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Abstract. In this paper we introduce a new kind of pair of finite range sets in

C for meromorphic functions corresponding to their uniqueness.

1. Introduction

In this paper, by meromorphic functions we will always mean meromorphic functions

in the complex plane. We adopt the standard notations of the Nevanlinna theory

of meromorphic functions as explained in [11]. It will be convenient to let E denote

any set of positive real numbers of finite linear measure, not necessarily the same

at each occurrence. For a non-constant meromorphic function h, we denote by

T (r, h) the Nevanlinna characteristic of h and by S(r, h) any quantity satisfying

S(r, h) = o{T (r, h)}, as r −→ ∞ and r ̸∈ E.

Let f and g be two non-constant meromorphic functions and S be a set of dis-

tinct elements of C ∪ {∞} and Ef (S) =
∪

a∈S{z : f(z) = a}, where each point is

counted according to its multiplicity. Denote by Ef (S) the reduced form of Ef (S).

If Ef (S) = Eg(S), we say that f and g share the set S CM. If Ef (S) = Eg(S), we

say that f and g share the set S IM.

Every body will admit that new concept or definition always encourage researchers

to contemplate that matter seriously. The theory of uniqueness of meromorphic

function is no way an exception. The introduction of the novel idea of unique range

set for meromophic function (URSM in brief) by Gross and Yang [10] (see also [16])

influenced many mathematicians to pursue their investigations meticulously to find

finite URSM’s {see [1], [5]-[8], [15], [16]}. The advent of the notion of weighted
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sharing of values and sets by Lahiri [13, 14] further add essence in this context.

Bellow we are recalling the same.

Definition 1.1. [13, 14] Let k be a nonnegative integer or infinity. For a ∈ C∪{∞}
we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity

m is counted m times if m ≤ k and k+ 1 times if m > k. If Ek(a; f) = Ek(a; g), we

say that f, g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k.

Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also

we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞)

respectively.

Definition 1.2. [13] Let S be a set of distinct elements of C ∪ {∞} and k be a

nonnegative integer or ∞. We denote by Ef (S, k) the set
∪

a∈S Ek(a; f).

Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).

Recently the existing definitions on URSM’s have been streamlined in [4] with

the help of weighted sharing. Till date the URSM with 11 elements is the smallest

available URSM obtained by G. Frank and M. Reinders [5].

In continuation with the famous “Gross question” [9], in 2003, the following ques-

tion was asked by Lin and Yi in [17].

Question A. Can one find two finite sets Sj (j = 1, 2) such that any two non-

constant meromorphic functions f and g satisfying Ef (Sj,∞) = Eg(Sj,∞) for

j = 1, 2 must be identical ?

In connection with Question A, during the last two decades a famous problem

in value distribution theory has been to give explicitly a set S with n elements

and make n as small as possible such that any two meromorphic functions f and

g that share the value ∞ and the set S must be equal. But the possible answer

corresponding to two finite sets in C has not been explored exhaustively. So it

would be interesting to investigate the existence of a pair of finite range sets in C
shared by two meromorphic functions which leads them to-wards their uniqueness.

In commensurate with the new type of definition of URSMk as ushered in [4], it will

be reasonable to introduce the following definition.

A pair of finite sets S1 and S2 in C is called bi unique range sets for meromorphic

(entire) functions with weightsm, k if for any two non-constant meromorphic (entire)

functions f and g, Ef (S1,m) = Eg(S1,m), Ef (S2, k) = Eg(S2, k) implies f ≡ g.

We write Si’s i = 1, 2 as BURSMm, k (BURSEm, k) in short. As usual if both

m = k = ∞, we say Si’s i = 1, 2 as BURSM (BURSE).

So far we know H.X.Yi [20] is the first to draw the affirmative answer to the

above question in the direction of BURSM prior to its announcement. Yi proved

the following theorem.
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Theorem A. [20] Let S1 = {a+b, a+bω, . . . , a+bωn−1}, S2 = {c1, c2} where ω = e
2πi
n

and b ̸= 0, c1 ̸= a, c2 ̸= a, (c1 − a)n ̸= (c2 − a)n, (ck − a)n(cj − a)n ̸= b2n (k, j = 1, 2)

are constants. If n ≥ 9 then Then Si’s i = 1, 2 are BURSM.

Recently Yi and Li [19], improved Theorem A to a large extent by significantly

reducing the cardinality of one of the range sets. In [19] the following result have

been proved.

Theorem B. [19] Let S1 = {0, 1}, S2 =
{
z : (n−1)(n−2)

2
zn − n(n− 2)zn−1 + n(n−1)

2
zn−2

+1 = 0}, where n(≥ 5) is an integer. Then Si’s i = 1, 2 are BURSM.

The purpose of the paper is to radically improve the result as stated in Theorem

B. In fact, we shall relax the nature of sharing of both the range sets to a large

extend.

The following theorems are the main results of the paper.

Theorem 1.1. Let S1 = {0, 1}, S2 =
{
z : (n−1)(n−2)

2
zn − n(n− 2)zn−1 + n(n−1)

2
zn−2

−c = 0}, where n(≥ 5) is an integer and c ̸= 0, 1, 1
2
is a complex number such that

c2 − c+ 1 ̸= 0. Then Si’s i = 1, 2 are BURSM1, 3.

Theorem 1.2. Let Si, i = 1, 2 be given as in Theorem 1.1. Then Si’s i = 1, 2 are

BURSM3, 2.

It is assumed that the readers are familiar with the standard definitions and

notations of the value distribution theory as those are available in [11]. We are still

going to explain some notations as these are used in the paper.

Definition 1.3. [12] For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the count-

ing function of simple a points of f . For a positive integer m we denote by

N(r, a; f |≤ m)(N(r, a; f |≥ m)) the counting function of those a points of f

whose multiplicities are not greater(less) than m, where each a point is counted

according to its multiplicity. We denote by N(r, a; f |< m), (N(r, a; f |> m))

the counting function of those a-points of f whose multiplicities are less (greater)

than m, where each point is counted according to its multiplicity. We denote by

N(r, a; f |≤ m), N(r, a; f |≥ m), N(r, a; f |< m) and N(r, a; f |> m) the reduced

forms of N(r, a; f |≤ m), N(r, a; f |≥ m), N(r, a; f |< m) and N(r, a; f |> m)

respectively.

Definition 1.4. [2] Let f and g be two non-constant meromorphic functions such

that f and g share (1, 0). Let z0 be a 1-point of f with multiplicity p, a 1-point

of g with multiplicity q. We denote by NL(r, 1; f) the reduced counting function

of those 1-points of f and g where p > q, by N
1)
E (r, 1; f) the counting function of

those 1-points of f and g where p = q = 1, by N
(2

E (r, 1; f) the reduced counting
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function of those 1-points of f and g where p = q ≥ 2. In the same way we

can define NL(r, 1; g), N
1)
E (r, 1; g), N

(2

E (r, 1; g). In a similar manner we can define

NL(r, a; f) and NL(r, a; g) for a ∈ C ∪ {∞}. When f and g share (1,m), m ≥ 1

then N
1)
E (r, 1; f) = N(r, 1; f |= 1).

Definition 1.5. [13, 14] Let f , g share (a, 0). We denote by N∗(r, a; f, g) the

reduced counting function of those a-points of f whose multiplicities differ from the

multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) = N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f)+NL(r, a; g).

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let f

and g be two non-constant meromorphic function and for an integer n ≥ 3

F =
P (f)

c
=

(n−1)(n−2)
2

fn − n(n− 2)fn−1 + n(n−1)
2

fn−2

c
, (1)

G =
P (g)

c
=

(n−1)(n−2)
2

gn − n(n− 2)gn−1 + n(n−1)
2

gn−2

c
, (2)

where P (z) = zn−2Q(z) and Q(z) = { (n−1)(n−2)
2

z2−n(n− 2)z+ n(n−1)
2

}. Henceforth
we shall denote by H and Φ the following two functions

H =

(
F

′′

F ′ − 2F
′

F − 1

)
−

(
G

′′

G′ − 2G
′

G− 1

)
.

Φ =
F

′

F − 1
− G

′

G− 1
.

Lemma 2.1. [22] If F , G be two non-constant meromorphic functions such that

they share (1,0) and H ̸≡ 0, then

N
1)
E (r, 1;F |= 1) = N

1)
E (r, 1;G |= 1) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 2.2. Let F , G be given by (1) and (2). Also let Ef (S1, p) = Eg(S1, p) and

Ef (S2, 0) = Eg(S2, 0), where Si’s i = 1, 2 be given as in Theorem 1.1. If H ̸≡ 0,

then

N(r,H) ≤ N(r, 0; f |≥ p+ 1) +N(r, 1; f |≥ p+ 1) +N∗(r, 1;F,G)

+N(r,∞; f) +N(r,∞; g) +N0(r, 0; f
′
) +N0(r, 0; g

′
),

where N0(r, 0; f
′
) is the reduced counting function of those zeros of f

′
which are not

the zeros of f(f − 1) and F − 1, N0(r, 0; g
′
) is similarly defined.
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Proof. Clearly Ef (S2, 0) = Eg(S2, 0) implies F − 1 = P (f)−c
c

and G− 1 = P (g)−c
c

and

so F and G share (1, 0). First we note that

F
′
=

n(n− 1)(n− 2)fn−3(f − 1)2f
′

2c
, G

′
=

n(n− 1)(n− 2)gn−3(g − 1)2g
′

2c
,

F
′′
=

n(n− 1)(n− 2)fn−4(f − 1)[(n− 3)(f − 1)f
′2
+ 2ff

′2
+ f(f − 1)f

′′
]

2c
and

G
′′
=

n(n− 1)(n− 2)gn−4(g − 1)[(n− 3)(g − 1)g
′2
+ 2gg

′2
+ g(g − 1)g

′′
]

2c
.

In view of the above calculation it is easy to see that

H =
2f

′

f − 1
− 2g

′

g − 1
+

(n− 3)f
′

f
− (n− 3)g

′

g
+

f
′′

f ′ − g
′′

g′ −
(

2F
′

F − 1
− 2G

′

G− 1

)
.

Since Ef (S1, p) = Eg(S1, p) we observe that if z0 is a 0-point of f (g) then either

g(z0) = 1 (f(z0) = 1) or g(z0) = 0 (f(z0) = 0) and N(r, 0; f |≥ p+ 1) +N(r, 1; f |≥
p+ 1) = N(r, 0; g |≥ p+ 1) +N(r, 1; g |≥ p+ 1) . It can also easily be verified that

possible poles of H occur at (i) zeros (1-points) of f and g with multiplicity greater

than p, (ii) poles of f and g, (iii) those 1-points of F and G whose multiplicities are

distinct from the multiplicities of the corresponding 1-points of G and F respectively,

(iv) zeros of f
′
which are not the zeros of f(f − 1) and F − 1, (v) zeros of which are

not the zeros of g(g − 1) and G− 1.

Since H has only simple poles, clearly the lemma follows from above explanations.

□

Lemma 2.3. [18] Let f be a non-constant meromorphic function and P (f) = a0 +

a1f + a2f
2 + . . . + anf

n, where a0, a1, a2 . . . , an are constants and an ̸= 0. Then

T (r, P (f)) = nT (r, f) +O(1).

Lemma 2.4. [3] Let f and g be two meromorphic functions sharing (1,m), where

1 ≤ m < ∞. Then

N(r, 1; f) +N(r, 1; g)−N(r, 1; f |= 1) +

(
m− 1

2

)
N∗(r, 1; f, g)

≤ 1

2
[N(r, 1; f) +N(r, 1; g)]

Lemma 2.5. Let f , g be two non-constant meromorphic functions such that Ef ({0, 1},
0) = Eg({0, 1}, 0) and suppose γ and δ be the roots of the equation Q(z) = (n−1)(n−2)

2
z2

− n(n− 2)z + n(n−1)
2

= 0. Then

(n− 1)2(n− 2)2fn−2(f − γ)(f − δ)gn−2(g − γ)(g − δ) ̸≡ 4c2,

where n (≥ 3) be an integer.
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Proof. If possible, let us suppose

(n− 1)2(n− 2)2fn−2(f − γ)(f − δ)gn−2(g − γ)(g − δ) ≡ 4c2. (3)

Let z0 be a zero of f (g). Then z0 must be either a 0-point or an 1 point of g (f),

which is impossible from (3). It follows that f (g) has no zero.

Next let z0 be a zero of f − γ (f − δ) with multiplicity p. Then z0 is a pole of g

with multiplicity q such that p = (n− 2)q + 2q = nq ≥ n.

Since the poles of f are the zeros of g − γ and g − δ, we get

N(r,∞; f) ≤ N(r, γ; g) +N(r, δ; g)

≤ 1

n
N(r, γ; g) +

1

n
N(r, δ; g)

≤ 2

n
T (r, g).

By the second fundamental theorem we get

2T (r, f) ≤ N(r,∞; f) +N(r, 0; f) +N(r, γ; f) +N(r, δ; f) + S(r, f)

≤ 1

n
N(r, γ; f) +

1

n
N(r, δ; f) +

2

n
T (r, g) + S(r, f)

≤ 2

n
T (r, f) +

2

n
T (r, g) + S(r, f).

i.e.,

(2− 2

n
) T (r, f) ≤ 2

n
T (r, g) + S(r, f). (4)

Similarly

(2− 2

n
) T (r, g) ≤ 2

n
T (r, f) + S(r, g) (5)

Adding (4) and (5) we get

(2− 4

n
) {T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction for n ≥ 3. This proves the lemma. □

Lemma 2.6. [7] Let R(z) = (n − 1)2(zn − 1)(zn−2 − 1) − n(n − 2)(zn−1 − 1)2,

then R(z) = (z − 1)4(z − β1)(z − β2) . . . (z − β2n−6), where βj ∈ C − {0, 1}(j =

1, 2, . . . , 2n− 6) are distinct.

Lemma 2.7. Let f , g be two non-constant meromorphic functions such that Ef ({0, 1},
0) = Eg({0, 1}, 0) and suppose n (≥ 4) be an integer. If

(n− 1)(n− 2)

2
fn − n(n− 2)fn−1 +

n(n− 1)

2
fn−2

≡ (n− 1)(n− 2)

2
gn − n(n− 2)gn−1 +

n(n− 1)

2
gn−2,
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then f ≡ g.

Proof. From the given condition we can write

fn−2(f − γ)(f − δ) ≡ gn−2(g − γ)(g − δ). (6)

(6) clearly implies f and g share (∞,∞). Since Ef ({0, 1}, 0) = Eg({0, 1}, 0) it

follows that if z0 is a zero of f (g) then it can not be an 1-point of g (f) as none of

γ and δ are zero. So f and g share (0,∞). Suppose h = f
g
. Clearly h has no zero

and pole. Substituting f = hg in (6) we get

(n− 1)(n− 2)

2
(hn − 1)g2 − n(n− 2)(hn−1 − 1)g +

n(n− 1)

2
(hn−2 − 1) ≡ 0. (7)

Suppose h is not a constant. Then by a simple calculation we have from (7){
(n− 1)(n− 2)(hn − 1)g − n(n− 2)(hn−1 − 1)

}2 ≡ −n(n− 2)R(h), (8)

where R(z) is given as in Lemma 2.6. So using Lemma 2.6 we have{
(n− 1)(n− 2)(hn − 1)g − n(n− 2)(hn−1 − 1)

}2
(9)

≡ −n(n− 2)(h− 1)4(h− β1)(h− β2) . . . (h− β2n−6),

where βj ∈ C − {0, 1}(j = 1, 2, . . . , 2n − 6) are distinct. From (8) we see that the

zeros of h− βj (j = 1, 2, . . . , 2n− 6) have multiplicity of order at least 2. So by the

second fundamental theorem we get

(2n− 6)T (r, h) ≤
2n−6∑
j=1

N (r, βj;h) + S(r, h)

≤ 1

2

2n−6∑
j=1

N (r, βj;h) + S(r, h)

≤ (n− 3)T (r, h) + S(r, h),

which is a contradiction for n ≥ 4. So h is a constant. From (7) we have hn − 1 = 0

and hn−1 − 1 = 0. It follows that h ≡ 1 and so f ≡ g. □

Lemma 2.8. Let Si, i = 1, 2 be defined as in Theorem 1.1 and F , G be given by (1)

and (2), where n(≥ 3) be an integer. If for two non-constant meromorphic functions

f and g Ef (S1, p) = Eg(S1, p), Ef (S2,m) = Eg(S2,m) and Φ ̸≡ 0, then

min{(n− 2)p+ (n− 3), 3p+ 2}
{
N (r, 0; f |≥ p+ 1) +N (r, 1; f |≥ p+ 1)

}
≤ N∗(r, 1;F,G) +N(r,∞; f) +N(r,∞; g) + S(r, f) + S(r, g).

Proof. By the given condition clearly F and G share (1,m). Also we see that

Φ =
n(n− 1)(n− 2)fn−3(f − 1)2f

′

2c(F − 1)
− n(n− 1)(n− 2)gn−3(g − 1)2g

′

2c(G− 1)
.
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Let z0 be a zero or a 1-point of f with multiplicity r. Since Ef (S1, p) = Eg(S1, p)

then that would be a zero of Φ of multiplicity min {(n − 3)r + r − 1, 2r + r − 1}
i.e., of multiplicity min {(n − 2)r − 1, 3r − 1} if r ≤ p and a zero of multiplicity

at least min{(n − 3)(p + 1) + p, 2(p + 1) + p} i.e., a zero of multiplicity at least

min{(n− 2)p+ (n− 3), 3p+ 2} if r > p. So by a simple calculation we can write

min{(n− 2)p+ (n− 3), 3p+ 2}
{
N(r, 0; f |≥ p+ 1) +N(r, 1; f |≥ p+ 1)

}
≤ N(r, 0; Φ)

≤ T (r,Φ)

≤ N(r,∞; Φ) + S(r, F ) + S(r,G)

≤ N∗(r, 1;F,G) +N(r,∞; f) +N(r,∞; g) + S(r, f) + S(r, g).

□

Lemma 2.9. Let Si, i = 1, 2 be defined as in Theorem 1.1 and F , G be given by

(1) and (2). If for two non-constant meromorphic functions f and g, Ef (S1, p) =

Eg(S1, p), Ef (S2,m) = Eg(S2,m), where 0 ≤ p < ∞, 2 ≤ m < ∞ and H ̸≡ 0, then

(n+ 1) {T (r, f) + T (r, g)}
≤ 2

{
N(r, 0; f) +N (r, 1; f)

}
+N(r, 0; f |≥ p+ 1) +N (r, 1; f |≥ p+ 1)

+2N(r,∞; f) + 2N(r,∞; g) +
1

2
[N(r, 1;F ) +N(r, 1;G)]

−
(
m− 3

2

)
N∗(r, 1;F,G) + S(r, f) + S(r, g).

Proof. By the second fundamental theorem we get

(n+ 1){T (r, f) + T (r, g)} (10)

≤ N(r, 1;F ) +N(r, 0; f) +N (r, 1; f) +N(r,∞; f) +N(r, 1;G) +N(r, 0; g)

+N (r, 1; g) +N(r,∞; g)−N0(r, 0; f
′
)−N0(r, 0; g

′
) + S(r, f) + S(r, g).

Using Lemmas 2.1, 2.2, 2.3 and 2.4 we see that

N(r, 1;F ) +N(r, 1;G) (11)

≤ 1

2
[N(r, 1;F ) +N(r, 1;G)] +N(r, 1;F |= 1)−

(
m− 1

2

)
N∗(r, 1;F,G)

≤ 1

2
[N(r, 1;F ) +N(r, 1;G)] +N(r, 0; f |≥ p+ 1) +N (r, 1; f |≥ p+ 1)

+N(r,∞; f) +N(r,∞; g)−
(
m− 3

2

)
N∗(r, 1;F,G) +N0(r, 0; f

′
)

+N0(r, 0; g
′
) + S(r, f) + S(r, g).
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Using (11) in (10) and noting that N(r, 0; f) + N (r, 1; f) = N(r, 0; g) + N (r, 1; g)

the lemma follows. □

Lemma 2.10. [22] If H ≡ 0, then F , G share (1,∞).

Lemma 2.11. Let F , G be given by (1) and (2) and they share (1,m). Also let

α1, α2, . . . , αn be the distinct elements of the set
{
z : (n−1)(n−2)

2
zn − n(n− 2)zn−1+

n(n−1)
2

zn−2 − c = 0
}
, where c ̸= 0, 1, 1

2
is a complex number such that c2− c+1 ̸= 0

and n (≥ 3) is an integer. Then

NL(r, 1;F ) ≤ 1

m+ 1

[
N(r, 0; f) +N(r,∞; f)−N⊗(r, 0; f

′
)
]
+ S(r, f),

where N⊗(r, 0; f
′
) = N(r, 0; f

′ | f ̸= 0, α1, α2 . . . αn).

Proof. The proof can be carried out in the line of proof of Lemma 2.14 [2]. So we

omit the detail. □

3. Proofs of the theorems

Proof of Theorem 1.1. Let F , G be given by (1) and (2). Then F and G share (1, 3).

We consider the following cases.

Case 1. Suppose that Φ ̸≡ 0.

Subcase 1.1. Let H ̸≡ 0. Then using Lemma 2.3 and Lemma 2.8 with p = 1 and

m = 3 and again using Lemma 2.8 for p = 0 we obtain

(n+ 1) {T (r, f) + T (r, g)} (1)

≤ 2
{
N(r, 0; f) +N (r, 1; f)

}
+

1

5
{N(r,∞; f) +N(r,∞; g) +N∗(r, 1;F,G)}

+2N(r,∞; f) + 2N(r,∞; g) +
1

2
[N(r, 1;F ) +N(r, 1;G)]− 3

2
N∗(r, 1;F,G)

+S(r, f) + S(r, g)

≤ 16

5
{N(r,∞; f) +N(r,∞; g)}+ n

2
[T (r, f) + T (r, g)] + S(r, f) + S(r, g)

≤
{
n

2
+

16

5

}
[T (r, f) + T (r, g)] + S(r, f) + S(r, g).

(1) gives a contradiction for n ≥ 5.

Subcase 1.2. H ≡ 0. Then

F ≡ AG+B

CG+D
, (2)

where A, B, C, D are constants such that AD−BC ̸= 0. Also T (r, F ) = T (r,G)+

O(1). i.e.,

nT (r, f) = nT (r, g) +O(1). (3)
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In view of lemma 2.10 it follows that F and G share (1,∞). Since P (1) = 1,

by a simple computation it can be easily seen that 1 is a zero with multiplicity

3 of F − 1
c
= P (f)−1

c
and hence F − 1

c
= (f − 1)3 Qn−3(f) , where Qn−3(f) is a

polynomial in f of degree n−3 and thusN
(
r, 1

c
;F

)
≤ N(r, 1; f)+N (r, 0;Qn−3(f)) ≤

N(r, 1; f) + (n− 3)T (r, f) + S(r, f).

We now consider the following cases.

Subcase 1.2.1. Let AC ̸= 0. From (2) we get

N(r,∞;G) = N

(
r,
A

C
;F

)
. (4)

Since F and G share (1,∞), it follows that A
C
̸= 1. Suppose A

C
̸= 1

c
. So in view of

Lemma 2.3 and (3), by the second fundamental theorem we get

(n+ 1)T (r, f) ≤ N(r, 0; f) +N(r, 1; f) +N(r,∞; f) +N

(
r,
A

C
;F

)
+ S(r, f)

= 2T (r, f) +N(r,∞; f) +N(r,∞; g) + S(r, f)

≤ 4T (r, f) + S(r, f),

which gives a contradiction for n ≥ 5.

Next suppose A
C

= 1
c
. In view of Lemmas 2.3, 2.8 with p = 0 and (3), by the

second fundamental theorem we get

(n− 1)T (r, f)

≤ N(r, 0; f) +N(r, 1; f) +N(r,∞; f) +N

(
r,
1

c
;F

)
+ S(r, f)

= N(r, 0; f) +N(r, 1; f) +N(r,∞; f) +N(r,∞; g) + S(r, f)

≤ 3

2
{N(r,∞; f) +N(r,∞; g)}+ S(r, f)

≤ 3T (r, f) + S(r, f),

which is a contradiction for n ≥ 5.

Subcase 1.2.2. Let A ̸= 0 and C = 0. Then F = α0G + β0 , where α0 = A
D

and

β0 =
B
D
.

We note that 1 can not be an exceptional value Picard (e.v.P.) of F (G). For, if

it happens, then f (g) omits n ≥ 5 values which is a contradiction.

So F and G have some 1-points. Then α0 + β0 = 1 and hence

F ≡ α0G+ 1− α0 . (5)
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Suppose α0 ̸= 1. If 1 − α0 ̸= 1
c
then using Lemma 2.8, (3) and the second

fundamental theorem we get

2T (r, F )

≤ N(r, 0;F ) +N(r, 1− α0 ;F ) +N

(
r,
1

c
;F

)
+N(r,∞;F ) + S(r, F )

≤ N(r, 0; f) + 2T (r, f) +N(r, 0;G) +N(r, 1; f) + (n− 3)T (r, f) +N(r,∞; f)

+S(r, f)

≤ (n− 1)T (r, f) + 3T (r, g) +
1

2
{N(r,∞; f) +N(r,∞; g)}+N(r,∞; f) + S(r, f)

≤ (n+ 4)T (r, f) + S(r, f),

which implies a contradiction in view of Lemma 2.3 and n ≥ 5. If 1− α0 =
1
c
, then

we have from (5)

cF ≡ (c− 1)G+ 1.

Noting that c ̸= 1
2
and N(r, 0; f)+N(r, 1; f) = N(r, 0; g)+N(r, 1; g), using Lemma

2.8 (3) and (5)we can obtain by the second fundamental theorem

2T (r,G)

≤ N(r, 0;G) +N

(
r,

1

1− c
;G

)
+N(r,

1

c
;G) +N(r,∞;G) + S(r,G)

≤ N(r, 0; g) + 2T (r, g) +N(r, 0; f) + 2T (r, f) +N(r, 1; g) + (n− 3)T (r, g)

+N(r,∞; g) + S(r, g)

≤ 3T (r, f) + nT (r, g) +
1

2
{N(r,∞; f) +N(r,∞; g)}+ S(r, g)

≤ (n+ 4)T (r, g) + S(r, g),

which implies a contradiction in view of Lemma 2.3 and n ≥ 5. So α0 = 1 and hence

F ≡ G. So by Lemma 2.7 we get f ≡ g.

Subcase 1.2.3. Let A = 0 and C ̸= 0. Then F ≡ 1
γ0G+δ0

, where γ0 = C
B

and

δ0 =
D
B
.

Clearly 1 can not be an e.v.P. of F and so of G.

Since F and G have some 1-points we have γ0 + δ0 = 1 and so

F ≡ 1

γ0G+ 1− γ0

. (6)

Suppose γ0 ̸= 1. If γ0 ̸= 1 − c, then noting that N(r, 0;G) = N(r, 1
1−γ0

;F ) ̸=
N

(
r, 1

c
;F

)
, by the second fundamental using Lemmas 2.3 and 2.8 we can again

deduce a contradiction as above when n ≥ 5.
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If γ0 = 1− c from (6) we have

F ≡ 1

(1− c)G+ c
.

We know from the given condition that 1
c
̸= c

c−1
. Now in the same way as above

using (3), Lemmas 2.3 and 2.8, second fundamental theorem yields

2T (r,G)

≤ N(r, 0;G) +N(r,
1

c
;G) +N(r,

c

c− 1
;G) +N(r,∞;G) + S(r,G)

≤ N(r, 0; g) +N(r, 1; g) + 2T (r, g) + (n− 3)T (r, g) +N(r,∞;F ) +N(r,∞;G)

+S(r, g)

≤ (n− 1)T (r, g) +
3

2
{N(r,∞; f) +N(r,∞; g)}+ S(r, g),

which implies a contradiction for n ≥ 5. So we must have γ0 = 1 then FG ≡ 1,

which is impossible by Lemma 2.5.

Case 2. Suppose that Φ ≡ 0. On integration we get (F − 1) ≡ A(G− 1) for some

non zero constant A. So in view of Lemma 2.3 we have T (r, f) = T (r, g) + O(1).

Since by the given condition of the theorem Ef (S1, 0) = Eg(S1, 0) we consider the

following cases.

Subcase 2.1. Let us first assume f and g share (0, 0) and (1, 0). If none of 0 and

1 is an e.v.P. of f and g, then we have A = 1. Similarly if one of 0 or 1 is an e.v.P.

of f and g, then we get A = 1 and so in both cases we have F ≡ G, which in view

of Lemma 2.7 implies f ≡ g. If both 0 and 1 are e.v.P. of f as well as g then noting

that here F ≡ AG+ (1−A) which is similar to (5), we can handle the situation as

done in Subcase 1.2.2.. So we omit the detail.

Subcase 2.2. Next suppose that there is at least one point z0 such that f(z0) = 0

and g(z0) = 1. Note that from (F −1) ≡ A(G−1) we get P (f)− c(1−A) ≡ AP (g).

If A ̸= 1, then c(1 − A) ̸= 0. If c(1 − A) = 1, then A = c−1
c
. So F − 1

c
≡ c−1

c2
G.

At the point z0, we have F (z0) = 0 and G(z0) = 1. Putting this values we obtain
−1
c

= c−1
c2

which implies c = 1
2
, a contradiction. So c(1 − A) ̸= 0, 1. Hence P (z) −

c(1−A) has simple zeros and consequently we have (f − ω1)(f − ω2) . . . (f − ωn) =

A (n−1)(n−2)
2

gn−2(g− γ)(g− δ), where ωi be the distinct zeros of P (f)− c(1−A). So

by the second fundamental theorem we get

nT (r, f)

≤ N(r, 0; f) +N(r, 1; f) +
n∑

j=1

N (r, wj; f) + S(r, f)

≤ N(r, 0; g) +N(r, 1; g) +N(r, γ; g) +N(r, δ; g) + S(r, f)

≤ 4T (r, f) + S(r, f),
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which is a contradiction for n ≥ 5. This completes the proof of the theorem. □

Proof of Theorem 1.2. Let F , G be given by (1) and (2). Then F and G share (1, 2).

We consider the following cases.

Case 1. Suppose that Φ ̸≡ 0.

Subcase 1.1 Let H ̸≡ 0. Then using Lemma 2.3, Lemma 2.11 and Lemma 2.8 with

p = 3 and m = 2 and using Lemma 2.8 for p = 3 and p = 0 we obtain

(n+ 1) {T (r, f) + T (r, g)} (7)

≤ 2
{
N(r, 0; f) +N (r, 1; f)

}
+

1

11
{N(r,∞; f) +N(r,∞; g) +N∗(r, 1;F,G)}

+2N(r,∞; f) + 2N(r,∞; g) +
1

2
[N(r, 1;F ) +N(r, 1;G)]− 1

2
N∗(r, 1;F,G)

+S(r, f) + S(r, g)

≤ 34

11
{N(r,∞; f) +N(r,∞; g)}+ n

2
[T (r, f) + T (r, g)] +

13

22
N∗(r, 1;F,G)

+S(r, f) + S(r, g)

≤
{
n

2
+

34

11

}
[T (r, f) + T (r, g)] +

13

66
{N(r, 0; f) +N(r,∞; f) +N(r, 0; g)

+N(r,∞; g)}+ S(r, f) + S(r, g)

≤
{
n

2
+

115

33

}
[T (r, f) + T (r, g)] + S(r, f) + S(r, g).

(7) gives a contradiction for n ≥ 5.

We omit the rest of the proof as the same can be done in the line of proof of

Theorem 1.1. □

Acknowledgements. The author is thankful to the referee for some valuable sug-

gestions.

References

[1] X. Bai, Q. Han and A. Chen, On a result of H. Fujimoto, J. Math. Kyoto

Univ., 49(3) (2009), 631-643.

[2] A. Banerjee, Some uniqueness results on meromorphic functions sharing three

sets, Ann. Polon. Math. 92(3) (2007), 261-274.

[3] A. Banerjee and P. Bhattacharajee, Uniqueness and set sharing of derivatives

of meromorphic functions, Math. Slovaca, 61(2) (2011), 197-214.

[4] A. Banerjee and I. Lahiri, A uniqueness polynomial generating a unique range

set and vise versa, Comput. Methods Funct. Theo., 12(2) (2012), 527-539.

[5] S. Bartels, Meromorphic functions sharing a set with 17 elements ignoring

multiplicities, Complex Var. Theory Appl., 39 (1998), 85-92.

— 133 —



[6] M. Fang and H. Guo, On unique range sets for meromorphic or entire functions,

Acta Math. Sinica (New Ser.) 14(4) (1998), 569-576.

[7] G. Frank and M. Reinders, A unique range set for meromorphic functions with

11 elements, Complex Var. Theory Appl., 37 (1998), 185-193.

[8] H. Fujimoto, On uniqueness of meromorphic functions sharing finite sets,

Amer. J. Math., 122 (2000), 1175-1203.

[9] F. Gross, Factorization of meromorphic functions and some open problems,

Proc. Conf. Univ. Kentucky, Leixngton, Ky(1976); Complex Analysis, Lecture

Notes in Math., 599 (1977), 51-69, Springer Verlag.

[10] F. Gross and C. C. Yang, On preimage and range sets of meromorphic func-

tions, Proc. Japan Acad., 58 (1982), 17-20.

[11] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford (1964).

[12] I. Lahiri, Value distribution of certain differential polynomials, Int. J. Math.

Math. Sci., 28(2) (2001), 83-91.

[13] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya

Math. J., 161 (2001), 193-206.

[14] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions,

Complex Var. Theory Appl., 46 (2001), 241-253.

[15] P. Li and C. C. Yang, On the unique range sets for meromorphic functions,

Proc. Amer. Math. Soc., 124 (1996), 177-185.

[16] P. Li and C. C. Yang, Some further results on the unique range sets for mero-

morphic functions, Kodai Math. J., 18 (1995), 437-450.

[17] W. C. Lin and H. X. Yi, Some further results on meromorphic functions that

share two sets, Kyungpook Math. J., 43 (2003), 73-85.

[18] C. C. Yang, On deficiencies of differential polynomials II, Math. Z., 125 (1972),

107-112.

[19] B. Yi and Y. H. Li, The uniqueness of meromorphic functions that share two

sets with CM, Acta Math. Sinica, Chinese Ser., 55(2) (2012), 363-368.

[20] H. X. Yi, Uniqueness of meromorphic functions and a question of Gross, Sci.

China (A), 37(7) (1994), 802-813.

[21] H. X. Yi, Unicity theorems for meromorphic or entire functions III, Bull.

Austral. Math. Soc., 53 (1996), 71-82.

[22] H. X. Yi, Meromorphic functions that share one or two values II, Kodai Math.

J., 22 (1999), 264-272.

Department of Mathematics, University of Kalyani, Nadia, West Bengal, India, 74123.

E-mail address: abanerjee kal@yahoo.co.in, abanerjeekal@gmail.com (A. Banerjee),

Received July 23, 2013

— 134 —


