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REDUCING SUBSPACES OF WEIGHTED HARDY
SPACES ON POLYDISKS

SHUHEI KUWAHARA

Abstract. We consider weighted Hardy spaces on polydisk Dn with n > 1. Let

z1, z2, . . . , zn be coordinate functions and Nj ∈ N. In this paper, we determine

common reducing subspaces of MN1
z1 ,MN2

z2 , . . . ,MNn
zn .

1. Introduction

Let α be a multi-index of non-negative integers and we put ω = {ωα} a set of

positive numbers. Let H2
ω(D

n) be the weighted Hardy space on Dn with the weight

ω consisting of analytic functions

f(z) =
∑
α

aαz
α

such that

∥f∥2 =
∑
α

ωα|aα|2 < ∞.

Suppose the case of n = 1. Stessin and Zhu [5] showed that every reducing subspace

of MzN in H2
ω(D) is a direct sum of no more than N special reducing subspaces, and

these subspaces in H2
ω(D) are singly generated by a polynomial of degree less than

N . In this paper we generalize the results in the case of n = 1.

Throughout the paper we consider the case of n = 2 because we can prove our

statement for any n as well as n = 2. We fix N1, N2 ∈ N and a weight sequence

ω so that the multiplications by the coordinate functions are bounded on H2
ω(D

2).

And we put the lexicographic order on a set of multi-indices. For (z, w) ∈ C2 and

a multi-index α = (α1, α2), we define (z, w)α = zα1wα2 . Let S1, S2 be the operators

of multiplication by zN1 , wN2 respectively. We say a closed subspace X in H2
ω(D

2)

is an invariant subspace of operators Si if SiX ⊂ X for i = 1, 2. X is a reducing

subspace of Si if X is invariant under both Si and its adjoint S∗
i for i = 1, 2.
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2. Transparent Polynomials

Now we define a class of polynomials related on N1, N2 and ω. Let I be a subset of

multi-indices such that I := {(m1,m2); 0 ≤ m1 ≤ N1 − 1 and 0 ≤ m2 ≤ N2 − 1}.
We say that (m1,m2) ∈ I and (n1, n2) ∈ I are equivalent if

ωm1+k1N1 m2+k2N2

ωm1 m2

=
ωn1+k1N1 n2+k2N2

ωn1 n2

for all non-negative integers k1, k2. In this case we write (m1,m2) ∼ (n1, n2).

We assume that p is a polynomial in the form of

p(z, w) =
∑

{aα(z, w)α;α ∈ I}.

We say that p is transparent if we have α ∼ β for any two nonzero coefficients aα, aβ
of p. We partition the set I into equivalent classes Ω1, . . . ,ΩK . We see that the

polynomial

qk(z, w) =
∑

{aα(z, w)α;α ∈ Ωk}

is transparent for each 1 ≤ k ≤ K. We put the sequence {p1, . . . , pK} which

we sort {q1, . . . , qK} in the lexicographic order of the minimal multi-index of the

polynomials. Then the decomposition

p = p1 + · · ·+ pK

is called the canonical decomposition of p.

Let S2 be an algebra over C generated by the operators S1, S
∗
1 , S2, and S∗

2 . For

any nonzero function f ∈ H2
ω(D

2), we put S2f = {Tf ;T ∈ S2}. We set Xf the

closure of S2f in H2
ω(D

2). We call Xf the reducing subspace generated by f . We

see that Xf is the smallest reducing subspace containing f . Now we denote that

SpanX is the closed linear span of a set X in H2
ω(D

2).

Lemma 1. If f(z, w) =
∑
α∈I

bα(z, w)
α is a transparent polynomial, then

Xf = Span{fzk1N1wk2N2 : k1, k2 = 0, 1, 2, . . .}.

Proof. Let X = Span{fzk1N1wk2N2 : k1, k2 = 0, 1, 2, . . .}. Then f ∈ X ⊂ Xf . From

the definition of Xf , it is sufficient to show that X is a reducing subspace of S1 and

S2 in H2
ω(D

2). The definition of X follows that X is invariant under S1 and S2.

We will calculate that X is invariant under S∗
1 . We fix some positive integer k1 and

write k1 = k′
1 + 1. Then

S∗
1(fz

k1N1wk2N2) = S∗
1S1(fz

k′1N1wk2N2).
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Let (m1,m2) be the minimal multi-index of nonzero coefficients of f . Then for any

multi-index (α1, α2) of nonzero coefficients of f , we prove

S∗
1(fz

k1N1wk2N2) = S∗
1S1(

∑
α∈I

bαz
α1+k′1N1wα2+k2N2)

=
∑
α∈I

bα
ωα1+k1N1 α2+k2N2

ωα1+k′1N1 α2+k2N2

zα1+k′1N1wα2+k2N2

=
∑
α∈I

bα
ωm1+k1N1 m2+k2N2

ωm1+k′1N1 m2+k2N2

zα1+k′1N1wα2+k2N2

=
ωm1+k1N1 m2+k2N2

ωm1+k′1N1 m2+k2N2

(∑
α∈I

bαz
α1wα2

)
zk

′
1N1wk2N2

=
ωm1+k1N1 m2+k2N2

ωm1+k′1N1 m2+k2N2

fzk
′
1N1wk2N2 ∈ X,

because p is transparent. This shows that X is invariant under S∗
1 . The same

argument shows that X is invariant under S∗
2 . □

For any subspace X of H2
ω(D

2) with X ̸= {0}, let (m1,m2) be the minimal multi-

index such that there exists some f ∈ X with f (m1,m2)(0, 0) ̸= 0 but g(k1,k2)(0, 0) = 0

for all g ∈ X and (k1, k2) < (m1,m2). We will call (m1,m2) the order of X at the

origin.

Proposition 2. Let X be a nonzero reducing subspace of S1 and S2 in H2
ω(D

2) and

let (m1,m2) be the order of X at the origin. Then the extremal problem

sup{Ref (m1,m2)(0, 0) : f ∈ X, ∥f∥ ≤ 1}

has a unique solution G with ∥G∥ = 1 and G(m1,m2)(0, 0) > 0. Furthermore, G is a

polynomial in the form of G(z, w) =
∑

α∈I bα(z, w)
α.

Proof. If f is a function in X with Taylor expansion f(z, w) =
∑

α aα(z, w)
α, then

f (m1,m2)(0, 0) = a(m1,m2)m1!m2!. Then |am1,m2m1!m2!|2 ≤ (m1!m2!)2

ωm1 m2

∑
α ωα|aα|2 so the

mapping f 7→ f (m1,m2)(0, 0) is a bounded linear functional onH2
ω(D

2). It follows that

the extremal problem has a unique solution G with ∥G∥ = 1 and G(m1,m2)(0, 0) > 0.

To show that G is the above polynomial, we prove S∗
1G = 0 and S∗

2G = 0. We put

gf =
G+ S1f

∥G+ S1f∥
for f ∈ X. Since Reg

(m1,m2)
f (0, 0) ≤ G(m1,m2)(0, 0), it is easy to see

that ∥G+ S1f∥ ≥ 1 for all f ∈ X. From this inequality we obtain G ⊥ S1X. Since

S∗
1G ∈ X, we have ⟨S1S

∗
1G,G⟩ = 0, or S∗

1G = 0. Similarly we see that S∗
2G = 0.

Therefore the degree of G is less than N1 in z-valuable and N2 in w-valuable. □

The function G in Proposition 2 will be called the extremal function of X.
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Lemma 3. Suppose X is a reducing subspace of S1 and S2 in H2
ω(D

2) and

p(z, w) =
∑
α∈I

bα(z, w)
α = p1 + p2 + · · ·+ pn

is the canonical decomposition of the polynomial p. If p ∈ X, then pi ∈ X for each

i = 1, 2, · · · , n.

Proof. Let (m
(i)
1 ,m

(i)
2 ) be the minimal multi-index of pi. We note that if i < j, then

(m
(i)
1 ,m

(i)
2 ) and (m

(j)
1 ,m

(j)
2 ) are not equivalent, and (m

(i)
1 ,m

(i)
2 ) < (m

(j)
1 ,m

(j)
2 ). We

will show that p1 ∈ X. Choose positive integers k1 and k2 such that

ω
m

(1)
1 +k1N1 m

(1)
2 +k2N2

ω
m

(1)
1 m

(1)
2

̸=
ω
m

(n)
1 +k1N1 m

(n)
2 +k2N2

ω
m

(n)
1 m

(n)
2

.

Then
ω
m

(n)
1 +k1N1 m

(n)
2 +k2N2

ω
m

(n)
1 m

(n)
2

p− (S∗
1)

k1(S∗
2)

k2(S1)
k1(S2)

k2p

=
n−1∑
k=1

(
ω
m

(n)
1 +k1N1 m

(n)
2 +k2N2

ω
m

(n)
1 m

(n)
2

−
ω
m

(k)
1 +k1N1 m

(k)
2 +k2N2

ω
m

(k)
1 m

(k)
2

)pk,

because

(S∗
1)

k1(S∗
2)

k2(S1)
k1(S2)

k2p =
n∑

k=1

ω
m

(k)
1 +k1N1 m

(k)
2 +k2N2

ω
m

(k)
1 m

(k)
2

pk.

We see that the above polynomial is in X and the coefficient of p1 is nonzero. If some

of the coefficients of p2, . . . , pn−1 are nonzero, then we can vanish the coefficients of

these polynomials in the same way. After at most n−1 steps, we will have a nonzero

constant multiple of p1, which belongs to X. Thus p1 ∈ X. For i = 2, . . . , n, we see

pi ∈ X in the same way. □

Proposition 4. The extremal function of any reducing subspace of S1 and S2 in

H2
ω(D

2) is transparent.

Proof. Let X be a reducing subspace of S1 and S2 in H2
ω(D

2). We get G, the

extremal function of X by Proposition 2. If G = g1 + · · · + gn is the canoni-

cal decomposition of G into transparent polynomials, then g1 contains the term

(G(m1,m2)(0, 0)/m1!m2!)z
m1wm2 , where (m1,m2) is the order of zero of X at the ori-

gin. The polynomial g1 satisfies the condition of extremal problem in Proposition

2; ∥g1∥ ≤ ∥G∥ = 1, g
(m1,m2)
1 (0, 0) = G(m1,m2)(0, 0), and g1 ∈ X by Lemma 3. The

fact that G is extremal implies that G is equal to g1 and is transparent. □

Proposition 5. If p is a transparent polynomial and Y ⊂ Xp is a reducing subspace,

Y = {0} or Xp.

— 80 —



Proof. We assume Y ̸= {0}. Let GY be its extremal function of Y . Then GY is

a polynomial of degree less than (N1, N2) from Proposition 2. On the other hand,

from the definition of Xp, there is some function f(zN1 , wN2) in Hol(D2) such that

pf = GY . We consider the degree of these polynomials, we see that f is constant

therefore p ∈ Y . This implies Xp ⊂ Y or Xp = Y . □

3. Main Result

We remark that we can extend results proved by Stessin and Zhu. Here we show a

part of our result.

Theorem 6. Every reducing subspace of S1 and S2 in H2
ω(D

2) is generated by no

more than N1N2 transparent polynomials.

Proof. Let X be a nonzero reducing subspace of S1 and S2 in H2
ω(D

2). Let G be the

extremal function of X. From Proposition 4, G is transparent. And also X contains

the reducing subspace XG which is minimal from Proposition 5. Let Y = X ⊖XG.

We note that the term of zm1wm2 is contained in X where (m1,m2) is the minimal

multi-index of G, but the term of zm1wm2 is not contained in Y from the definition

of Y . Therefore through this process, we can make the order of zero of Y at the

origin strictly greater than the order of zero of X at the origin. If Y ̸= {0}, then we

find the extremal function G′ which is transparent and we consider Y ⊖ XG′ . We

continue these processes no more than N1N2 times because the number of the terms

in the extremal functions is no more than N1N2 by Proposition 2. □
Corollary 7. The reducing subspaces of the operators of multiplication by z, w in

H2
ω(D

2) is {0} and H2
ω(D

2).

Proof. Let X be a nonzero reducing subspace of these operators in H2
ω(D

2). Then

the extremal function of X is constant. It is easy to see that X = H2
ω(D

2). □

A weight sequence ω is of type I if for each (m1,m2),(n1, n2) ∈ I with (m1,m2) ̸=
(n1, n2) there exist some integers k1, k2 > 0 such that

ωm1+k1N1 m2+k2N2

ωm1 m2

̸= ωn1+k1N1 n2+k2N2

ωn1 n2

.

A weight sequence ω is of type II if it is not of type I.

If ω is of type I, then the only transparent polynomials are the monomials in the

form of aα(z, w)
α where α ∈ I, hence there are 2N1N2 − 2 proper reducing subspaces

of S1 and S2 in H2
ω(D

2), and they are the direct partial sums of Xm1,m2 ’s, where

Xm1,m2 = Span{zm1+k1N1wm2+k2N2 ; k1, k2 = 0, 1, 2, · · · }.

If ω is of type II, then every reducing subspace is generated by no more than N1N2

transparent polynomials.
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Example 8. Let N1 = N2 = 2. For a real number β with −1 < β < ∞, we

put γn =
n!Γ(2 + β)

Γ(2 + β + n)
. We see that the weighted Bergman space A2

β(D
2) has the

weight of type I, where ωα1 α2 = γα1γα2 . A direct calculation shows that z − w is

not transparent. Concretely

ω3 0

ω1 0

̸= ω2 1

ω0 1

.

This expression shows that the multi-indices (0, 1) and (1, 0) are not equivalent.

Moreover

ω2 1

ω0 1

(z − w)− S∗
1S1(z − w) =

(
ω2 1

ω0 1

− ω3 0

ω1 0

)
z ∈ S2(z − w).

We also see that the monomial w is in S2(z − w). Therefore the reducing subspace

Xz−w contains the transparent polynomials z and w, and we get Xz−w = Xz ⊕Xw.

4. Reducing subspaces of MN
z

In this section, we consider N1 = 0 or N2 = 0. Without loss of generality, we can

put N2 = 0. The problem is determining the reducing subspaces of S1 in H2
ω(D

2).

Proposition 9. Suppose the weight ω is of type I. Every reducing subspace of S1 in

H2
ω(D

2) is the direct partial sums of Xm’s, where

Xm = Span{zm+kN1f(w); k = 0, 1, 2, . . . , f ∈ H2
ω(D)}.

Proof. We can show this result in the same way as above. □

We can extend this result to the weighted Hardy space H2
ω(D

n).

Theorem 10. Suppose the weight ω is of type I. We fix N1, . . . , Nl ∈ N. Every

reducing subspace of MN1
z1

, . . . ,MNl
zl

in H2
ω(D

n) is the direct partial sums of Xm’s,

where

Xm1,...,ml
= Span{zm1+k1N1

1 · · · zml+klNl
l f(w); k1, . . . , kl = 0, 1, 2, . . . , f ∈ H2

ω(D
n−l)}.
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