REDUCING SUBSPACES OF WEIGHTED HARDY SPACES ON POLYDISKS

SHUHEI KUWAHARA

Abstract

We consider weighted Hardy spaces on polydisk \mathbf{D}^{n} with $n>1$. Let $z_{1}, z_{2}, \ldots, z_{n}$ be coordinate functions and $N_{j} \in \mathbf{N}$. In this paper, we determine common reducing subspaces of $M_{z_{1}}^{N_{1}}, M_{z_{2}}^{N_{2}}, \ldots, M_{z_{n}}^{N_{n}}$.

1. Introduction

Let α be a multi-index of non-negative integers and we put $\omega=\left\{\omega_{\alpha}\right\}$ a set of positive numbers. Let $H_{\omega}^{2}\left(\mathbf{D}^{n}\right)$ be the weighted Hardy space on \mathbf{D}^{n} with the weight ω consisting of analytic functions

$$
f(z)=\sum_{\alpha} a_{\alpha} z^{\alpha}
$$

such that

$$
\|f\|^{2}=\sum_{\alpha} \omega_{\alpha}\left|a_{\alpha}\right|^{2}<\infty .
$$

Suppose the case of $n=1$. Stessin and Zhu [5] showed that every reducing subspace of $M_{z^{N}}$ in $H_{\omega}^{2}(\mathbf{D})$ is a direct sum of no more than N special reducing subspaces, and these subspaces in $H_{\omega}^{2}(\mathbf{D})$ are singly generated by a polynomial of degree less than N. In this paper we generalize the results in the case of $n=1$.

Throughout the paper we consider the case of $n=2$ because we can prove our statement for any n as well as $n=2$. We fix $N_{1}, N_{2} \in \mathbf{N}$ and a weight sequence ω so that the multiplications by the coordinate functions are bounded on $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$. And we put the lexicographic order on a set of multi-indices. For $(z, w) \in \mathbf{C}^{2}$ and a multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$, we define $(z, w)^{\alpha}=z^{\alpha_{1}} w^{\alpha_{2}}$. Let S_{1}, S_{2} be the operators of multiplication by $z^{N_{1}}, w^{N_{2}}$ respectively. We say a closed subspace X in $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$ is an invariant subspace of operators S_{i} if $S_{i} X \subset X$ for $i=1,2 . X$ is a reducing subspace of S_{i} if X is invariant under both S_{i} and its adjoint S_{i}^{*} for $i=1,2$.

[^0]
2. Transparent Polynomials

Now we define a class of polynomials related on N_{1}, N_{2} and ω. Let I be a subset of multi-indices such that $I:=\left\{\left(m_{1}, m_{2}\right) ; 0 \leq m_{1} \leq N_{1}-1\right.$ and $\left.0 \leq m_{2} \leq N_{2}-1\right\}$. We say that $\left(m_{1}, m_{2}\right) \in I$ and $\left(n_{1}, n_{2}\right) \in I$ are equivalent if

$$
\frac{\omega_{m_{1}+k_{1} N_{1} m_{2}+k_{2} N_{2}}}{\omega_{m_{1} m_{2}}}=\frac{\omega_{n_{1}+k_{1} N_{1} n_{2}+k_{2} N_{2}}}{\omega_{n_{1} n_{2}}}
$$

for all non-negative integers k_{1}, k_{2}. In this case we write $\left(m_{1}, m_{2}\right) \sim\left(n_{1}, n_{2}\right)$.
We assume that p is a polynomial in the form of

$$
p(z, w)=\sum\left\{a_{\alpha}(z, w)^{\alpha} ; \alpha \in I\right\} .
$$

We say that p is transparent if we have $\alpha \sim \beta$ for any two nonzero coefficients a_{α}, a_{β} of p. We partition the set I into equivalent classes $\Omega_{1}, \ldots, \Omega_{K}$. We see that the polynomial

$$
q_{k}(z, w)=\sum\left\{a_{\alpha}(z, w)^{\alpha} ; \alpha \in \Omega_{k}\right\}
$$

is transparent for each $1 \leq k \leq K$. We put the sequence $\left\{p_{1}, \ldots, p_{K}\right\}$ which we sort $\left\{q_{1}, \ldots, q_{K}\right\}$ in the lexicographic order of the minimal multi-index of the polynomials. Then the decomposition

$$
p=p_{1}+\cdots+p_{K}
$$

is called the canonical decomposition of p.
Let \mathbb{S}_{2} be an algebra over \mathbf{C} generated by the operators S_{1}, S_{1}^{*}, S_{2}, and S_{2}^{*}. For any nonzero function $f \in H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$, we put $\mathbb{S}_{2} f=\left\{T f ; T \in \mathbb{S}_{2}\right\}$. We set X_{f} the closure of $\mathbb{S}_{2} f$ in $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$. We call X_{f} the reducing subspace generated by f. We see that X_{f} is the smallest reducing subspace containing f. Now we denote that Span X is the closed linear span of a set X in $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$.

Lemma 1. If $f(z, w)=\sum_{\alpha \in I} b_{\alpha}(z, w)^{\alpha}$ is a transparent polynomial, then

$$
X_{f}=\operatorname{Span}\left\{f z^{k_{1} N_{1}} w^{k_{2} N_{2}}: k_{1}, k_{2}=0,1,2, \ldots\right\}
$$

Proof. Let $X=\operatorname{Span}\left\{f z^{k_{1} N_{1}} w^{k_{2} N_{2}}: k_{1}, k_{2}=0,1,2, \ldots\right\}$. Then $f \in X \subset X_{f}$. From the definition of X_{f}, it is sufficient to show that X is a reducing subspace of S_{1} and S_{2} in $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$. The definition of X follows that X is invariant under S_{1} and S_{2}. We will calculate that X is invariant under S_{1}^{*}. We fix some positive integer k_{1} and write $k_{1}=k_{1}^{\prime}+1$. Then

$$
S_{1}^{*}\left(f z^{k_{1} N_{1}} w^{k_{2} N_{2}}\right)=S_{1}^{*} S_{1}\left(f z^{k_{1}^{\prime} N_{1}} w^{k_{2} N_{2}}\right)
$$

Let $\left(m_{1}, m_{2}\right)$ be the minimal multi-index of nonzero coefficients of f. Then for any multi-index $\left(\alpha_{1}, \alpha_{2}\right)$ of nonzero coefficients of f, we prove

$$
\begin{aligned}
& S_{1}^{*}\left(f z^{k_{1} N_{1}} w^{k_{2} N_{2}}\right)=S_{1}^{*} S_{1}\left(\sum_{\alpha \in I} b_{\alpha} z^{\alpha_{1}+k_{1}^{\prime} N_{1}} w^{\alpha_{2}+k_{2} N_{2}}\right) \\
& =\sum_{\alpha \in I} b_{\alpha} \frac{\omega_{\alpha_{1}+k_{1} N_{1} \alpha_{2}+k_{2} N_{2}}}{\omega_{\alpha_{1}+k_{1}^{\prime} N_{1} \alpha_{2}+k_{2} N_{2}}} z^{\alpha_{1}+k_{1}^{\prime} N_{1}} w^{\alpha_{2}+k_{2} N_{2}} \\
& =\sum_{\alpha \in I} b_{\alpha} \frac{\omega_{m_{1}+k_{1} N_{1} m_{2}+k_{2} N_{2}}}{\omega_{m_{1}+k_{1}^{\prime} N_{1} m_{2}+k_{2} N_{2}}} z^{\alpha_{1}+k_{1}^{\prime} N_{1}} w^{\alpha_{2}+k_{2} N_{2}} \\
& =\frac{\omega_{m_{1}+k_{1} N_{1} m_{2}+k_{2} N_{2}}}{\omega_{m_{1}+k_{1}^{\prime} N_{1} m_{2}+k_{2} N_{2}}}\left(\sum_{\alpha \in I} b_{\alpha} z^{\alpha_{1}} w^{\alpha_{2}}\right) z^{k_{1}^{\prime} N_{1}} w^{k_{2} N_{2}} \\
& =\frac{\omega_{m_{1}+k_{1} N_{1} m_{2}+k_{2} N_{2}}}{\omega_{m_{1}+k_{1}^{\prime} N_{1} m_{2}+k_{2} N_{2}}} f z^{k_{1}^{\prime} N_{1}} w^{k_{2} N_{2}} \in X,
\end{aligned}
$$

because p is transparent. This shows that X is invariant under S_{1}^{*}. The same argument shows that X is invariant under S_{2}^{*}.

For any subspace X of $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$ with $X \neq\{0\}$, let $\left(m_{1}, m_{2}\right)$ be the minimal multiindex such that there exists some $f \in X$ with $f^{\left(m_{1}, m_{2}\right)}(0,0) \neq 0$ but $g^{\left(k_{1}, k_{2}\right)}(0,0)=0$ for all $g \in X$ and $\left(k_{1}, k_{2}\right)<\left(m_{1}, m_{2}\right)$. We will call $\left(m_{1}, m_{2}\right)$ the order of X at the origin.

Proposition 2. Let X be a nonzero reducing subspace of S_{1} and S_{2} in $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$ and let $\left(m_{1}, m_{2}\right)$ be the order of X at the origin. Then the extremal problem

$$
\sup \left\{\operatorname{Re} f^{\left(m_{1}, m_{2}\right)}(0,0): f \in X,\|f\| \leq 1\right\}
$$

has a unique solution G with $\|G\|=1$ and $G^{\left(m_{1}, m_{2}\right)}(0,0)>0$. Furthermore, G is a polynomial in the form of $G(z, w)=\sum_{\alpha \in I} b_{\alpha}(z, w)^{\alpha}$.

Proof. If f is a function in X with Taylor expansion $f(z, w)=\sum_{\alpha} a_{\alpha}(z, w)^{\alpha}$, then $f^{\left(m_{1}, m_{2}\right)}(0,0)=a_{\left(m_{1}, m_{2}\right)} m_{1}!m_{2}!$. Then $\left|a_{m_{1}, m_{2}} m_{1}!m_{2}!\right|^{2} \leq \frac{\left(m_{1}!m_{2}!\right)^{2}}{\omega_{m_{1} m_{2}}} \sum_{\alpha} \omega_{\alpha}\left|a_{\alpha}\right|^{2}$ so the mapping $f \mapsto f^{\left(m_{1}, m_{2}\right)}(0,0)$ is a bounded linear functional on $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$. It follows that the extremal problem has a unique solution G with $\|G\|=1$ and $G^{\left(m_{1}, m_{2}\right)}(0,0)>0$. To show that G is the above polynomial, we prove $S_{1}^{*} G=0$ and $S_{2}^{*} G=0$. We put $g_{f}=\frac{G+S_{1} f}{\left\|G+S_{1} f\right\|}$ for $f \in X$. Since $\operatorname{Re} g_{f}^{\left(m_{1}, m_{2}\right)}(0,0) \leq G^{\left(m_{1}, m_{2}\right)}(0,0)$, it is easy to see that $\left\|G+S_{1} f\right\| \geq 1$ for all $f \in X$. From this inequality we obtain $G \perp S_{1} X$. Since $S_{1}^{*} G \in X$, we have $\left\langle S_{1} S_{1}^{*} G, G\right\rangle=0$, or $S_{1}^{*} G=0$. Similarly we see that $S_{2}^{*} G=0$. Therefore the degree of G is less than N_{1} in z-valuable and N_{2} in w-valuable.

The function G in Proposition 2 will be called the extremal function of X.

Lemma 3. Suppose X is a reducing subspace of S_{1} and S_{2} in $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$ and

$$
p(z, w)=\sum_{\alpha \in I} b_{\alpha}(z, w)^{\alpha}=p_{1}+p_{2}+\cdots+p_{n}
$$

is the canonical decomposition of the polynomial p. If $p \in X$, then $p_{i} \in X$ for each $i=1,2, \cdots, n$.

Proof. Let ($m_{1}^{(i)}, m_{2}^{(i)}$) be the minimal multi-index of p_{i}. We note that if $i<j$, then $\left(m_{1}^{(i)}, m_{2}^{(i)}\right)$ and $\left(m_{1}^{(j)}, m_{2}^{(j)}\right)$ are not equivalent, and $\left(m_{1}^{(i)}, m_{2}^{(i)}\right)<\left(m_{1}^{(j)}, m_{2}^{(j)}\right)$. We will show that $p_{1} \in X$. Choose positive integers k_{1} and k_{2} such that

$$
\frac{\omega_{m_{1}^{(1)}+k_{1} N_{1}} m_{2}^{(1)}+k_{2} N_{2}}{\omega_{m_{1}^{(1)} m_{2}^{(1)}}} \neq \frac{\omega_{m_{1}^{(n)}+k_{1} N_{1} m_{2}^{(n)}+k_{2} N_{2}}}{\omega_{m_{1}^{(n)} m_{2}^{(n)}}}
$$

Then

$$
\begin{aligned}
& \frac{\omega_{m_{1}^{(n)}+k_{1} N_{1} m_{2}^{(n)}+k_{2} N_{2}}}{\omega_{m_{1}^{(n)} m_{2}^{(n)}}} p-\left(S_{1}^{*}\right)^{k_{1}}\left(S_{2}^{*}\right)^{k_{2}}\left(S_{1}\right)^{k_{1}}\left(S_{2}\right)^{k_{2}} p \\
= & \sum_{k=1}^{n-1}\left(\frac{\omega_{m_{1}^{(n)}+k_{1} N_{1} m_{2}^{(n)}+k_{2} N_{2}}}{\omega_{m_{1}^{(n)} m_{2}^{(n)}}}-\frac{\omega_{m_{1}^{(k)}+k_{1} N_{1} m_{2}^{(k)}+k_{2} N_{2}}}{\omega_{m_{1}^{(k)} m_{2}^{(k)}}}\right) p_{k},
\end{aligned}
$$

because

$$
\left(S_{1}^{*}\right)^{k_{1}}\left(S_{2}^{*}\right)^{k_{2}}\left(S_{1}\right)^{k_{1}}\left(S_{2}\right)^{k_{2}} p=\sum_{k=1}^{n} \frac{\omega_{m_{1}^{(k)}+k_{1} N_{1} m_{2}^{(k)}+k_{2} N_{2}}}{\omega_{m_{1}^{(k)} m_{2}^{(k)}}} p_{k}
$$

We see that the above polynomial is in X and the coefficient of p_{1} is nonzero. If some of the coefficients of p_{2}, \ldots, p_{n-1} are nonzero, then we can vanish the coefficients of these polynomials in the same way. After at most $n-1$ steps, we will have a nonzero constant multiple of p_{1}, which belongs to X. Thus $p_{1} \in X$. For $i=2, \ldots, n$, we see $p_{i} \in X$ in the same way.

Proposition 4. The extremal function of any reducing subspace of S_{1} and S_{2} in $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$ is transparent.

Proof. Let X be a reducing subspace of S_{1} and S_{2} in $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$. We get G, the extremal function of X by Proposition 2. If $G=g_{1}+\cdots+g_{n}$ is the canonical decomposition of G into transparent polynomials, then g_{1} contains the term $\left(G^{\left(m_{1}, m_{2}\right)}(0,0) / m_{1}!m_{2}!\right) z^{m_{1}} w^{m_{2}}$, where $\left(m_{1}, m_{2}\right)$ is the order of zero of X at the origin. The polynomial g_{1} satisfies the condition of extremal problem in Proposition $2 ;\left\|g_{1}\right\| \leq\|G\|=1, g_{1}^{\left(m_{1}, m_{2}\right)}(0,0)=G^{\left(m_{1}, m_{2}\right)}(0,0)$, and $g_{1} \in X$ by Lemma 3. The fact that G is extremal implies that G is equal to g_{1} and is transparent.

Proposition 5. If p is a transparent polynomial and $Y \subset X_{p}$ is a reducing subspace, $Y=\{0\}$ or X_{p}.

Proof. We assume $Y \neq\{0\}$. Let G_{Y} be its extremal function of Y. Then G_{Y} is a polynomial of degree less than $\left(N_{1}, N_{2}\right)$ from Proposition 2. On the other hand, from the definition of X_{p}, there is some function $f\left(z^{N_{1}}, w^{N_{2}}\right)$ in $\operatorname{Hol}\left(\mathbf{D}^{2}\right)$ such that $p f=G_{Y}$. We consider the degree of these polynomials, we see that f is constant therefore $p \in Y$. This implies $X_{p} \subset Y$ or $X_{p}=Y$.

3. Main Result

We remark that we can extend results proved by Stessin and Zhu. Here we show a part of our result.

Theorem 6. Every reducing subspace of S_{1} and S_{2} in $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$ is generated by no more than $N_{1} N_{2}$ transparent polynomials.

Proof. Let X be a nonzero reducing subspace of S_{1} and S_{2} in $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$. Let G be the extremal function of X. From Proposition 4, G is transparent. And also X contains the reducing subspace X_{G} which is minimal from Proposition 5. Let $Y=X \ominus X_{G}$. We note that the term of $z^{m_{1}} w^{m_{2}}$ is contained in X where (m_{1}, m_{2}) is the minimal multi-index of G, but the term of $z^{m_{1}} w^{m_{2}}$ is not contained in Y from the definition of Y. Therefore through this process, we can make the order of zero of Y at the origin strictly greater than the order of zero of X at the origin. If $Y \neq\{0\}$, then we find the extremal function G^{\prime} which is transparent and we consider $Y \ominus X_{G^{\prime}}$. We continue these processes no more than $N_{1} N_{2}$ times because the number of the terms in the extremal functions is no more than $N_{1} N_{2}$ by Proposition 2.

Corollary 7. The reducing subspaces of the operators of multiplication by z, w in $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$ is $\{0\}$ and $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$.

Proof. Let X be a nonzero reducing subspace of these operators in $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$. Then the extremal function of X is constant. It is easy to see that $X=H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$.

A weight sequence ω is of type I if for each $\left(m_{1}, m_{2}\right),\left(n_{1}, n_{2}\right) \in I$ with $\left(m_{1}, m_{2}\right) \neq$ $\left(n_{1}, n_{2}\right)$ there exist some integers $k_{1}, k_{2}>0$ such that

$$
\frac{\omega_{m_{1}+k_{1} N_{1} m_{2}+k_{2} N_{2}}}{\omega_{m_{1} m_{2}}} \neq \frac{\omega_{n_{1}+k_{1} N_{1} n_{2}+k_{2} N_{2}}}{\omega_{n_{1} n_{2}}} .
$$

A weight sequence ω is of type II if it is not of type I.
If ω is of type I, then the only transparent polynomials are the monomials in the form of $a_{\alpha}(z, w)^{\alpha}$ where $\alpha \in I$, hence there are $2^{N_{1} N_{2}}-2$ proper reducing subspaces of S_{1} and S_{2} in $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$, and they are the direct partial sums of $X_{m_{1}, m_{2}}$'s, where

$$
X_{m_{1}, m_{2}}=\operatorname{Span}\left\{z^{m_{1}+k_{1} N_{1}} w^{m_{2}+k_{2} N_{2}} ; k_{1}, k_{2}=0,1,2, \cdots\right\} .
$$

If ω is of type II, then every reducing subspace is generated by no more than $N_{1} N_{2}$ transparent polynomials.

Example 8. Let $N_{1}=N_{2}=2$. For a real number β with $-1<\beta<\infty$, we put $\gamma_{n}=\frac{n!\Gamma(2+\beta)}{\Gamma(2+\beta+n)}$. We see that the weighted Bergman space $A_{\beta}^{2}\left(\mathbf{D}^{2}\right)$ has the weight of type I, where $\omega_{\alpha_{1} \alpha_{2}}=\gamma_{\alpha_{1}} \gamma_{\alpha_{2}}$. A direct calculation shows that $z-w$ is not transparent. Concretely

$$
\frac{\omega_{30}}{\omega_{10}} \neq \frac{\omega_{21}}{\omega_{01}} .
$$

This expression shows that the multi-indices $(0,1)$ and $(1,0)$ are not equivalent. Moreover

$$
\frac{\omega_{21}}{\omega_{01}}(z-w)-S_{1}^{*} S_{1}(z-w)=\left(\frac{\omega_{21}}{\omega_{01}}-\frac{\omega_{30}}{\omega_{10}}\right) z \in \mathbb{S}_{2}(z-w)
$$

We also see that the monomial w is in $\mathbb{S}_{2}(z-w)$. Therefore the reducing subspace X_{z-w} contains the transparent polynomials z and w, and we get $X_{z-w}=X_{z} \oplus X_{w}$.

4. Reducing subspaces of M_{z}^{N}

In this section, we consider $N_{1}=0$ or $N_{2}=0$. Without loss of generality, we can put $N_{2}=0$. The problem is determining the reducing subspaces of S_{1} in $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$.

Proposition 9. Suppose the weight ω is of type I. Every reducing subspace of S_{1} in $H_{\omega}^{2}\left(\mathbf{D}^{2}\right)$ is the direct partial sums of X_{m} 's, where

$$
X_{m}=\operatorname{Span}\left\{z^{m+k N_{1}} f(w) ; k=0,1,2, \ldots, f \in H_{\omega}^{2}(\mathbf{D})\right\}
$$

Proof. We can show this result in the same way as above.
We can extend this result to the weighted Hardy space $H_{\omega}^{2}\left(\mathbf{D}^{n}\right)$.
Theorem 10. Suppose the weight ω is of type I. We fix $N_{1}, \ldots, N_{l} \in \mathbf{N}$. Every reducing subspace of $M_{z_{1}}^{N_{1}}, \ldots, M_{z_{l}}^{N_{l}}$ in $H_{\omega}^{2}\left(\mathbf{D}^{n}\right)$ is the direct partial sums of X_{m} 's, where
$X_{m_{1}, \ldots, m_{l}}=\operatorname{Span}\left\{z_{1}^{m_{1}+k_{1} N_{1}} \cdots z_{l}^{m_{l}+k_{l} N_{l}} f(w) ; k_{1}, \ldots, k_{l}=0,1,2, \ldots, f \in H_{\omega}^{2}\left(\mathbf{D}^{n-l}\right)\right\}$.
Acknowledgement. The author expresses his hearty thanks to Professor T. Nakazi for his valuable advice and constant encouragements. The author is grateful to the referees for their valuable comments and suggestions which have contributed to the final preparation of the paper.

References

[1] A. Brown and P. R. Halmos, Algebraic Properties of Toeplitz Operators, J. Reine Angew. Math. 213 (1963), 89-102.
[2] R. G. Douglas, Banach Algebra Techniques in Operator Theory. Second Edition, Graduate Texts in Mathematics 179, Springer-Verlag, New York, 1998.
[3] P. R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102-112.
[4] Yanyue Shi and Yufeng Lu, Reducing Subspaces for Toeplitz Operators on the polydisk, Bull. Korean Math. Soc. 50 (2013), 687-696.
[5] M. Stessin and K. Zhu, Reducing subspace of weighted shift operators, Proc. Amer. Math. Soc. 130 (2002), 2631-2639.

Sapporo Seishu High School, Sapporo 064-0916, Japan
E-mail address: s.kuwahara@sapporoseishu.ed.jp

Received April 18, 2014
Revised July 17, 2014

[^0]: 2010 Mathematics Subject Classification. Primary 47B37; Secondary 30H10.
 Key words and phrases. Reducing subspaces, weighted shift.

