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AUTOMORPHISM GROUPS OF SMOOTH PLANE
CURVES WITH MANY GALOIS POINTS

SATORU FUKASAWA

Abstract. We describe the automorphism groups of curves appearing in a clas-

sification list of smooth plane curves with at least two Galois points. One of them

is an ordinary curve whose automorphism group exceeds the Hurwitz bound.

1. Introduction

Let the base field K be an algebraically closed field of characteristic p = 2 and let

q = 2e ≥ 4. We consider smooth plane curves given by

Z
∏
α∈Fq

(X + αY + α2Z) + λY q+1 = 0, (∗)

or

(X2 +XZ)2 + (X2 +XZ)(Y 2 + Y Z) + (Y 2 + Y Z)2 + λZ4 = 0, (∗∗)

where λ ∈ K \ {0, 1}. These curves appear in the classification list of smooth plane

curves with at least two Galois points ([4, Theorem 3], see [12, 17] for definition of

Galois point). The automorphism groups of other curves (Fermat, Klein quartic and

the curve x3+y4+1 = 0) in the list were studied by many authors (see, for example,

[6, 8, 10, 14]). In this paper, we describe the automorphism groups of these curves,

as follows.

Theorem 1.1. Let C be the plane curve given by (∗) of degree q + 1 and genus

gC = q(q− 1)/2. Then, Aut(C) ∼= PGL(2,Fq). In particular, |Aut(C)| = q3− q and

> 84(gC − 1) if q ≥ 64.

Theorem 1.2. Let C be the plane curve given by (∗∗) of degree four. Then, Aut(C)

is isomorphic to the symmetric group S4 of degree four. In particular, |Aut(C)| = 24.
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It is well known that the order of the automorphism group of any curve with

genus gC > 1 is bounded by 84(gC−1) in characteristic zero, by Hurwitz. Our curve

given by (∗) is an ordinary curve whose automorphism group exceeds the Hurwitz

bound (see Remark 2.1). This is different from the examples of Subrao [16] and of

Nakajima [13] by the genera.

Our theorems are proved by considering the Galois groups at Galois points. There-

fore, our study is related to the results of Kanazawa, Takahashi and Yoshihara [9],

Miura and Ohbuchi [11].

2. Proof of Theorem 1.1

According to [1, Appendix A, 17 and 18] or [2], any automorphism of smooth plane

curves of degree at least four is the restriction of a linear transformation. Therefore,

we have an injection

Aut(C) ↪→ PGL(3, K).

Let LY be the line given by Y = 0, and let P1 = (1 : 0 : 0) and P2 = (0 : 0 : 1). A

point P ∈ P2 is said to be Galois, if the field extension induced by the projection πP

from P is Galois. If P is a Galois point, then we denote by GP the Galois group. For

γ ∈ Aut(C), we denote the set {Q ∈ P2 | γ(Q) = Q} by Lγ. We have the following

properties for curves with (∗) (see also [4]).

Proposition 2.1. Let C be the plane curve given by (∗). Then, we have the follow-

ing.

(a) C ∩ LY = LY (Fq), where LY (Fq) is the set of Fq-rational points of LY . We

denote by LY (Fq) = {P1, . . . , Pq+1}.
(b) The set of Galois points on C coincides with LY (Fq).

(c) For the projection πP1 from P1, the ramification index at P1 is q and there

exist exactly (q − 1) lines ℓ such that the ramification index at each point of

C ∩ ℓ is equal to two. Furthermore, σ(P1) = P1 for any σ ∈ GP1.

(d) If i, j, k are different, then there exists σ ∈ GPi
such that σ(Pj) = Pk.

Proof. Since the set C ∩ LY is given by Y = Z
∏

α∈Fq
(X + α2Z) = 0, we have (a).

See [3, Section 3], [4, Section 4] for (b). An automorphism σ ∈ GP1 is given by

(x, y) 7→ (x + αy + α2, y) for some α ∈ Fq (see [4, Section 4]). If α ̸= 0, then the

set Lσ coincides with the line defined by Y + αZ = 0. Therefore, GP1(P1) := {τ ∈
GP1 | τ(P1) = P1} = GP1 , and GP1(Q) := {τ ∈ GP1 | τ(Q) = Q} is of order two for

any σ ∈ GP1 \ {1} and any Q ∈ C ∩ Lσ \ {P1}. It follows from [15, III.8.2] that the

ramification index at P (resp. at Q) is equal to the order |GP1(P1)| (resp. |GP1(Q)|).
We have (c). Since GPi

acts on C ∩ ℓ \{Pi} transitively if ℓ is a line passing through

Pi by a natural property of Galois extension ([15, III.7.1]), we have (d). □
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We determine Aut(C).

Lemma 2.1. The restriction map γ 7→ γ|LY
gives an injection

r : Aut(C) ↪→ PGL(LY (Fq)) ∼= PGL(2,Fq).

Proof. Let γ ∈ Aut(C). Since the set of Galois points is invariant under a linear

transformation, γ(LY (Fq)) = LY (Fq), by Proposition 2.1(a)(b). Therefore, r is well-

defined. Note also that γ(TPi
C) = Tγ(Pi)C, since a tangent line is invariant under a

linear transformation.

Assume that γ|LY
is identity. Then, γ(TPi

C) = Tγ(Pi)C = TPi
C and the point

given by TP1C ∩TPi
C is fixed by γ for any i. If Pi = (β : 0 : 1) ∈ LY (Fq), then TPi

C

is given by X +
√
βY + βZ = 0. Since γ|TP1

C is an automorphism of TP1C
∼= P1

and there exist q (≥ 4) points fixed by γ, γ|TP1
C is identity. Since γ|LY

= 1 and

γ|TP1
C = 1, γ is identity on P2. □

Lemma 2.2. Let H(C) := {γ ∈ Aut(C) | γ(P1) = P1, γ(P2) = P2} and let H0 :=

{τ ∈ PGL(LY (Fq)) | τ(P1) = P1, τ(P2) = P2}. Then, r(H(C)) = H0. In particular,

H0 ⊂ r(Aut(C)).

Proof. We have r(H(C)) ⊂ H0. According to [4, Lemma 4 and Page 100], H(C)

is a cyclic group of order q − 1. We can also prove that H0 is a cyclic group

of order at most q − 1 (see, for example, [4, Lemma 2(2)]). Therefore, we have

r(H(C)) = H0. □

Lemma 2.3. The restriction map r is surjective.

Proof. Let τ ∈ PGL(LY (Fq)) and let τ(P1) = Pi, τ(P2) = Pj. We take k ̸= 1, i.

By Proposition 2.1(d), there exists γ1 ∈ r(GPk
) such that γ1τ(P1) = P1. Further,

by Proposition 2.1(c)(d), there exists γ2 ∈ r(GP1) such that γ2γ1τ(P1) = P1 and

γ2γ1τ(P2) = P2. Then, γ2γ1τ ∈ H0. By Lemma 2.2, γ2γ1τ ∈ r(Aut(C)). This

implies τ ∈ r(Aut(C)). □

We have Aut(C) ∼= PGL(2,Fq) by Lemmas 2.1 and 2.3.

Remark 2.1. According to Deuring-S̆afarevic̆ formula ([16, Theorem 4.2]), the p-rank

γC of the curve C is computed by ramification indices for the Galois covering πP1 .

Using Proposition 2.1(c), we have

γC − 1

q
= (−1) +

(
1− 1

q

)
+ (q − 1)

(
1− 1

2

)
.

This implies γC = q(q − 1)/2 = gC , i.e. C is ordinary.

Remark 2.2. We also have the following for Aut(C).

(a) |Aut(C)| = gC × (3 +
√
8gC + 1).
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(b) Aut(C) = ⟨GP1 , . . . , GPq+1⟩ = ⟨GP1 , GP2⟩.

Remark 2.3. When λ = 1, we can check that the curve C with (∗) is parameterized

as P1 → P2; (s : 1) 7→ (sq+1 : sq + s : 1) by direct computation ([4, Remark 3]).

Therefore, C is rational and singular. The similar result Aut0(C) ∼= PGL(2,Fq) has

been obtained by Hoai and Shimada [7, Proposition 1.3], where Aut0(C) := {ϕ ∈
PGL(3, K) | ϕ(C) = C}.

3. Proof of Theorem 1.2

Similarly to the previous section, we have an injection

Aut(C) ↪→ PGL(3, K).

Let LZ be the line given by Z = 0, and let P1 = (1 : 0 : 0), P2 = (1 : 1 : 0) and

P3 = (0 : 1 : 0). If P is a Galois point, then we denote by GP the Galois group. For

γ ∈ Aut(C), we denote the set {Q ∈ P2 | γ(Q) = Q} by Lγ. We have the following

properties for curves with (∗∗) (see [5, Sections 3 and 4]).

Proposition 3.1. Let C be the plane curve given by (∗∗). Then, we have the

following.

(a) The set of Galois points in P2 \ C coincides with LZ(F2) = {P1, P2, P3}.
(b) For each i, there exists a unique element σi ∈ GPi

\ {1} such that Lσi
= LZ.

(c) For each i, there exist exactly two lines ℓ such that ℓ ∋ Pi, ℓ ̸= LZ and ℓ is

the tangent line at two points in C ∩ ℓ. Conversely, if ℓ is such a line, then

there exists τ ∈ GPi
\ ⟨σi⟩ such that Lτ = ℓ.

(d) There exist exactly four non-Galois points Q1, Q2, Q3, Q4 ∈ P2 such that the

line QiQj which passes through Qi, Qj is a tangent line of C for each i, j

with i ̸= j and QiQj ∋ Pk for some k. Such points are (0 : 0 : 1), (1 : 0 : 1),

(0 : 1 : 1) and (1 : 1 : 1).

Proof. For (a)(d), see [5, Section 4] (we need λ ̸= 1). We explain (b)(c) for i = 1.

Let σ, τ be linear transformations given by

σ(X : Y : Z) = (X + Z : Y : Z), τ(X : Y : Z) = (X + Y : Y : Z).

Then, GP1 = {1, σ, τ, στ}. Since σ|LZ
= 1 and τ |LZ

̸= 1, we have (b). Note that

the line Lτ is given by Y = 0 and the line Lστ is given by Y + Z = 0. Referring

[15, III. 8.2], we have (c). For i = 2, 3, we consider the linear transformations

ϕ2 : (X, Y, Z) 7→ (X, Y +X,Z) and ϕ3 : (X, Y, Z) 7→ (Y,X,Z). Then, ϕi(C) = C,

ϕi(P1) = Pi and GPi
= ϕiGP1ϕ

−1
i . We also have (b)(c) for i = 2, 3. □

First we prove the following.
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Lemma 3.1. Let X = {Q1, Q2, Q3, Q4} and let S(X) be the group of all permuta-

tions on X. Then, there exists an injection Aut(C) ↪→ S(X) ∼= S4.

Proof. By Proposition 3.1(d), we have a well-defined homomorphism Aut(C) →
S(X) by γ 7→ γ|X . If γ ∈ Aut(C) fixes Q1, Q2, Q3, Q4, then γ fixes P1, P2, P3 also.

Note that X∪{P1, P2, P3} = P2(F2). Then, γ is identity on the projective plane. □

We prove that |Aut(C)| ≥ 24. Let H := ⟨σ1, σ2⟩.

Lemma 3.2. The restriction map

r : Aut(C) → PGL(LZ(F2)) ∼= S3; γ 7→ γ|LZ

is surjective and its kernel coincides with H. In particular, |Aut(C)| ≥ 24.

Proof. Let γ ∈ Aut(C). Since the set of Galois points is invariant under a linear

transformation, γ({P1, P2, P3}) = {P1, P2, P3}, by Proposition 3.1(a). Therefore, r

is well-defined.

We consider the kernel. Assume that γ|LZ
is identity. Let σi ∈ GPi

be an au-

tomorphism as in Proposition 3.1(b) for i = 1, 2 and let τ, η ∈ GP1 \ ⟨σ1⟩ with

τ ̸= η. By Proposition 3.1(c), Lτ and Lη are tangent lines of C containing P1. Since

γ(P1) = P1, γ(Lτ ) is a tangent line with P1 ∈ γ(Lτ ). We have γ(Lτ ) = Lτ or Lη by

Proposition 3.1(c). Assume that γ(Lτ ) = Lτ . Since σ1 acts on C ∩Lτ ([15, III.7.1]),

σl
1γ fixes P1 and two points of C ∩ Lτ for l = 0 or 1. Then σl

1γ is identity on Lτ

by a property of an automorphism of Lτ
∼= P1. We have σl

1γ = 1 on P2, because

σl
1γ|LZ

= 1 and σl
1γ|Lτ = 1. Then, γ ∈ H. Assume that γ(Lτ ) = Lη. Now, σ2(Lη)

is a tangent line containing P1. By Proposition 3.1(c), σ2(Lη) = Lη or Lτ . Let

Q ∈ C ∩ Lη and let P2Q be the line passing through P2, Q. Since Q ̸∈ LZ = Lσ2

and σ2 acts on C ∩ P2Q ([15, III.7.1]), σ2(Q) ̸= Q and σ2(Q) ∈ P2Q. We have

σ2(Lη) ̸= Lη, because σ2(Q) ̸∈ Lη. Therefore, σ2(Lη) = Lτ and σ2γ(Lτ ) = Lτ .

Similarly to the case γ(Lτ ) = Lτ , σ
l
1σ2γ is identity on P2 for l = 0 or 1. We have

γ ∈ H.

We prove that r is surjective. We have an injection Aut(C)/H ↪→ S3. Let

τi ∈ GPi
\ ⟨σi⟩ for each i. Since τ1τ2(P1) = P2, τ1τ2(P2) = P3 and τ1τ2(P3) = P1, the

order of τ1τ2H ∈ Aut(C)/H is three. Since the group Aut(C)/H has elements of

order two and three, we have Aut(C)/H = S3. □

We have the conclusion, by these two lemmas.

Remark 3.1. We also have Aut(C) = ⟨GP1 , GP2 , GP3⟩ = ⟨GP1 , GP2⟩.
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