THE RADON-NIKODYM THEOREM FOR NON-COMMUTATIVE L^{p}-SPACES

HIDEAKI IZUMI

Abstract

Let \mathcal{M} be a von Neumann algebra. We will show that for two normal semifinite faithful weights φ, ψ on \mathcal{M}, the corresponding non-commutative $L^{p}{ }_{-}$ spaces $L^{p}(\mathcal{M}, \varphi)$ and $L^{p}(\mathcal{M}, \psi)$ are isometrically isomorphic.

Regarding a von Neumann algebra \mathcal{M} and its predual \mathcal{M}_{*} as a non-commutative version of L^{∞}-space and L^{1}-space, respectively, the author [5] interpolated the above two Banach spaces by applying Calderón's complex method [1, 2] and obtained noncommutative L^{p}-spaces $L_{(\alpha)}^{p}(\mathcal{M}, \varphi), 1<p<\infty$, parametrized by a complex number α arising from the modular action of a normal semifinite faithful weight φ on \mathcal{M}. This construction includes both Kosaki's one ([7]), which is equivalent to our case where φ is a state and $\alpha= \pm 1 / 2$ and Terp's one ([10]), which is equivalent to our case where $\alpha=0$ and φ is possibly unbounded, namely a weight (cf. [5, Remark in p.1036]).

The weight φ plays a rôle similar to a measure in the commutative case. The classical Radon-Nikodým theorem tells us that the L^{p}-spaces for two mutually absolutely continuous measures on a measure space are mutually isometrically isomorphic. Indeed, the isomorphism is given by the multiplication by a suitable power of the Radon-Nikodým derivative.

In this paper, we will prove the non-commutative analogue of the Radon-Nikodým theorem: for any given two n.s.f. weights φ, ψ on \mathcal{M}, we will construct a natural isometric map between the corresponding L^{p}-spaces. In the case where φ, ψ are states, Kosaki tried to construct such an isometric map [7, Theorem 4.4]. His map essentially consists of the multiplication by Connes' Radon-Nikodým cocycles, the non-commutative analogue of Radon-Nikodým derivative. To realize this, he first considers "reiterated" compatible pair of L^{2} - and L^{1}-spaces and define the isomorphic map between L^{p}-spaces $(1<p<2)$ as the evaluation map of isomophism between the two function spaces arising form the reiterated pairs for φ and ψ, and

[^0]by using duality between L^{p} - and L^{q}-spaces $(1 / p+1 / q=1)$ isomorphisms for all $p, 1<p<\infty$, are obtained. His idea is clear and reasonable enough, but it is often hard to obtain analytic elements for the Radon-Nikodým derivative enough to show that the evaluation maps are well-defined, unless good conditions are posed on the states φ and ψ. In order to avoid this difficulty, we will make use of Connes' trick of 2×2 matrices and bimodule actions established in [6], and obtain the desired map directly, without recourse to reiteration. Note that our L^{p}-spaces corresponding to the weights φ and ψ are isometrically isomorphic to Haagerup's universal one [4], as is mentioned in [5, p. 10591.2 from bottom and Theorem 3.8], and hence isomorphic to each other, but it is much more desirable to construct isomorphisms in a more explicit way and independently of Haagerup's result.

We briefly describe the construction of L^{p}-spaces [5]. First, we sketch the modular theory (for details, see $[8,9]$). Let \mathcal{M} be a von Neumann algebra and φ an n.s.f. weight on \mathcal{M}. Let $\left\{\pi_{\varphi}, \mathfrak{n}_{\varphi}, \Lambda_{\varphi}\right\}$ be the semi-cyclic representation induced from (\mathcal{M}, φ). We define the associated left Hilbert algebra \mathfrak{A}_{φ} by

$$
\mathfrak{A}_{\varphi}=\mathfrak{n}_{\varphi} \cap \mathfrak{n}_{\varphi}^{*} .
$$

Next, we define an anti-linear operator S_{0} on \mathfrak{A}_{φ} by

$$
S_{0} \Lambda_{\varphi}(x)=\Lambda_{\varphi}\left(x^{*}\right), x \in \mathfrak{A}_{\varphi} .
$$

Then S_{0} is preclosed. Let S be the closure of S_{0}, and $S=J_{\varphi} \Delta_{\varphi}$ be its polar decomposition.

Then by [9, Chapter VI, Theorem 1.19], we have

$$
\Delta_{\varphi}^{i t} \pi_{\varphi}(\mathcal{M}) \Delta_{\varphi}^{-i t}=\pi_{\varphi}(\mathcal{M}), t \in \mathbb{R}
$$

and hence we can define a one-parameter automorphism group $\left\{\sigma_{t}^{\varphi}\right\}_{t \in \mathbb{R}}$ on \mathcal{M} by $\pi_{\varphi}\left(\sigma_{t}^{\varphi}(x)\right)=\Delta_{\varphi}^{i t} \pi_{\varphi}(x) \Delta_{\varphi}^{-i t}, x \in \mathcal{M}, t \in \mathbb{R}$. It can be extended to a complex one-parameter automorphism group on $\mathfrak{a}_{0}^{\varphi}$, where $\mathfrak{a}_{0}^{\varphi}=\Lambda_{\varphi}^{-1}\left(\mathfrak{A}_{0}^{\varphi}\right)$, $\mathfrak{A}_{0}^{\varphi}=\{\xi \in$ $\left.\cap_{n=-\infty}^{\infty} \mathcal{D}\left(\Delta_{\varphi}^{n}\right) \mid \Delta_{\varphi}^{n} \xi \in \mathfrak{A}_{\varphi}, n \in \mathbb{Z}\right\}(\mathcal{D}(T)$ means the domain of a linear operator T, and $\mathfrak{A}_{0}^{\varphi}$ is called the full Tomita algebra).

For $\alpha \in \mathbb{C}$, we put

$$
L_{(\alpha)}^{\varphi}=\left\{\begin{array}{l|l}
x \in \mathcal{M} & \begin{array}{l}
\text { there exist a unique } \varphi_{x}^{(\alpha)} \in \mathcal{M}_{*} \text { such that } \\
\varphi_{x}^{(\alpha)}\left(y^{*} z\right)=\left(\pi_{\varphi}(x) J_{\varphi} \Delta_{\varphi}^{\alpha} \Lambda_{\varphi}(y) \mid J_{\varphi} \Delta_{\varphi}^{-\alpha} \Lambda_{\varphi}(z)\right) \\
\text { for all } y, z \in \mathfrak{a}_{0}^{\varphi}
\end{array}
\end{array}\right\} .
$$

We define two maps $i_{(\alpha)}^{\varphi}: L_{(\alpha)}^{\varphi} \rightarrow \mathcal{M}$ and $j_{(\alpha)}^{\varphi}: L_{(\alpha)}^{\varphi} \rightarrow \mathcal{M}_{*}$ by $i_{(\alpha)}^{\varphi}(x)=x, j_{(\alpha)}^{\varphi}(x)=$ $\varphi_{x}^{(\alpha)}$ for $x \in L_{(\alpha)}^{\varphi}$, and together with their adjoint maps, we define a compatible pair $\left(\mathcal{M}, \mathcal{M}_{*}\right)_{(\alpha)}^{\varphi}$ by Figure 1. Then we apply Calderón's complex interpolation method to the pair $\left(\mathcal{M}, \mathcal{M}_{*}\right)_{(\alpha)}^{\varphi}$, and obtain a non-commutative L^{p}-space $L_{(\alpha)}^{p}(\mathcal{M}, \varphi)$ as the interpolation spaces $C_{1 / p}\left(\mathcal{M}, \mathcal{M}_{*}\right)_{(\alpha)}^{\varphi}$.

Figure 1. a compatible pair $\left(\mathcal{M}, \mathcal{M}_{*}\right)_{(\alpha)}^{\varphi}$
Next, we explain the theory of balanced weight (see [8, §3] for details). Let φ and ψ be two n.s.f. weights on \mathcal{M}. We consider the balanced weight χ on $\mathcal{N}=M_{2}(\mathbb{C}) \otimes \mathcal{M}$ by

$$
\chi\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\varphi(a)+\psi(d),\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathcal{N}_{+}
$$

Then χ is an n.s.f. weight on \mathcal{N}. Since

$$
\chi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{*}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\varphi\left(a^{*} a\right)+\psi\left(b^{*} b\right)+\varphi\left(c^{*} c\right)+\psi\left(d^{*} d\right)
$$

we have

$$
\mathfrak{n}_{\chi}=\left(\begin{array}{ll}
\mathfrak{n}_{\varphi} & \mathfrak{n}_{\psi} \\
\mathfrak{n}_{\varphi} & \mathfrak{n}_{\psi}
\end{array}\right)
$$

and the standard Hilbert space \mathcal{H}_{χ} is canonically identified with $\mathcal{H}_{\varphi} \oplus \mathcal{H}_{\psi} \oplus \mathcal{H}_{\varphi} \oplus \mathcal{H}_{\psi}$ via the map

$$
\Lambda_{\chi}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto\left(\begin{array}{c}
\Lambda_{\varphi}(a) \\
\Lambda_{\psi}(b) \\
\Lambda_{\varphi}(c) \\
\Lambda_{\psi}(d)
\end{array}\right), \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathfrak{n}_{\chi}
$$

Under this identification, J_{χ}, Δ_{χ} and π_{χ} are described as follows:

$$
\begin{align*}
J_{\chi} & =\left(\begin{array}{cccc}
J_{\varphi} & 0 & 0 & 0 \\
0 & 0 & J_{\psi, \varphi} & 0 \\
0 & J_{\varphi, \psi} & 0 & 0 \\
0 & 0 & 0 & J_{\psi}
\end{array}\right), \tag{1}\\
\Delta_{\chi} & =\left(\begin{array}{cccc}
\Delta_{\varphi} & 0 & 0 & 0 \\
0 & \Delta_{\varphi, \psi} & 0 & 0 \\
0 & 0 & \Delta_{\psi, \varphi} & 0 \\
0 & 0 & 0 & \Delta_{\psi}
\end{array}\right), \tag{2}
\end{align*}
$$

$$
\pi_{\chi}(x)=\left(\begin{array}{cccc}
\pi_{\varphi}\left(x_{11}\right) & 0 & \pi_{\varphi}\left(x_{12}\right) & 0 \tag{3}\\
0 & \pi_{\psi}\left(x_{11}\right) & 0 & \pi_{\psi}\left(x_{12}\right) \\
\pi_{\varphi}\left(x_{21}\right) & 0 & \pi_{\varphi}\left(x_{22}\right) & 0 \\
0 & \pi_{\psi}\left(x_{21}\right) & 0 & \pi_{\psi}\left(x_{22}\right)
\end{array}\right), x=\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) \in \mathcal{N} .
$$

By $[8,(3.16)]$, we have

$$
\begin{gather*}
J_{\varphi, \psi} \pi_{\psi}(a) J_{\psi, \varphi}=J_{\varphi} \pi_{\varphi}(a) J_{\varphi}, \tag{4}\\
J_{\psi} \pi_{\psi}(a) J_{\psi, \varphi}=J_{\psi, \varphi} \pi_{\varphi}(a) J_{\varphi} \tag{5}
\end{gather*}
$$

for $a \in \mathcal{M}$. Since, for $t \in \mathbb{R}$,

$$
\begin{aligned}
& \pi_{\chi}\left(\sigma_{t}^{\chi}(x)\right) \\
& =\Delta_{\chi}^{i t} \pi_{\chi}(x) \Delta_{\chi}^{-i t} \\
& =\left(\begin{array}{cccc}
\Delta_{\varphi}^{i t} \pi_{\varphi}\left(x_{11}\right) \Delta_{\varphi}^{-i t} & 0 & \Delta_{\varphi}^{i t} \pi_{\varphi}\left(x_{12}\right) \Delta_{\psi, \varphi}^{-i t} & 0 \\
0 & \Delta_{\varphi, \psi}^{i t} \pi_{\psi}\left(x_{11}\right) \Delta_{\varphi, \psi}^{-i t} & 0 & \Delta_{\varphi, \psi}^{i t} \pi_{\psi}\left(x_{12}\right) \Delta_{\psi}^{-i t} \\
\Delta_{\psi, \varphi}^{i t} \pi_{\varphi}\left(x_{21}\right) \Delta_{\varphi}^{-i t} & 0 & \Delta_{\psi, \varphi}^{i t} \pi_{\varphi}\left(x_{22}\right) \Delta_{\psi, \varphi}^{-i t} & 0 \\
0 & \Delta_{\psi}^{i t} \pi_{\psi}\left(x_{21}\right) \Delta_{\varphi, \psi}^{-i t} & 0 & \Delta_{\psi}^{i t} \pi_{\psi}\left(x_{22}\right) \Delta_{\psi}^{-i t}
\end{array}\right)
\end{aligned}
$$

belongs to \mathcal{N}, equations (4) and (5) yield

$$
\begin{align*}
& J_{\varphi, \psi} \Delta_{\varphi, \psi}^{i t} \pi_{\psi}(a) \Delta_{\varphi, \psi}^{-i t} J_{\psi, \varphi}=J_{\varphi} \Delta_{\varphi}^{i t} \pi_{\varphi}(a) \Delta_{\varphi}^{-i t} J_{\varphi}, \tag{6}\\
& J_{\psi} \Delta_{\psi}^{i t} \pi_{\psi}(a) \Delta_{\varphi, \psi}^{-i t} J_{\psi, \varphi}=J_{\psi, \varphi} \Delta_{\psi, \varphi}^{i t} \pi_{\varphi}(a) \Delta_{\varphi}^{-i t} J_{\varphi} . \tag{7}
\end{align*}
$$

Since J_{χ} and $\Delta_{\chi}^{i t}$ commute, from (1) and (2) we have

$$
\begin{align*}
& \Delta_{\psi, \varphi}^{i t} J_{\varphi, \psi} \pi_{\psi}(a) J_{\psi, \varphi} \Delta_{\psi, \varphi}^{-i t}=\Delta_{\varphi}^{i t} J_{\varphi} \pi_{\varphi}(a) J_{\varphi} \Delta_{\varphi}^{-i t}, \tag{8}\\
& \Delta_{\psi}^{i t} J_{\psi} \pi_{\psi}(a) J_{\psi, \varphi} \Delta_{\psi, \varphi}^{-i t}=\Delta_{\varphi, \psi}^{i t} J_{\psi, \varphi} \pi_{\varphi}(a) J_{\varphi} \Delta_{\varphi}^{-i t} . \tag{9}
\end{align*}
$$

Next, we examine the relationship between comptible pairs $\left(\mathcal{N}, \mathcal{N}_{*}\right)_{(\alpha)}^{\chi},\left(\mathcal{M}, \mathcal{M}_{*}\right)_{(\alpha)}^{\varphi}$ and $\left(\mathcal{M}, \mathcal{M}_{*}\right)_{(\alpha)}^{\psi}$. Note that, \mathcal{N}_{*} can be identified with $M_{2}(\mathbb{C}) \otimes \mathcal{M}_{*}$ via

$$
\left\langle\left(\begin{array}{ll}
\kappa_{11} & \kappa_{12} \\
\kappa_{21} & \kappa_{22}
\end{array}\right),\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)\right\rangle_{\mathcal{N}_{*}, \mathcal{N}}=\sum_{i, j=1}^{2}\left\langle\kappa_{i j}, x_{i j}\right\rangle_{\mathcal{M}_{*}, \mathcal{M}}
$$

for $\kappa_{i j} \in \mathcal{M}_{*}$ and $x_{i j} \in \mathcal{M}$. Moreover, we put

$$
\mathfrak{a}_{0}^{\varphi, \psi}=\left\{x \in \mathfrak{n}_{\psi} \mid \Lambda_{\psi}(x) \in \bigcap_{n \in \mathbb{Z}} \mathcal{D}\left(\Delta_{\varphi, \psi}^{n}\right)\right\}
$$

and

$$
\mathfrak{a}_{0}^{\psi, \varphi}=\left\{x \in \mathfrak{n}_{\varphi} \mid \Lambda_{\varphi}(x) \in \bigcap_{n \in \mathbb{Z}} \mathcal{D}\left(\Delta_{\psi, \varphi}^{n}\right)\right\} .
$$

Then we can express the full Tomita algebra \mathfrak{a}_{0}^{χ} as follows.

$$
\mathfrak{a}_{0}^{\chi}=\left\{\left.a=\left(\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \in \mathfrak{n}_{\chi} \cap \mathfrak{n}_{\chi}^{*} \right\rvert\, \Lambda_{\chi}(a) \in \bigcap_{n \in \mathbb{Z}} \mathcal{D}\left(\Delta_{\chi}^{n}\right)\right\}
$$

$$
=\left(\begin{array}{cc}
\mathfrak{a}_{0}^{\varphi} & \mathfrak{a}_{0}^{\varphi, \psi} \tag{10}\\
\mathfrak{a}_{0}^{\psi, \varphi} & \mathfrak{a}_{0}^{\psi}
\end{array}\right)
$$

Finally, we define

$$
L_{(\alpha)}^{\psi, \varphi}=\left\{\begin{array}{l|l}
x \in \mathcal{M} & \begin{array}{l}
\text { there exist a unique }(\psi \varphi)_{x}^{(\alpha)} \in \mathcal{M}_{*} \text { such that } \\
(\psi \varphi)_{x}^{(\alpha)}\left(y^{*} z\right)=\left(\pi_{\varphi}(x) J_{\varphi, \psi} \Delta_{\varphi, \psi}^{\bar{\alpha}} \Lambda_{\psi}(y) \mid J_{\varphi} \Delta_{\varphi}^{-\alpha} \Lambda_{\varphi}(z)\right) \\
\text { for all } y \in \mathfrak{a}_{0}^{\varphi, \psi}, z \in \mathfrak{a}_{0}^{\varphi}
\end{array}
\end{array}\right\}
$$

and put $L_{(\alpha)}^{\varphi, \psi}$ in a symmetric way.

Lemma 1.

(i) For $y, z \in \mathfrak{a}_{0}^{\psi, \varphi}$, we have $y^{*} z \in L_{(\alpha)}^{\varphi}$ and

$$
\varphi_{y^{*} z}^{(-\alpha)}(x)=\left(\pi_{\psi}(x) J_{\psi, \varphi} \Delta_{\psi, \varphi}^{\bar{\alpha}} \Lambda_{\varphi}(y) \mid J_{\psi, \varphi} \Delta_{\psi, \varphi}^{-\alpha} \Lambda(z)\right), x \in \mathcal{M}
$$

(ii) If $a \in L_{(\alpha)}^{\psi, \varphi}$, then $a^{*} \in L_{(\bar{\alpha})}^{\varphi, \psi}$ and $(\varphi \psi)_{a^{*}}^{(\bar{\alpha})}=(\psi \varphi)_{a}^{(\alpha)^{*}}$.

Proof. (i) Since $y, z \in \mathfrak{a}_{0}^{\varphi}$, we find that $y^{*} z \in L_{(\alpha)}^{\varphi}$ and

$$
\begin{equation*}
\varphi_{y^{*} z}^{(i t)}(x)=\left(\pi_{\varphi}(x) J_{\varphi} \Delta_{\varphi}^{i t} \Lambda_{\varphi}(y) \mid J_{\varphi} \Delta_{\varphi}^{i t} \Lambda(z)\right), x \in \mathcal{M} \tag{11}
\end{equation*}
$$

for all $t \in \mathbb{R}$ (replace $\mathfrak{a}_{0}^{\varphi}$ by $\mathfrak{n}_{\varphi}^{*} \mathfrak{n}_{\varphi}$ in [5, Proposition 2.3], see also [5, Remark in p. 1037]). On the other hand, for $a, b \in \mathfrak{a}_{0}^{\varphi}$, we have

$$
\begin{aligned}
& \left(\pi_{\varphi}\left(y^{*} z\right) J_{\varphi} \Delta_{\varphi}^{-i t} \Lambda_{\varphi}(a) \mid J_{\varphi} \Delta_{\varphi}^{-i t} \Lambda(b)\right) \\
& \left.\quad=\varphi_{y^{*} z}^{(i t)}\left(a^{*} b\right) \text { (by the definition of } L_{(\alpha)}^{\varphi}\right) \\
& =\left(\pi_{\varphi}\left(a^{*} b\right) J_{\varphi} \Delta_{\varphi}^{i t} \Lambda_{\varphi}(y) \mid J_{\varphi} \Delta_{\varphi}^{i t} \Lambda(z)\right) \quad(\text { by (11)) } \\
& =\left(\pi_{\psi}\left(a^{*} b\right) J_{\psi, \varphi} \Delta_{\psi, \varphi}^{i t} \Lambda_{\varphi}(y) \mid J_{\psi, \varphi} \Delta_{\psi, \varphi}^{i t} \Lambda(z)\right) \quad \text { (by (8)). }
\end{aligned}
$$

By analytic continuation, we have

$$
\left(\pi_{\varphi}\left(y^{*} z\right) J_{\varphi} \Delta_{\varphi}^{-\bar{\alpha}} \Lambda_{\varphi}(a) \mid J_{\varphi} \Delta_{\varphi}^{\alpha} \Lambda(b)\right)=\left(\pi_{\psi}\left(a^{*} b\right) J_{\psi, \varphi} \Delta_{\psi, \varphi}^{\bar{\alpha}} \Lambda_{\varphi}(y) \mid J_{\psi, \varphi} \Delta_{\psi, \varphi}^{-\alpha} \Lambda(z)\right) .
$$

This means that $y^{*} z \in L_{(-\alpha)}^{\varphi}$ and

$$
\varphi_{y^{*} z}^{(-\alpha)}(x)=\left(\pi_{\psi}(x) J_{\psi, \varphi} \Delta_{\psi, \varphi}^{\bar{\alpha}} \Lambda_{\varphi}(y) \mid J_{\psi, \varphi} \Delta_{\psi, \varphi}^{-\alpha} \Lambda(z)\right), x \in \mathcal{M}
$$

(ii) The assertion also follows from the analytic continuation of equation (9), so the details will be omitted.

Lemma 2. For the balanced weight χ of φ and ψ, we have

$$
L_{(\alpha)}^{\chi}=\left(\begin{array}{cc}
L_{(\alpha)}^{\varphi} & L_{(\alpha)}^{\psi, \varphi} \\
L_{(\alpha)}^{\varphi, \psi} & L_{(\alpha)}^{\psi}
\end{array}\right)
$$

and

$$
\chi_{a}^{(\alpha)}=\left(\begin{array}{cc}
\varphi_{a_{11}}^{(\alpha)} & (\psi \varphi)_{a_{12}}^{(\alpha)} \\
(\varphi \psi)_{a_{21}}^{(\alpha)} & \psi_{a_{22}}^{(\alpha)}
\end{array}\right)
$$

for $a=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \in L_{(\alpha)}^{\chi}$.
Proof. Let $a=\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \in L_{(\alpha)}^{\chi}$. For any

$$
y=\left(\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right), \quad z=\left(\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right) \in \mathfrak{a}_{0}^{\chi},
$$

we have

$$
\begin{aligned}
\chi_{a}^{(\alpha)} & \left(y^{*} z\right) \\
= & \left(\pi_{\chi}(a) J_{\chi} \Delta_{\chi}^{\bar{\alpha}} \Lambda_{\chi}(y) \mid J_{\chi} \Delta_{\chi}^{-\alpha} \Lambda_{\chi}(z)\right) \\
= & \left.\left(\left.\left(\begin{array}{l}
\pi_{\varphi}\left(a_{11}\right) J_{\varphi} \Delta_{\varphi}^{\alpha} \Lambda_{\varphi}\left(y_{11}\right)+\pi_{\varphi}\left(a_{12}\right) J_{\varphi, \psi} \Delta_{\varphi, \psi}^{\bar{\alpha}} \Lambda_{\psi}\left(y_{12}\right) \\
\pi_{\psi}\left(a_{11}\right) J_{\psi, \varphi} \Delta_{\psi, \varphi}^{\alpha} \Lambda_{\varphi}\left(y_{21}\right)+\pi_{\psi}\left(a_{12}\right) J_{\psi} \Delta_{\psi}^{\alpha} \Lambda_{\psi}\left(y_{22}\right) \\
\pi_{\varphi}\left(a_{21}\right) J_{\varphi} \Delta_{\varphi}^{\alpha} \Lambda_{\varphi}\left(y_{11}\right)+\pi_{\varphi}\left(a_{22}\right) J_{\varphi, \psi} \Delta_{\varphi, \psi}^{\alpha} \Lambda_{\psi}\left(y_{12}\right) \\
\pi_{\psi}\left(a_{21}\right) J_{\psi, \varphi} \Delta_{\psi, \varphi}^{\alpha} \Lambda_{\varphi}\left(y_{21}\right)+\pi_{\psi}\left(a_{22}\right) J_{\psi} \Delta_{\psi}^{\alpha} \Lambda_{\psi}\left(y_{22}\right)
\end{array}\right) \right\rvert\, \begin{array}{c}
J_{\varphi} \Delta_{\varphi}^{-\alpha} \Lambda_{\varphi}\left(z_{11}\right) \\
J_{\psi, \varphi} \Delta_{\psi, \varphi}^{-\alpha} \Lambda_{\varphi}\left(z_{21}\right) \\
J_{\varphi, \psi} \Delta_{\varphi, \psi}^{-\alpha} \Lambda_{\psi}\left(z_{12}\right) \\
J_{\psi} \Delta_{\psi}^{-\alpha} \Lambda_{\psi}\left(z_{22}\right)
\end{array}\right)\right) \\
= & \left(\pi_{\varphi}\left(a_{11}\right) J_{\varphi} \Delta_{\varphi}^{\alpha} \Lambda_{\varphi}\left(y_{11}\right) \mid J_{\varphi} \Delta_{\varphi}^{-\alpha} \Lambda_{\varphi}\left(z_{11}\right)\right) \\
& +\left(\pi_{\psi}\left(a_{11}\right) J_{\psi, \varphi} \Delta_{\psi, \varphi}^{\bar{\alpha}} \Lambda_{\varphi}\left(y_{21}\right) \mid J_{\psi, \varphi} \Delta_{\psi, \varphi}^{-\alpha} \Lambda_{\varphi}\left(z_{21}\right)\right) \\
& +\left(\pi_{\varphi}\left(a_{12}\right) J_{\varphi, \psi} \Delta_{\varphi, \psi}^{\alpha} \Lambda_{\psi}\left(y_{12}\right) \mid J_{\varphi} \Delta_{\varphi}^{-\alpha} \Lambda_{\varphi}\left(z_{11}\right)\right) \\
& +\left(\pi_{\psi}\left(a_{12}\right) J_{\psi} \Delta_{\psi}^{\alpha} \Lambda_{\psi}\left(y_{22}\right) \mid J_{\psi, \varphi} \Delta_{\psi,, \varphi}^{-\alpha} \Lambda_{\varphi}\left(z_{21}\right)\right) \\
& +\left(\pi_{\varphi}\left(a_{21}\right) J_{\varphi} \Delta_{\varphi}^{\alpha} \Lambda_{\varphi}\left(y_{11}\right) \mid J_{\varphi, \psi} \Delta_{\varphi, \psi}^{-\alpha} \Lambda_{\psi}\left(z_{12}\right)\right) \\
& +\left(\pi_{\psi}\left(a_{21}\right) J_{\psi, \varphi} \Delta_{\psi, \varphi}^{\alpha} \Lambda_{\varphi}\left(y_{21}\right) \mid J_{\psi} \Delta_{\psi}^{-\alpha} \Lambda_{\psi}\left(z_{22}\right)\right) \\
& +\left(\pi_{\varphi}\left(a_{22}\right) J_{\varphi, \psi} \Delta_{\varphi, \psi}^{\alpha} \Lambda_{\psi}\left(y_{12}\right) \mid J_{\varphi, \psi} \Delta_{\varphi, \psi}^{-\alpha} \Lambda_{\psi}\left(z_{12}\right)\right) \\
& \quad+\left(\pi_{\psi}\left(a_{22}\right) J_{\psi} \Delta_{\psi}^{\alpha} \Lambda_{\psi}\left(y_{22}\right) \mid J_{\psi} \Delta_{\psi}^{-\alpha} \Lambda_{\psi}\left(z_{22}\right)\right)
\end{aligned}
$$

On the other hand, if we put

$$
\chi_{a}^{(\alpha)}=\left(\begin{array}{ll}
\kappa_{11} & \kappa_{12} \\
\kappa_{21} & \kappa_{22}
\end{array}\right) \in \mathcal{N}_{*},
$$

then we have

$$
\begin{aligned}
\chi_{a}^{(\alpha)}\left(y^{*} z\right)= & \kappa_{11}\left(y_{11}^{*} z_{11}\right)+\kappa_{12}\left(y_{12}^{*} z_{11}\right)+\kappa_{11}\left(y_{21}^{*} z_{21}\right)+\kappa_{12}\left(y_{22}^{*} z_{21}\right) \\
& +\kappa_{21}\left(y_{11}^{*} z_{12}\right)+\kappa_{22}\left(y_{12}^{*} z_{12}\right)+\kappa_{21}\left(y_{21}^{*} z_{22}\right)+\kappa_{22}\left(y_{22}^{*} z_{22}\right) .
\end{aligned}
$$

Hence, by putting $y_{12}=y_{21}=y_{22}=z_{12}=z_{21}=z_{22}=0$, we have

$$
\kappa_{11}\left(y_{11}^{*} z_{11}\right)=\left(\pi_{\varphi}\left(a_{11}\right) J_{\varphi} \Delta_{\varphi}^{\bar{\alpha}} \Lambda_{\varphi}\left(y_{11}\right) \mid J_{\varphi} \Delta_{\varphi}^{-\alpha} \Lambda_{\varphi}\left(z_{11}\right)\right)
$$

for all $y_{11}, z_{11} \in \mathfrak{a}_{0}^{\varphi}$. This means $a_{11} \in L_{(\alpha)}^{\varphi}$ and $\varphi_{a_{11}}^{(\alpha)}=\kappa_{11}$. Similarly, we can deduce

$$
\begin{aligned}
& a_{12} \in L_{(\alpha)}^{\psi \varphi} \text { and }(\psi \varphi)_{a_{12}}^{(\alpha)}=\kappa_{12}, \\
& a_{21} \in L_{(\alpha)}^{\varphi \psi} \text { and }(\varphi \psi)_{a_{21}}^{(\alpha)}=\kappa_{21}, \\
& a_{22} \in L_{(\alpha)}^{\psi} \text { and } \psi_{a_{22}}^{(\alpha)}=\kappa_{22} .
\end{aligned}
$$

Conversely, let $a=\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \in\left(\begin{array}{cc}L_{(\alpha)}^{\varphi} & L_{(\alpha)}^{\psi, \varphi} \\ L_{(\alpha)}^{\varphi, \psi} & L_{(\alpha)}^{\psi}\end{array}\right)$. We claim $a \in L_{(\alpha)}^{\chi}$. Let y, z be as above. Then we have

$$
\begin{align*}
& \left(\pi_{\psi}\left(a_{11}\right) J_{\psi, \varphi} \Delta_{\psi, \varphi}^{\bar{\alpha}} \Lambda_{\varphi}\left(y_{21}\right) \mid J_{\psi, \varphi} \Delta_{\psi, \varphi}^{-\alpha} \Lambda_{\varphi}\left(z_{21}\right)\right) \\
& =\varphi_{\left.y_{21}\right)}^{(-\alpha)}\left(a_{11}\right) \quad \text { (by Lemma } 1 \text { (i)) } \tag{12}\\
& =\varphi_{a_{11}}^{(\alpha)}\left(y_{21}^{*} z_{21}\right) \quad \text { (by [5, Theorem 2.5]). }
\end{align*}
$$

Similarly, we have

$$
\begin{gathered}
\left(\pi_{\psi}\left(a_{12}\right) J_{\psi} \Delta_{\psi}^{\bar{\alpha}} \Lambda_{\psi}\left(y_{22}\right) \mid J_{\psi, \varphi} \Delta_{\psi, \varphi}^{-\alpha} \Lambda_{\varphi}\left(z_{21}\right)\right) \\
\quad=\frac{\left(\pi_{\psi}\left(a_{12}^{*}\right) J_{\psi, \varphi} \Delta_{\psi, \varphi}^{-\alpha} \Lambda_{\varphi}\left(z_{21}\right) \mid J_{\psi} \Delta_{\psi}^{\bar{\alpha}} \Lambda_{\psi}\left(y_{22}\right)\right)}{(\varphi \psi)_{a_{12}^{*}}^{(\alpha)}\left(z_{21}^{*} y_{22}\right)} \\
\quad=\quad(\text { by Lemma } 1 \text { (ii) }), \\
\quad=(\psi \varphi)_{a_{12}}^{\alpha(\alpha)}\left(y_{22}^{*} z_{21}\right) \quad\left(\pi_{\varphi}\left(a_{22}\right) J_{\varphi, \psi} \Delta_{\varphi, \psi}^{\bar{\alpha}} \Lambda_{\psi}\left(y_{12}\right) \mid J_{\varphi, \psi} \Delta_{\varphi, \psi}^{-\alpha} \Lambda_{\psi}\left(z_{12}\right)\right)=\varphi_{a_{22}}^{(\alpha)}\left(y_{12}^{*} z_{12}\right)
\end{gathered}
$$

and

$$
\left(\pi_{\varphi}\left(a_{21}\right) \mid J_{\varphi, \psi} \Delta_{\varphi, \psi}^{-\alpha} \Lambda_{\psi}\left(z_{12}\right)\right)=(\varphi \psi)_{a_{21}}^{(\bar{\alpha})}\left(y_{11}^{*} z_{12}\right)
$$

Consequently, we have

$$
\begin{aligned}
& \left(\pi_{\chi}(a) J_{\chi} \Delta_{\chi}^{\bar{\alpha}} \Lambda_{\chi}(y) \mid J_{\chi} \Delta_{\chi}^{-\alpha} \Lambda_{\chi}(z)\right) \\
& \quad=\varphi_{a_{11}}^{(\alpha)}\left(y_{11}^{*} z_{11}\right)+(\psi \varphi)_{a_{12}}^{(\alpha)}\left(y_{12}^{*} z_{11}\right)+\varphi_{a_{11}}^{(\alpha)}\left(y_{21}^{*} z_{21}\right)+(\psi \varphi)_{a_{12}}^{(\alpha)}\left(y_{22}^{*} z_{21}\right) \\
& \quad+(\varphi \psi)_{a_{21}}^{(\alpha)}\left(y_{11}^{*} z_{12}^{*}\right)+\psi_{a_{22}}^{(\alpha)}\left(y_{12}^{*} z_{12}\right)+(\varphi \psi)_{a_{21}}^{(\alpha)}\left(y_{21}^{*} z_{22}\right)+\psi_{a_{22}}^{(\alpha)}\left(y_{22}^{*} z_{22}\right) \\
& =\left\langle\left(\begin{array}{cc}
\varphi_{a_{11}}^{(\alpha)} & (\psi \varphi)_{a_{12}}^{(\alpha)} \\
(\varphi \psi)_{a_{21}}^{(\alpha)} & \psi_{a_{22}}^{(\alpha)}
\end{array}\right), y^{*} z\right\rangle_{\mathcal{N}_{*}, \mathcal{N}} .
\end{aligned}
$$

Hence $a \in L_{(\alpha)}^{\chi}$.
As a sub-compatible pair [6, Definition 6.4] of $\left(\mathcal{N}, \mathcal{N}_{*}\right)_{(\alpha)}^{\chi}$, we take

$$
\left(\left(\begin{array}{cc}
\mathcal{M} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
\mathcal{M}_{*} & 0 \\
0 & 0
\end{array}\right)\right)_{(\alpha)}^{\chi}
$$

We compare the sub-compatible pair

$$
\left(\left(\begin{array}{cc}
\mathcal{M} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
\mathcal{M}_{*} & 0 \\
0 & 0
\end{array}\right)\right)_{(\alpha)}^{\chi}
$$

and $\left(\mathcal{M}, \mathcal{M}_{*}\right)_{(\alpha)}^{\varphi}$. Let $x \in \mathcal{M}$ and $\kappa \in \mathcal{M}_{*}$. Suppose

$$
\left(j_{(-\alpha)}^{\chi}\right)^{*}\left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right)=\left(i_{(-\alpha)}^{\chi}\right)^{*}\left(\begin{array}{ll}
\kappa & 0 \\
0 & 0
\end{array}\right) .
$$

Then, by the calculations in the proof of (2), we have

$$
\begin{equation*}
\kappa\left(a^{*} b\right)=\left(\pi_{\varphi}(x) J_{\varphi} \Delta_{\varphi}^{\bar{\alpha}} \Lambda_{\varphi}(a) \mid J_{\varphi} \Delta_{\varphi}^{-\alpha} \Lambda_{\varphi}(b)\right) \text { for all } y, z \in \mathfrak{a}_{0}^{\varphi} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\kappa\left(c^{*} d\right)=\left(\pi_{\psi}(x) J_{\psi, \varphi} \Delta_{\psi, \varphi}^{\bar{\alpha}} \Lambda_{\varphi}(c) \mid J_{\psi, \varphi} \Delta_{\psi, \varphi}^{-\alpha} \Lambda_{\varphi}(d)\right) \text { for all } y, z \in \mathfrak{a}_{0}^{\psi, \varphi} . \tag{14}
\end{equation*}
$$

Hence $x \in L_{(\alpha)}^{\varphi}$ and $\varphi_{x}^{(\alpha)}=\kappa$, and consequently,

$$
\left(j_{(-\alpha)}^{\varphi}\right)^{*}(x)=\left(i_{(-\alpha)}^{\varphi}\right)^{*}(\kappa)
$$

(cf. [5, Proposition 3.6]). Conversely, suppose that $\left(j_{(-\alpha)}^{\varphi}\right)^{*}(x)=\left(i_{(-\alpha)}^{\varphi}\right)^{*}(\kappa)$. Then, by the same argument as in (12), we have (14) as well as (13). Hence

$$
\left(j_{(-\alpha)}^{\chi}\right)^{*}\left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right)=\left(i_{(-\alpha)}^{\chi}\right)^{*}\left(\begin{array}{ll}
\kappa & 0 \\
0 & 0
\end{array}\right) .
$$

This equivalence of conditions tells us that by identifying

$$
\left(\begin{array}{cc}
\mathcal{M} & 0 \\
0 & 0
\end{array}\right) \quad\left(\operatorname{resp} .\left(\begin{array}{cc}
\mathcal{M}_{*} & 0 \\
0 & 0
\end{array}\right)\right)
$$

with $\mathcal{M}\left(\right.$ resp. $\left.\mathcal{M}_{*}\right)$, the sub-compatible pair

$$
\left(\left(\begin{array}{cc}
\mathcal{M} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
\mathcal{M}_{*} & 0 \\
0 & 0
\end{array}\right)\right)_{(\alpha)}^{\chi}
$$

is equivalent to $\left(\mathcal{M}, \mathcal{M}_{*}\right)_{(\alpha)}^{\varphi}$ in the sense of [6, Definition 6.17]. By [6, Proposition 6.18], the interpolation space

$$
C_{1 / p}\left(\left(\begin{array}{cc}
\mathcal{M} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
\mathcal{M}_{*} & 0 \\
0 & 0
\end{array}\right)\right)_{(\alpha)}^{\chi}
$$

is isometrically isomorphic to $L_{(\alpha)}^{p}(\mathcal{M}, \varphi)$ via the map

$$
\left(j_{(-\alpha)}^{\chi}\right)^{*}\left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right)+\left(i_{(-\alpha)}^{\chi}\right)^{*}\left(\begin{array}{cc}
\kappa & 0 \\
0 & 0
\end{array}\right) \mapsto\left(j_{(-\alpha)}^{\varphi}\right)^{*}(x)+\left(i_{(-\alpha)}^{\varphi}\right)^{*}(\kappa)
$$

for all

$$
\xi=\left(j_{(-\alpha)}^{\chi}\right)^{*}\left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right)+\left(i_{(-\alpha)}^{\chi}\right)^{*}\left(\begin{array}{cc}
\kappa & 0 \\
0 & 0
\end{array}\right) \in C_{1 . p}\left(\left(\begin{array}{cc}
\mathcal{M} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
\mathcal{M}_{*} & 0 \\
0 & 0
\end{array}\right)\right)_{(\alpha)}^{\chi}
$$

with $x \in \mathcal{M}, \kappa \in \mathcal{M}_{*}$. In a similar way, we can construct a natural isometric map between

$$
C_{1 / p}\left(\left(\begin{array}{cc}
0 & 0 \\
0 & \mathcal{M}
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
0 & \mathcal{M}_{*}
\end{array}\right)\right)_{(\alpha)}^{\chi} \quad \text { and } \quad L_{(\alpha)}^{p}(\mathcal{M}, \psi)
$$

Then, by [5, Theorem 2.14],

$$
{\overline{\left(j_{(-\alpha)}^{\chi}\right) *}\left(\begin{array}{cc}
L_{(\alpha)}^{\varphi} & 0 \tag{15}\\
0 & 0
\end{array}\right)}^{\text {norm }}=C_{1 / p}\left(\left(\begin{array}{cc}
\mathcal{M} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
\mathcal{M}_{*} & 0 \\
0 & 0
\end{array}\right)\right)_{(\alpha)}^{\chi}
$$

and

$$
\left(j_{(-\alpha)}^{\chi}\right)^{*}\left(\begin{array}{cc}
0 & 0 \\
0 & L_{(\alpha)}^{\psi}
\end{array}\right)^{\text {norm }}=C_{1 / p}\left(\left(\begin{array}{cc}
0 & 0 \\
0 & \mathcal{M}
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
0 & \mathcal{M}_{*}
\end{array}\right)\right)_{(\alpha)}^{\chi}
$$

By [6, Proposition 6.22], the set $\left(j_{(-\alpha)}^{\chi}\right)^{*}\left(\left(\mathfrak{a}_{0}^{\chi}\right)^{2}\right)$ is norm dense in $L_{(\alpha)}^{p}(\mathcal{N}, \chi)$. We put

$$
\left.L_{1}=\overline{\left(j_{(-\alpha)}^{\chi}\right)^{*}\left(\begin{array}{cc}
\left(\mathfrak{a}_{0}^{\phi}\right)^{2} & 0 \tag{16}\\
0 & 0
\end{array}\right.}\right)
$$

and

$$
L_{2}={\overline{\left(j_{(-\alpha)}^{\chi}\right) *}\left(\begin{array}{cc}
0 & 0 \\
0 & \left(\mathfrak{a}_{0}^{\psi}\right)^{2}
\end{array}\right.}^{\text {norm }} \subset L_{(\alpha)}^{p}(\mathcal{N}, \chi) .
$$

Again by [6, Proposition 6.22], L_{1} (resp. L_{2}) equals

$$
C_{1 / p}\left(\left(\begin{array}{cc}
\mathcal{M} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
\mathcal{M}_{*} & 0 \\
0 & 0
\end{array}\right)\right)_{(\alpha)}^{\chi}\left(\operatorname{resp} . C_{1 / p}\left(\left(\begin{array}{cc}
0 & 0 \\
0 & \mathcal{M}
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
0 & \mathcal{M}_{*}
\end{array}\right)\right)_{(\alpha)}^{\chi}\right)
$$

and can be naturally identified with $L_{(\alpha)}^{p}(\mathcal{M}, \varphi)\left(\operatorname{resp} . L_{(\alpha)}^{p}(\mathcal{M}, \psi)\right)$.
Next, we recall the bimodule structure of $L_{(\alpha)}^{p}(\mathcal{N}, \chi)$ (see $\left.[6, \S 7]\right)$. For $a \in \mathcal{N}$, we put the left and the right actions by

$$
\pi_{p,(\alpha)}^{\chi}(a)=\left(U_{p,(-1 / 2, \alpha)}^{\chi}\right)^{-1} \circ \pi_{p, L}^{\chi}(a) \circ U_{p,(-1 / 2, \alpha)}^{\chi}
$$

and

$$
\pi_{p,(\alpha)}^{\chi}{ }^{\prime}(a)=\left(U_{p,(1 / 2, \alpha)}^{\chi}\right)^{-1} \circ \pi_{p, R}^{\chi}{ }^{\prime}(a) \circ U_{p,(1 / 2, \alpha)}^{\varphi} .
$$

Here, $U_{p,(-1 / 2, \alpha)}^{\chi}$ is an isometric isomorphism of $L_{(\alpha)}^{p}(\mathcal{N}, \chi)$ onto the left L^{p}-space $L_{(-1 / 2)}^{p}(\mathcal{N}, \chi)$ satisfying

$$
U_{p,(-1 / 2, \alpha)}^{\chi}\left(\left(j_{(-\alpha)}^{\chi}\right)^{*}(y)\right)=j_{\chi,(1 / 2)}^{*}\left(\sigma_{s-i(1+2 r) / 2 p}^{\chi}(y)\right)
$$

for all $y \in\left(\mathfrak{a}_{0}^{\chi}\right)^{2}$, where $\alpha=r+i s$, and $\pi_{p, L}^{\chi}(a)$ is a bounded linear operator on $L_{(-1 / 2)}^{p}(\mathcal{N}, \chi)$ defined by

$$
\pi_{p, L}^{\chi}(a)\left(j_{\chi,(1 / 2)}^{*}(x)+i_{\chi,(1 / 2)}^{*}(\kappa)\right)=j_{\chi,(1 / 2)}^{*}(a x)+i_{\chi,(1 / 2)}^{*}(a \kappa)
$$

for all $\xi=j_{\chi,(1 / 2)}^{*}(x)+i_{\chi,(1 / 2)}^{*}(\kappa) \in L_{(-1 / 2)}^{p}(\mathcal{N}, \chi), x \in \mathcal{N}, \kappa \in \mathcal{N}_{*}$.
Similarly, $U_{p,(1 / 2, \alpha)}^{\chi}$ is an isometric isomorphism of $L_{(\alpha)}^{p}(\mathcal{N}, \chi)$ onto the right $L^{p_{-}}$ space $L_{(1 / 2)}^{p}(\mathcal{N}, \chi)$ satisfying

$$
U_{p,(1 / 2, \alpha)}^{\chi}\left(\left(j_{(-\alpha)}^{\chi}\right)^{*}(y)\right)=j_{\chi,(1 / 2)}^{*}\left(\sigma_{s+i(1-2 r) / 2 p}^{\chi}(y)\right)
$$

for all $y \in\left(\mathfrak{a}_{0}^{\chi}\right)^{2}$, and $\pi_{p, R}^{\chi}{ }^{\prime}(b)$ is a bounded linear operator on $L_{(1 / 2)}^{p}(\mathcal{N}, \chi)$ defined by

$$
\pi_{p, R}^{\chi}{ }^{\prime}(b)\left(j_{\chi,(1 / 2)}^{*}(x)+i_{\chi,(1 / 2)}^{*}(\kappa)\right)=j_{\chi,(1 / 2)}^{*}(x b)+i_{\chi,(1 / 2)}^{*}(\kappa b)
$$

for all $\eta=j_{\chi,(-1 / 2)}^{*}(x)+i_{\chi,(-1 / 2)}^{*}(\kappa) \in L_{(1 / 2)}^{p}(\mathcal{N}, \chi), x \in \mathcal{N}, \kappa \in \mathcal{N}_{*}$.

Next, we put

$$
p_{1}=\pi_{p,(\alpha)}^{\chi}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \circ \pi_{p,(\alpha)}^{\chi},\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),
$$

and

$$
p_{2}=\pi_{p,(\alpha)}^{\chi}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \circ \pi_{p,(\alpha)}^{\chi},\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Since the left and the right actions commute, p_{1} and p_{2} are idempotent operators on $L_{(\alpha)}^{p}(\mathcal{N}, \chi)$.

Proposition 1.

(i) The range of p_{1} is L_{1}.
(ii) The range of p_{2} is L_{2}.

Proof. The proofs of (i) and (ii) are similar, so we will prove only (i). Let

$$
y=\left(\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right) \in \mathcal{N} .
$$

Then, by $[8,3.10]$, there exist strongly* continuous one-parameter groups $\left\{\sigma_{t}^{\psi, \varphi}\right\}_{t \in \mathbb{R}}$, $\left\{\sigma_{t}^{\varphi, \psi}\right\}_{t \in \mathbb{R}}$ of isometries of \mathcal{M} onto \mathcal{M} such that

$$
\sigma_{t}^{\chi}(y)=\left(\begin{array}{cc}
\sigma_{t}^{\varphi}\left(y_{11}\right) & \sigma_{t}^{\varphi, \psi}\left(y_{12}\right) \\
\sigma_{t}^{\psi, \varphi}\left(y_{21}\right) & \sigma_{t}^{\psi}\left(y_{22}\right)
\end{array}\right)
$$

for all $t \in \mathbb{R}$. Moreover, suppose that $y \in \mathfrak{a}_{0}^{\chi}$. By analytic continuation, the oneparameter groups $\sigma^{\psi, \varphi}$ and $\sigma^{\varphi, \psi}$ can be uniquely extended to complex one-parameter groups on $\mathfrak{a}_{0}^{\psi, \varphi}$ and $\mathfrak{a}_{0}^{\varphi, \psi}$, respectively, such that

$$
\sigma_{\alpha}^{\chi}(y)=\left(\begin{array}{cc}
\sigma_{\alpha}^{\varphi}\left(y_{11}\right) & \sigma_{\alpha}^{\varphi, \psi}\left(y_{12}\right) \\
\sigma_{\alpha}^{\psi, \varphi}\left(y_{21}\right) & \sigma_{\alpha}^{\psi}\left(y_{22}\right)
\end{array}\right)
$$

for all $\alpha \in \mathbb{C}$. Let

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) \in \mathfrak{a}_{0}^{\chi} .
$$

Then $\left(j_{(-\alpha)}^{\chi}\right)^{*}(A B) \in L_{(\alpha)}^{p}(\mathcal{N}, \chi)$ and we have

$$
\begin{aligned}
& p_{1}\left(j_{(-\alpha)}^{\chi}\right)^{*}(A B) \\
& =\pi_{p,(\alpha)}^{\chi}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \pi_{p,(\alpha)}^{\chi},\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(j_{(-\alpha)}^{\chi}\right)^{*}(A B) \\
& =\pi_{p,(\alpha)}^{\chi}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(U_{p,(1 / 2, \alpha)}^{\chi}\right)^{-1} \pi_{p, R}^{\chi}{ }^{\prime}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) U_{p,(1 / 2, \alpha)}^{\chi}\left(j_{(-\alpha)}^{\chi}\right)^{*}(A B) \\
& =\pi_{p,(\alpha)}^{\chi}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(U_{p,(1 / 2, \alpha)}^{\chi}\right)^{-1} \pi_{p, R}^{\chi}{ }^{\prime}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) j_{\chi,(-1 / 2)}^{*}\left(\sigma_{i(1-2 r) / 2 p+s}^{\chi}(A B)\right) \\
& =\pi_{p,(\alpha)}^{\chi}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(U_{p,(1 / 2, \alpha)}^{\chi}\right)^{-1} \pi_{p, R}^{\chi}{ }^{\prime}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& j_{\chi,(-1 / 2)}^{*}\left(\sigma_{i(1-2 r) / 2 p+s}^{\chi}(A) \sigma_{i(1-2 r) / 2 p+s}^{\chi}(B)\right) \\
& =\pi_{p,(\alpha)}^{\chi}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(U_{p,(1 / 2, \alpha)}^{\chi}\right)^{-1} \pi_{p, R}^{\chi}{ }^{\prime}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& j_{\chi,(-1 / 2)}^{*}\left(\sigma_{i(1-2 r) / 2 p+s}^{\chi}(A)\left(\begin{array}{ll}
\sigma_{i(1-2 r) / 2 p+s}^{\varphi}\left(b_{11}\right) & \sigma_{i(1-2 r) / 2 p+s}^{\varphi, \psi}\left(b_{12}\right) \\
\sigma_{i(1-2 r) / 2 p+s}^{\psi, \varphi}\left(b_{21}\right) & \sigma_{i(1-2 r) / 2 p+s}^{\psi}\left(b_{22}\right)
\end{array}\right)\right) \\
& =\pi_{p,(\alpha)}^{\chi}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(U_{p,(1 / 2, \alpha)}^{\chi}\right)^{-1} \\
& \left.j_{\chi,(-1 / 2)}^{*}\left(\sigma_{i(1-2 r) / 2 p+s}^{\chi}(A)\binom{\sigma_{i(1-2 r) / 2 p+s}^{\varphi}\left(b_{11}\right)}{\sigma_{i(1-2 r) / 2 p+s}^{\psi(1}\left(b_{21}\right)} 00\right)\right) \\
& =\pi_{p,(\alpha)}^{\chi}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) j_{\chi}^{*}\left(A\left(\begin{array}{ll}
b_{11} & 0 \\
b_{21} & 0
\end{array}\right)\right) \\
& =\left(U_{p,(-1 / 2, \alpha)}^{\chi}\right)^{-1} \pi_{p, L}^{\chi}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) U_{p,(-1 / 2, \alpha)}^{\chi} j_{\chi}^{*}\left(A\left(\begin{array}{ll}
b_{11} & 0 \\
b_{21} & 0
\end{array}\right)\right) \\
& =\left(U_{p,(-1 / 2, \alpha)}^{\chi}\right)^{-1} \pi_{p, L}^{\chi}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& j_{\chi,(1 / 2)}^{*}\left(\sigma_{-i(1+2 r) / 2 p+s}^{\chi}(A)\left(\begin{array}{ll}
\sigma_{-i(1+2 r) / 2 p+s}^{\varphi}\left(b_{11}\right) & 0 \\
\sigma_{-i(1+2 r) / 2 p+s}^{\psi}\left(b_{21}\right) & 0
\end{array}\right)\right) \\
& =\left(U_{p,(-1 / 2, \alpha)}^{\chi}\right)^{-1} \pi_{p, L}^{\chi}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& j_{\chi,(1 / 2)}^{*}\left(\left(\begin{array}{ll}
\sigma_{-i(1+2 r) / 2 p+s}^{\varphi}\left(a_{11}\right) & \sigma_{-i(1+2 r) / 2 p+s}^{\varphi, \psi}\left(a_{12}\right) \\
\sigma_{-i(1+2 r) / 2 p+s}^{\psi, \varphi}\left(a_{21}\right) & \sigma_{-i(1+2 r) / 2 p+s}^{\psi}\left(a_{22}\right)
\end{array}\right)\binom{\sigma_{-i(1+2 r) / 2 p+s}^{\varphi}\left(b_{11}\right)}{\sigma_{-i(1+2 r) / 2 p+s}^{\psi, \varphi}\left(b_{21}\right)}\right)
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
= & \left(U_{p,(-1 / 2, \alpha)}^{\chi}\right)^{-1} \\
& j_{\chi,(1 / 2)}^{*}\left((\begin{array} { c c }
{ \sigma _ { - i (1 + 2 r) / 2 p + s } ^ { \varphi } (a _ { 1 1 }) } & { \sigma _ { - i (1 + 2 r) / 2 p + s } ^ { \varphi , \psi } (a _ { 1 2 }) } \\
{ 0 } & { 0 }
\end{array}) \left(\begin{array}{c}
\sigma_{-i(1+2 r) / 2 p+s}^{\varphi}\left(b_{11}\right) \\
\sigma_{-i(1+2 r) / 2 p+s}^{\psi, \varphi}\left(b_{21}\right)
\end{array}\right.\right. \\
0
\end{array}\right)\right), ~\left(j_{(-\alpha)}^{\chi}\right)^{*}\left(\left(\begin{array}{cc}
a_{11} & a_{12} \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
b_{11} & 0 \\
b_{21} & 0
\end{array}\right)\right) .
$$

Since $A B \in\left(\mathfrak{a}_{0}^{\chi}\right)^{2} \subset L_{(\alpha)}^{\chi}$, we find that $a_{11} b_{11}+a_{12} b_{21} \in L_{(\alpha)}^{\varphi}$ by Lemma 2. Moreover, $a_{11} b_{11} \in\left(\mathfrak{a}_{0}^{\varphi}\right)^{2}$ by (10). Hence we have

$$
\left(j_{(-\alpha)}^{\chi}\right)^{*}\left(\begin{array}{cc}
\left(\mathfrak{a}_{0}^{\varphi}\right)^{2} & 0 \\
0 & 0
\end{array}\right) \subset p_{1}\left(j_{(-\alpha)}^{\chi}\right)^{*}\left(\left(\mathfrak{a}_{0}^{\chi}\right)^{2}\right) \subset\left(j_{(-\alpha)}^{\chi}\right)^{*}\left(\begin{array}{cc}
L_{(\alpha)}^{\varphi} & 0 \\
0 & 0
\end{array}\right) .
$$

Taking norm closures, we have

$$
{\overline{p_{1}\left(j_{(-\alpha)}^{\chi}\right) *\left(\left(\mathfrak{a}_{0}^{\chi}\right)^{2}\right)}}^{\text {norm }}=L_{1}
$$

by (15) and (16). Since p_{1} is idempotent, its range is closed. Hence we get the assertion.

Next, we put

$$
u_{1}=\pi_{p,(\alpha)}^{\chi}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \circ \pi_{p,(\alpha)}^{\chi},\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),
$$

and

$$
u_{2}=\pi_{p,(\alpha)}^{\chi}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \circ \pi_{p,(\alpha)}^{\chi},\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

Then we state our main result.
Theorem 1. With the notations above, for $\alpha \in \mathbb{C},\left.u_{1}\right|_{L_{1}}$ is an isometric isomorphism of L_{1} onto L_{2}. By the natural identification of L_{1} (resp. L_{2}) with $L_{(\alpha)}^{p}(\mathcal{M}, \varphi)$ (resp. $\left.L_{(\alpha)}^{p}(\mathcal{M}, \psi)\right),\left.u_{1}\right|_{L_{1}}$ and $\left.u_{2}\right|_{L_{2}}$ give rise to isometric isomorphisms

$$
\begin{aligned}
& U_{p,(\alpha)}^{\psi, \varphi}: L_{(\alpha)}^{p}\left(\mathcal{M}_{\varphi}\right) \rightarrow L_{(\alpha)}^{p}(\mathcal{M}, \psi), \quad \text { and } \\
& U_{p,(\alpha)}^{\varphi, \psi}: L_{(\alpha)}^{p}\left(\mathcal{M}_{\psi}\right) \rightarrow L_{(\alpha)}^{p}(\mathcal{M}, \varphi) .
\end{aligned}
$$

These two maps are mutually inverse.
Moreover, let θ be another n.f.s. weight on \mathcal{M}. Then we have the chain rule:

$$
U_{p,(\alpha)}^{\theta, \psi} \circ U_{p,(\alpha)}^{\psi, \varphi}=U_{p,(\alpha)}^{\theta, \varphi} .
$$

Proof. By simple computations, we have $u_{2} u_{1}=p_{1}$ and $u_{1} u_{2}=p_{2}$. By [6, Theorem 7.1], u_{1} and u_{2} are contractions. Hence we conclude that $\left.u_{1}\right|_{L_{1}}$ is an isometric isomorphism of L_{1} onto L_{2}, and that its inverse is given by $\left.u_{2}\right|_{L_{2}}$, which is identified with $U_{p}^{\varphi, \psi}$.

To prove the chain rule, we consider $\mathcal{S}=M_{3}(\mathbb{C}) \otimes \mathcal{M}$, and a weight δ on \mathcal{S} defined by

$$
\delta\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\varphi\left(a_{11}\right)+\psi\left(a_{22}\right)+\theta\left(a_{33}\right),\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \in \mathcal{S}_{+} .
$$

Then δ is an n.f.s. weight on \mathcal{S}. Similarly as in the 2×2 case, we can identify

$$
\left.j_{(-\alpha)}^{\delta}\right)^{*}\left(\begin{array}{ccc}
\left(\mathfrak{a}_{0}^{\varphi}\right)^{2} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { with } L_{(\alpha)}^{p}(\mathcal{M}, \varphi)
$$

and

Since the modular action of δ is given by

$$
\sigma_{\beta}^{\delta}\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\left(\begin{array}{ccc}
\sigma_{\beta}^{\varphi}\left(a_{11}\right) & \sigma_{\beta}^{\varphi, \psi}\left(a_{12}\right) & \sigma_{\beta}^{\varphi, \theta}\left(a_{13}\right) \\
\sigma_{\beta}^{\psi, \varphi}\left(a_{21}\right) & \sigma_{\beta}^{\psi}\left(a_{22}\right) & \sigma_{\beta}^{\psi, \theta}\left(a_{23}\right) \\
\sigma_{\beta}^{\theta, \varphi}\left(a_{31}\right) & \sigma_{\beta}^{\theta, \psi}\left(a_{32}\right) & \sigma_{\beta}^{\theta}\left(a_{33}\right)
\end{array}\right)
$$

for all

$$
a=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \in \mathfrak{a}_{0}^{\delta} \quad \text { and } \quad \beta \in \mathbb{C},
$$

under the above identifications, $U_{p,(\alpha)}^{\psi, \varphi}\left(\operatorname{resp} . U_{p,(\alpha)}^{\theta, \psi}, U_{p,(\alpha)}^{\theta, \varphi}\right)$ is given by

$$
\begin{gathered}
v_{1}=\pi_{p,(\alpha)}^{\delta}\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \circ \pi_{p,(\alpha)}^{\delta},\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
\left(\text { resp. } v_{2}=\pi_{p,(\alpha)}^{\delta}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \circ \pi_{p,(\alpha)}^{\delta},\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right),\right. \\
\left.v_{3}=\pi_{p,(\alpha)}^{\delta}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \circ \pi_{p,(\alpha)}^{\delta},\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right) .
\end{gathered}
$$

Since $v_{3}=v_{2} v_{1}$, the chain rule is proved.

References

[1] J. Bergh and J. Löfström, Interpolation Spaces: an Introduction, SpringerVerlag, 1976.
[2] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190.
[3] A. Connes, Caractérisation des espaces vectoriels ordonnés sous-jacent aux algèbres de von Neumann, Ann. Inst. Fourier 24 (1974), 121-155.
[4] U. Haagerup, L^{p}-spaces associated with an arbitrary von Neumann algebra, Colloques Internationaux CNRS, No.274, 175-184.
[5] H. Izumi, Constructions of non-commutative L^{p}-spaces with a complex parameter arising from modular actions, Int. J. Math. 8 (1997), 1029-1066.
[6] H. Izumi, Natural bilinear forms, natural sesquilinear forms and the associated duality of non-commutative L^{p}-spaces, Int. J. Math. 9 (1998), 975-1039.
[7] H. Kosaki, Applications of the Complex Interpolation Method to a von Neumann Algebra: Non-commutative L^{p}-Spaces, J. Funct. Anal. 56 (1984), 29-78.
[8] S. Strătilă, Modular Theory in Operator Algebras, Abacus Press, 1981.
[9] M. Takesaki, Theory of Operator Algebras II, Springer-Verlag, 2003.
[10] M. Terp, Interpolation spaces between a von Neumann algebra and its predual, J. Operator Theory 8 (1982), 327-360.
(Hideaki Izumi) Mathematics Division, Chiba Institute of Technology, Shibazono 2-1-1, Narashino 275-0023, Chiba, Japan
E-mail address: izumi@sky.it-chiba.ac.jp

Received June 11, 2008
Revised October 24, 2008

[^0]: 2000 Mathematics Subject Classification. 46L51,46L52,47L20.
 Key words and phrases. Modular theory, non-commutative integration, Connes' RadonNikodym cocycle, complex interpolation.

