furthermore,

it is not nef.

Proof. Since the singular point P on X is log canonical, we have D# ≤ D. Since

κ(V \ SuppD) = −∞ and D is an SNC-divisor, we infer from [16, Lemma I.3.11 (p.

44)] (or [17, Lemma 2.2.6.2 (p. 80)]) that D+KV is not pseudo-effective. So KX is

not pseudo-effective, neither.

If KX is nef, then X is minimal in the sense of [6]. However, this contradicts [6,

Theorem 3.3] because KX is not pseudo-effective. Hence KX is not nef. □

Let R be a KX-negative extremal ray of NE(X), which exists by Lemma 4.2 and

[6, Theorem 3.2]. Since X has only log canonical singularities, i.e., the pair (X, 0)

is log canonical, we infer from [6, Theorems 3.2 and 3.3] and [20, Theorem 6.2] that

there exists a contraction morphism φR : X → Y with the following properties:

(i) For an integral curve T on X, φR(T ) is a point if and only if [T ] ∈ R.

(ii) OY
∼= (φR)∗(OX).

(iii) For a line bundle L on X such that LT = 0 for every curve T with [T ] ∈ R,

there exists a line bundle LY on Y such that L ∼= φ∗
R(LY ).

(iv) ρ(Y ) = ρ(X)− 1.

(v) Y is Q-factorial and has only rational log canonical singularities if dimY = 2.

Here we note that, if dimY = 2 then Y has only rational singularities because so

is X. By [6, Proposition 3.8], there exists a rational curve C on X such that the

KX-negative extremal ray R is spanned by C and −KXC ≤ 3. If C2 ≥ 0, then

it follows that φR gives a Mori fiber space structure on X. See the proof of [20,

Theorem 6.2] in [20, §6]. If C2 < 0, then φR is the contraction of C to a point on Y

and C is the unique curve that is contracted by φR.

Lemma 4.3. With the same notations and assumptions as above, assume that C2 <

0. Then the following assertions hold true.

(1) Y has at most one singular point and the singular point on Y is rational and

log canonical.

(2) π1(Xreg) is a residue group of π1(Yreg) and κ(Yreg) = −∞.

Proof. Set Q := φR(P ). If P ̸∈ C, then C is a (−1)-curve on Xreg because C2 < 0

and CKX < 0. So, Y has only one singular point and Q = SingY . Hence π1(Xreg) =

π1(Yreg) and κ(Yreg) = κ(Xreg) = −∞. If P ∈ C, then Q is a unique singular point

on Y , here we may assume that Y is not smooth. By (v) as above, Q is rational

and log canonical. Let C ′ be the proper transform of C on V . It is clear that

V \ Supp(C ′ + D) = Y \ Q, (C ′)2 < 0, and C ′(D# + KV ) = C ′π∗KX < 0. Then

C ′KV ≤ C ′(D#+KV ) < 0. So C ′ is a (−1)-curve on V . Moreover, since the divisor

C ′ +D can be contracted to a rational singular point, C ′D = 1 (see [2]) and then
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κ(V \ Supp(C ′ +D)) = κ(V \ SuppD) = −∞. The assertions (1) and (2) are thus

verified. □

Since X has only rational log canonical singularities and KX is not pseudo-

effective, we infer from [6, Theorem 3.3] (or [20, Theorem 0.1]) that there exists

a sequence of birational morphisms φi : Xi → Xi+1 (i = 0, 1, . . . , s − 1), where

X0 := X, with the following properties:

(a) Xi has only rational log canonical singularities for i = 0, 1, . . . , s− 1.

(b) Xs is a Mori fiber space.

Moreover, by using Lemma 4.3 repeatedly, we know that:

(c) Xi has at most one singular point for i = 0, 1, . . . , s− 1.

(d) π1((Xi)reg) is a residue group of π1((Xi+1)reg) for i = 0, 1, . . . , s− 1.

Therefore, in order to prove Theorem 1.2, we consider only the case where X is a

Mori fiber space, i.e., there exists a KX-negative extremal contraction morphism

φ : X → Z onto a normal variety Z of dimZ < dimX = 2. If dimZ = 1, then

general fiber of φ is isomorphic to P1 and Z ∼= P1 since X is a rational surface.

Let F be the fiber of φ containing P . Since P is a unique singular point on X,

we see that X \ SuppF ∼= P1 × (Z \ φ(F )) = P1 × A1 is simply connected. Hence

π1(Xreg) = (1).

Finally, we consider the case dimZ = 0. Then X is a normal del Pezzo surface of

rank one. If P is not log terminal, then π1(Xreg) is (1) or Z/2Z by (3) of Theorem

1.1. So we consider the case where P is log terminal. Since X is a rational surface,

H1(Xreg,Z) is finite (see [8, Lemma 1.4]). We infer from [11, Main Theorem] that

Xreg contains A1
∗×A1

∗, where A1
∗ is the affine line minus one point, as a Zariski open

subset. Since π1(Xreg) is a residue group of π1(A1
∗ × A1

∗)
∼= Z ⊕ Z, it is abelian.

Therefore, the assertions of Theorem 1.2 follow.

Proof of Theorem 1.2 is thus completed.
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