A SUBSTITUTION RULE FOR THE PENROSE TILING

KAZUSHI KOMATSU AND FUMIHIKO NAKANO

Abstract

We study the structure of the Penrose tiling (PT, in short) constructed by the matching rule, and deduce directly a substitution rule from that, which gives us (i) local configuration of the tiles, (ii) elementary proofs of the aperiodicity, the locally isomorphic property, and the uncountability, (iii) alternative proof of the fact that all PT's obtained by the matching rule can be constructed via the up-down generation.

1. Introduction

Penrose tiling (PT) is one of the remarkable aperiodic tilings consisting of only two prototiles (e.g., two rhombs) and is known to be aperiodic, to have locally isomorphic property, and to have uncountable family of mutually distinct ones [8]. To construct PT, following three methods are well-known:
(i) matching rule,
(ii) inflation rule (up-down generation, UD in short), and
(iii) projection method.

Letting $\mathcal{P}_{n}, n=1,2,3$ be the set of PT's obtained by these methods, we have ($[1,2$, $6,10]) \mathcal{P}_{2} \subset \mathcal{P}_{1} \subset \mathcal{P}_{3}$ and for the opposite inclusion ($\mathcal{P}_{1} \subset \mathcal{P}_{2}$) Robinson's argument using the notion of supertile is known [5]. In this paper, we would like to study the structure of PT using de Bruijn's matching rule only ${ }^{1}$; most of our results are well-known but our argument is, we believe, more elementary and straightforward.

It is known that there are eight allowed patterns around each vertices (Figure 2.1.1). In section 2 , we study the unique patches ${ }^{2}\left(P_{1}, \ldots, P_{8}\right)$ determined by each patterns (Figures 2.2.1, .., 2.2.8), and show that PT is the superposition of both P_{6} and P_{8} (Theorem 2.1, Corollary 2.1). This fact implies that the patches P_{6} and P_{8} are "the local charts" in a sense, describing the local configuration of tiles in PT, and in other words, we can regard them as "prototiles" on the construction of

[^0]

Figure 1.1: Two prototiles with arrows which composes PT.

PT. We remark that essentially the same fact is found by [7], but our P_{6} is smaller than the decagon in [7] and is minimal in the sense that no proper subset of which can cover P_{8}. In section 3, we show that if we regard P_{6}, P_{8} as "prototiles" then their "matching rule" coincides (Theorem 3.1). From which we find, in section 4, a substitution rule which gives us the family $\left\{A_{n}\right\}_{n=1}^{\infty}$ of local charts of PT with $\operatorname{diam}\left(A_{n}\right) \rightarrow \infty$ (Theorem 4.1), which easily proves the aperiodicity and the locally isomorphic property. This substitution rule is essentially the same as well-known inflation rule: our rule is similar to applying the inflation rule twice. However, ours is deduced differently from the matching rule. In section 5, we show there are uncountably many PT's which are not congruent each other, using the idea of the proof of uncountability of PT by UD. In section 6, we compare our substitution rule with UD and show that all PT's constructed by the matching rule are also obtained by UD. In Appendix 1, we provide detailed arguments omitted in the proof of Theorem 2.1. In Appendix 2, we consider some curves determined by the matching rules, which is essentially the same as Conway's curves[4], and study the basic properties of them. Due to the self-similar structure of PT, they have fractal structure. We compute the Hausdorff dimension of those objects obtained by "the thermodynamic procedure" on these curves, which shows the difference of the density of overlaps between upper and lower sides of A_{n}.

2. Local chart

2.1. The global rule

It is straightforward to see that at most eight patterns are allowed on each vertices in PT, as named $p_{1}, p_{2}, \ldots, p_{8}$ in Figure 2.1.1.

When we start to put tiles following the matching rule, it turns out that we sometimes fail to tile the plane, as is seen in the next two examples.
(1) Two joints of p_{5} : The pattern p_{5} has two "joints" which allow both p_{4} and p_{8} (Figure 2.1.2). If we put p_{4} on both of them, we fail to tile the plane (Figure 2.1.3): if we put p_{4} on one of the joints, then we must put p_{8} on the other side. This property plays an important role to determine the global distribution of tiles in PT.

Figure 2.1.1: Eight patterns around each vertices in PT[9, p. 178, Figure 6.8].

Figure 2.1.2: If we put p_{4} on both of two joints in p_{5},

Figure 2.1.3: then we cannot put tiles on one of two places (pointed by arrows).
(2) Five "joints" around p_{4} : the pattern p_{4} has five "joints" $(a, b, c, d, e$ in Figure 2.2.4) which allows both p_{5} and p_{8}. If we put p_{5} 's on four of them, then p_{8} must be put on the fifth one (Figure 2.1.4). In other words, if we put p_{5} on all of them, we fail to tile the plane. In fact, the number of p_{5} 's on these joints must be either 0 or 2 or 4 . These facts imply that, certain local configuration of tiles may determine that of wider region, so that there may be some rules on the global distribution of tiles, and henceforth we call these rules "the global rules."

Figure 2.1.4: The five joints around p_{4}, (i) if we put p_{5} here, (ii) then p_{5} must be put here. (iii) if we next put p_{5} here, (iv) then p_{5} must be put here and (v) p_{8} must be put here.

2.2. The unique patches determined by each patterns

The facts in former subsection imply that we should not put tiles as we like: there must be some global rules. For instance, suppose we begin to tile the plane with p_{1} as the starting point. Then the configuration of the tiles near p_{1} must be the one shown in Figure 2.2.1. This patch is maximal in the sense that beyond which we have more than two choices of putting tiles: for instance, we can put either p_{5} or p_{8} on a in Figure 2.2.1. We denote by P_{1} this unique patch determined by p_{1}. Similarly, we have P_{2}, \ldots, P_{8} as shown in Figures 2.2.2, \ldots, 2.2.8.

Figure 2.2.1: The patch P_{1} determined uniquely by p_{1}.

Figure 2.2.2: The patch P_{2} determined uniquely by p_{2}.

Figure 2.2.3: The patch P_{3} determined uniquely by p_{3}.

Figure 2.2.4: The patch P_{4} determined uniquely by p_{4}.

Figure 2.2.5: The patch P_{5} determined uniquely by p_{5}.
(4), (5), (8)

(2) ${ }^{11}$ (3)

Figure 2.2.6: The patch P_{6} determined uniquely by p_{6}.

Figure 2.2.8: The patch P_{8} determined uniquely by p_{8}.
P_{7} is omitted and so is Figure 2.2.7, for this is the same as that shown in Figure 2.1.1; p_{7} does not determine any local configurations around it. If for instance we start to put tiles from p_{1}, we first obtain P_{1}, and to proceed, we put one of the allowed tiles on the boundary. Then this tile would determine further the configuration of tiles to some extent. For instance, if we determine $a=p_{5}$ in P_{1}, then we obtain P_{5}. Hence putting p_{5} on a boundary point means putting the patch P_{5} there, and putting tiles along the matching rule on the plane is done by repeating this process. In other words, to tile the plane along the matching rule is to superimpose the copies of patches P_{1}, \ldots, P_{8} compatibly.

2.3. The local chart

By definition, $\left\{P_{1}, P_{2}, \ldots, P_{8}\right\}$ is a ordered set. Moreover, by Figures 2.2.1, ..., 2.2.8, we notice that

$$
\begin{equation*}
P_{j} \subset P_{8}, \quad j=1,2, \ldots, 7 . \tag{2.1}
\end{equation*}
$$

In fact, we find all patterns p_{1}, \ldots, p_{8} on P_{8}. Therefore, if we meet p_{8} frequently enough as we tile the plane, then it would determine larger area than the other ones. Hence if the density of p_{8} 's is high enough, the PT should be the superposition of P_{8}, which turns out to be true.

Theorem 2.1 $P T$ is the superposition of P_{8}. In other words, for any vertex p in $P T$, we can find P_{8} which contains p.

Figure 2.3.1 is a typical example of PT where the location of P_{8} 's is shown ${ }^{3}$.

Figure 2.3.1: A typical example of PT. The location of P_{8} 's are indicated by the trapezoid-like figures. The thick ones are the centers of $P_{8}^{\prime}\left(=A_{2}\right)$ and the shaded one is the center of $A_{3}\left(P_{8}^{\prime}, A_{2}\right.$ and A_{3} are defined in Section 4).

By Theorem 2.1, we can regard P_{8} as a "prototile" of PT; PT is constructed by "tiling" the copies of P_{8}. Hence P_{8} is the "local chart" which gives us the local configuration of tiles in PT; to know how tiles are distributed near a given vertex p, we only have to find a p_{8} near p and identify it on a chart P_{8}.
Proof. It suffices to show the following fact: when we start to put tiles from P_{j} $(j \neq 8)$, then p_{8} appears whose corresponding P_{8} contains P_{j}.
(1) P_{5} : as is seen in the global rule in $\S 2.1$, one of two joints (a, b in Figure 2.2.5) must be p_{8} and thus P_{5} is contained by a copy of P_{8}.
(2) P_{4} : as is seen in the global rule in §2.1, one of the five joints $(a, b, c, d, e$ in Figure 2.2.4) must be p_{8}, and thus P_{4} is contained by a copy of P_{8}.

[^1](3) P_{2} : in any case, either p_{5} or p_{8} appears and P_{2} is contained by P_{5} or P_{8} respectively (Lemma 7.2).
(4) P_{1} : as the case (3), it is seen to be contained by either P_{4}, P_{5} or P_{8} (Lemma 7.1).
(5) P_{3} : it is seen to be contained by either P_{2} or P_{5} (Lemma 7.3).
(6) P_{6} : it is seen to be contained by either $P_{1}, P_{2}, P_{4}, P_{5}$ or P_{8} (Lemma 7.4).
(7) $P_{7}: P_{7}$ does not determine any vertices around it. By putting some allowed tiles on its boundary, it becomes
$$
P_{7} \subset P_{j}, \quad j=1,2, \ldots, 6 .
$$
$P_{j}(j=1,2, \ldots, 6)$ is already shown to be contained by P_{8}.

Remark 2.1 The global rule discussed in $\S 2.1$ can be seen in P_{8}. In fact, by Theorem 2.1 (Theorem 2.1 can be proved without using these rules), PT is the superposition of P_{8} and there are two P_{5} 's in P_{8} which are connected to p_{8} through their joints. Hence one of two joints in P_{5} must be connected to p_{8} in PT. The second rule can be seen similarly.

Corollary 2.1 $P T$ is the superposition of P_{6}. In other words, for any vertex p in $P T$, we can find P_{6} which contains p.

Proof. It suffices to see that P_{8} is the superposition of P_{6} (Figure 2.3.2).

Figure 2.3.2: P_{8} is the superposition of P_{6}. The location of P_{6} is indicated by the trapezoid-like figures.

3. Coincidence of matching rules of P_{6}, P_{8}

The next question is how P_{8} 's are distributed in PT. By Theorem 2.1 and Corollary 2.1, PT is constructed by regarding P_{6} or P_{8} as the prototile and hence we would like to know the "matching rules (overlapping rules)" of those. Then, we find

Theorem 3.1 The matching rule of P_{6} and that of P_{8} are the same.
Proof. We first study the matching rule of P_{6}. We can put either p_{1} or p_{2} on the left and right side (b, d in Figure 2.2.6) of P_{6}, and can put either p_{2} or p_{3} on the bottom (a in Figure 2.2.6). We write $L=1$ (resp. $L=2$) if we put p_{1} (resp. p_{2}) on the left side, and similarly for the right side. We write $B=I$ (resp. $B=I I$) if we put p_{2} (resp. p_{3}) on the bottom. Thus we can describe the configuration of tiles near P_{6} by the triple (L, R, B), and then we find there are five possibilities: $(1,1, I),(1,1, I I),(1,2, I I),(2,1, I I),(2,2, I I)$. In Figure 3.0, we show labels for these P_{6} 's which compose P_{8}.

Figure 3.0: ${ }^{4}$ The labelling of P_{6} 's which compose P_{8}.
If we let $L=1$, then the arrangement of P_{6} is shown in Figure 3.1: another P_{6} is put on the left (this patch is equal to P_{1}). In Figure 3.1 (and similarly for the other ones), the location of P_{6} 's is indicated as trapezoid-like figures, with the original one $(1, *, *)$ having the double lines. If furthermore we let $B=I$ (resp. $B=I I)$, then the arrangement of P_{6} are given in Figure 3.2 (resp. Figure 3.3) (these patches are equal to $P_{2}\left(\right.$ resp. $\left.P_{5}\right)$). If we put $L=2$, we necessarily have $B=I I$ and the arrangement of P_{6} is given in Figure 3.4 (this patch is equal to P_{2}).

[^2]

Figure 3.1: The configuration of P_{6} 's in $(1, *, *)$.

Figure 3.2: The configuration of P_{6} in $(1, *, I)$.

Figure 3.4: The configuration of P_{6} in $(2, *, I I)$.

Figure 3.3: The configuration of P_{6} in $(1, *, I I)$.

We next study the matching rule of P_{8}. There are two possibilities for each of putting tiles on the sides and bottom of P_{8}. We write ${ }^{5} L=1$, if $\left(l_{2}, \ldots, l_{8}\right)=$ $\left(p_{2}, p_{8}, p_{1}, p_{5}, p_{1}, p_{4}, p_{1}\right)$, and write $L=2$, if $\left(l_{2}, \ldots, l_{8}\right)=\left(p_{3}, p_{5}, p_{2}, p_{6}, p_{2}, p_{8}, p_{2}\right)$. For

[^3]the bottom, we write $B=I$, if $\left(b_{1}, \ldots, b_{7}\right)=\left(p_{2}, p_{8}, p_{1}, p_{5}, p_{1}, p_{8}, p_{2}\right)$ and $B=I I$, if $\left(b_{1}, \ldots, b_{7}\right)=\left(p_{3}, p_{5}, p_{2}, p_{6}, p_{2}, p_{5}, p_{3}\right)$. Then we only have five possibilities for $(L, R, B):(1,1, I),(1,1, I I),(1,2, I I),(2,1, I I),(2,2, I I)$. Figures 3.5, 3.6, 3.7, and 3.8 show the configurations of $(1, *, *),(1, *, I),(1, *, I I),(2, *, I I)$ respectively from which we see that the arrangement of P_{8} in these figures are the same as that of P_{6} in Figures $3.1, \ldots, 3.4$. Therefore the statement follows clearly from these observations.

Figure 3.5: The configuration of P_{8} in $(1, *, *)$.

Figure 3.6: The configuration of P_{8} in (1,*,I).

Remark 3.1 Alternative proof for Theorem 3.1 is possible. By Corollary 2.1, all configurations of tiles in PT must be explained by the matching rule of P_{6}. In fact, the arrangement of P_{6} in P_{8} (Figure 3.0), the matching rule of P_{8}, and the global rule in $\S 2.1$ are all explained by this rule only.

4. The substitution rule of P_{6}, P_{8}

By Theorem 2.1, the local arrangement of P_{6} can be seen in P_{8} (Figure 2.3.2). Furthermore, by Theorem 3.1, it also shows the local arrangement of P_{8}, if we replace P_{6} 's in Figure 2.3.2 by P_{8}, which is done in Figure 4.1.

(1)

Figure 3.7: The configuration of P_{8} in $(1, *, I I)$.

Figure 4.1: The patch obtained from P_{8} by replacing P_{6} 's by P_{8}.

Figure 3.8: The configuration of P_{8} in (2, *, $I I$).

Figure 4.2: The composition of A_{n+1} by A_{n} 's.

We denote this patch in Figure 4.1 by P_{8}^{\prime}. Hence we have shown that the PT is the superposition of P_{8}^{\prime}. This process can be repeated. We denote this substitution
by σ and let $A_{0}=P_{6}, A_{1}=P_{8}, A_{2}=\sigma\left(P_{8}\right)=P_{8}^{\prime}, \ldots, A_{n+1}:=\sigma\left(A_{n}\right)$ and so on. A_{n+1} is obtained by arranging A_{n} 's as Figure 4.2^{6}. Thus we obtain the following theorem.

Theorem 4.1 For any $n=0,1, \ldots, P T$ is the superposition of A_{n}. In other words, for any vertex p in $P T$, we can find a patch congruent to A_{n} containing p.

Figure 2.3.1 shows an example of PT in which the locations of A_{1}, A_{2} and A_{3} are shown. So we have obtained the sequence $\left\{A_{n}\right\}$ of local charts with diam $\left(A_{n}\right) \rightarrow \infty$ which are related via the substitution described above. Theorem 4.1 gives elementary proof of important properties of PT.
Corollary 4.1 (Aperiodicity) PT is aperiodic.
Proof. Suppose we have a translation of length l under which the PT is invariant. Pick A_{n} in PT whose diameter is more than l. The patches congruent to A_{n-1} which are contained in A_{n} must be mapped by this translation each other which leads us to a contradiction: the local distribution of these patches are distinct.

Corollary 4.2 (Locally isomorphic property) In PT, any finite patterns appear infinitely many times.

Corollary 4.3 Any PT's are locally isomorphic.
Proofs of Corollaries 4.2, 4.3 are omitted.
Remark 4.1 By applying the substitution rule to the global rule discussed in §2.1, we obtain global rules of arbitrary large size. For instance, Figure 3.7 represents a rule obtained by applying the substitution once to the rule (1): if the P_{8} in the upper left is $(1,1, *)$, then the one in the lower right must be $(1,2, *)$.

5. Uncountability

In this section, we show that there are uncountably many PT's which are not congruent each other. In order to do this, we number the twenty patches congruent to A_{n} in A_{n+1} as $1,2, \ldots, 20$ (Figure 5.1).

By Theorem 4.1, the configuration of tiles in PT can be determined by specifying the location of A_{n} in A_{n+1} in each n, which in turn is determined by a sequence

$$
\rho=\left(a_{1}, a_{2}, \ldots, a_{n}, \ldots\right), \quad a_{n} \in I:=\{1,2, \ldots, 20\} .
$$

Remark 5.1 Since A_{n} 's have overlaps in PT, the A_{n+1} which contain this particular A_{n} is not uniquely determined and so is a_{n} in this embedding procedure. We thus define a_{n} to be the minimum among those numbers.

[^4]

Figure 5.1: The numbering of A_{n-1} which compose A_{n}.

Since this correspondence $\left\{a_{n}\right\} \mapsto P T(\rho)$ is not one to one, we introduce the notion of the cofinal sequences. We say that two sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ is cofinal iff

$$
a_{n}=b_{n}, \quad n \geq N
$$

for some N.

Lemma 5.1 (cofinal)

Two sequences ρ, ρ^{\prime} are cofinal iff $P T(\rho), P T\left(\rho^{\prime}\right)$ are congruent.
Proof. (i) Suppose ρ, ρ^{\prime} are cofinal and let

$$
\begin{aligned}
\rho & =\left(a_{1}, a_{2}, \ldots, a_{k}, b_{k+1}, b_{k+2}, \ldots\right) \\
\rho^{\prime} & =\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{k}^{\prime}, b_{k+1}, b_{k+2}, \ldots\right)
\end{aligned}
$$

Then the patch A_{k+1} corresponding to b_{k+1} contains both of that corresponding to a_{k}, a_{k}^{\prime}. Hence $\operatorname{PT}(\rho)$ and $\mathrm{PT}\left(\rho^{\prime}\right)$ coincide from the $(k+1)$-th step so that they are congruent.
(ii) Suppose $P T(\rho), P T\left(\rho^{\prime}\right)$ are congruent. We let them coincide by a translation. Letting $A_{\rho, 1}, A_{\rho, 1}^{\prime}$ be their starting patch of ρ, ρ^{\prime}, we can find A_{n} containing both of them for large n. Then we have

$$
a_{k}=a_{k}^{\prime}, \quad k \geq n
$$

so that ρ and ρ^{\prime} are cofinal.

Theorem 5.1 (uncountability)
We have uncountably many PT's which are not congruent each other.

Proof. We write $\rho \sim \rho^{\prime}$ if they are cofinal. Since it is an equivalence relation, it suffices to show that

$$
S:=\left\{\left\{a_{k}\right\}_{k=1}^{\infty}: a_{k} \in I\right\} / \sim
$$

is uncountable. Suppose S is countable and let $S=\left\{\left[\rho^{(n)}\right]\right\}_{n=1}^{\infty}$ be its enumeration. We choose representatives $\rho^{(n)}$ from each $\left[\rho^{(n)}\right]$. Let $\left\{p_{n}\right\}$ be the set of prime numbers and let $Q(n):=\{n k: k=1,2, \ldots\}$ be the set of multiples of n. We construct a sequence $\delta=\left\{\delta_{n}\right\}, \delta_{n} \in I$ by the following procedure.

$$
\begin{array}{ll}
\delta_{k} \neq a_{k}^{(1)}, & k \in Q(2) \\
\delta_{k} \neq a_{k}^{(2)}, & k \in Q(3) \backslash Q(2) \\
\delta_{k} \neq a_{k}^{(3)}, & k \in Q(5) \backslash(Q(1) \cup Q(2)) \\
\ldots & \\
\delta_{n} \neq a_{k}^{(n)}, & k \in Q\left(p_{n}\right) \backslash \bigcup_{j=1}^{n-1} Q\left(p_{j}\right)
\end{array}
$$

Then it is clear that

$$
[\delta] \neq\left[\rho^{(n)}\right]
$$

for any n.

6. Comparison with the inflation rule

Theorem 6.1 All PT's constructed by the matching rule can also be obtained by the up-down generation (UD).

Proof. By Theorem 4.1, it suffices to show that, for any n, we can construct A_{n} by UD starting from anywhere in A_{n}.
Lemma 6.1 Let I_{k} be the patch made by applying to P_{6} the inflation rule k times. For any n, we can find some $k=k(n)$ such that

$$
A_{n} \subset I_{k(n)}
$$

Lemma 6.1 follows immediately from Lemma 6.2 below.
Lemma 6.2 Let $B_{0}:=P_{6}$, and let B_{n} be the patch obtained from B_{0} by applying the inflation rule $2 n$ times. Then for any n, we have

$$
A_{n-1} \subset B_{n} \subset A_{n}
$$

and thus

$$
\bigcup_{n} B_{n}=\bigcup_{n} A_{n}
$$

Figure 6.1: The patch obtained by applying the inflation rule twice to P_{6}.

Figure 6.2: The patch in Figure 6.1 is the one made by eliminating five P_{6} 's (located in $1,2,5,13,20$ in Figure 5.1) in P_{8}.

Proof. B_{1} is equal to the patch by eliminating five P_{6} 's (located in $1,2,5,13,20$ in Figure 5.1) from P_{8} (Figures 6.1, 6.2).
B_{2} is obtained by replacing P_{6} 's in B_{1} by B_{1} so that $B_{2} \subset A_{2}$. Furthermore, the patch congruent to B_{1} lying in the center of B_{2} has p_{8} in its center, and surrounded by B_{1} 's. Hence $A_{1} \subset B_{2}$. By repeating this procedure inductively, we have

$$
A_{n-1} \subset B_{n} \subset A_{n}
$$

for any n.
Lemma 6.1 implies that for any n we can find large " P_{6} " which contains A_{n} (Figure 6.3 shows the case for $n=1$).

In the construction of PT by UD, we transform PT to a tiling by triangles by dividing the big (resp. small) rhomb along its long (resp. short) diagonal, and then compose triangles along the given composition sequence.

Lemma 6.3 For any two triangles s, S in $P T$ with $s \subset S$, we can find a composition sequence in UD starting from such that we obtain S by following this composition sequence.

Proof. Divide S once into triangles along the substitution atlas and let S_{1} be the one which contains s. Then divide S_{1} again and let S_{2} be the one which contains s. We can repeat this procedure until we arrive at s.

We pick and fix any triangle s in A_{n}. Take $k(n)$ such that $A_{n} \subset I_{k(n)}$. Regard $I_{k(n)}$ as the patch of larger tiling, and take sufficiently large triangle S which contains

Figure 6.3: A large P_{6} containing $A_{1}\left(=P_{8}\right)$.

Figure 6.4: An example of P_{6} and the triangle which contains it.
$I_{k(n)}$. An example of such P_{6} and triangle S containing it is given in Figure 6.4. The $\operatorname{big} P_{6}$ in Figure 6.3 and small P_{6} in Figure 6.4 should be identified. Since

$$
s \subset A_{n} \subset I_{k(n)} \subset S,
$$

we can use Lemma 6.3 and find a composition sequence in UD starting from s to construct S, which gives us A_{n} as its subset. The proof of Theorem 6.1 is thus completed.

7. Appendix 1

This section provides the argument omitted in the proof of Theorem 2.1.
Lemma 7.1 If we start tiling from P_{1}, it is contained by one of P_{4}, P_{5}, P_{8}.
Proof. Let a, b be the vertices on the boundary of P_{1}, as is shown in Figure 2.2.1. If we put tiles on the boundary of P_{1} and proceed until we can not determine the configuration of tiles uniquely any more, we will find either p_{4}, p_{5} or p_{8} somewhere and our patch then becomes P_{4}, P_{5}, P_{8} respectively. We show this fact by specifying the location of the original p_{1} in the patch P_{4}, P_{5}, P_{8}. The conclusion is:
(1) If we put $a=p_{5}$, we have P_{5}, that is, P_{1} is contained by P_{5} and p_{1} corresponds to either A or B in Figure 7.1.2.
(2) If $a=p_{8}$, we have P_{8} (Figure 7.1.3, A).
(3) If $b=p_{4}$, we have P_{4} (Figure 7.1.1, A).
(4) If $b=p_{8}$, we have P_{8} (Figure 7.1.3, B or C).

All possibilities are exhausted by those considerations.

Figure 7.1.1: Case $a=p_{4}$: when we put $a=p_{4}$ in P_{1}, then we have P_{4} and the original p_{1} is located in A.

Figure 7.1.2: Case $a=p_{5}$ in P_{1}.

Figure 7.1.3. Case $a=p_{8}$ or $d=p_{8}$ in P_{1}.

Lemma 7.2 If we start tiling from P_{2}, it is contained by either P_{5} or P_{8}.
Proof. We argue as in the proof of Lemma 7.1. Let t, r_{1}, r_{2} be vertices on the boundary of P_{2}, being shown in Figure 2.2.2.
(1) If $\left(t, r_{1}\right)=\left(p_{4}, p_{2}\right)$, we have P_{8} (Figure 7.2.2, A)
(2) If $\left(t, r_{1}\right)=\left(p_{4}, p_{3}\right)$ we have P_{8} (Figure 7.2.2, B)
(3) If $t=p_{8}$, we have P_{8} (Figure 7.2.2, C)
(4) If $r_{2}=p_{5}$, we have P_{5} (Figure 7.2.1, A)

Figure 7.2.1: Case $r_{2}=p_{5}$ in P_{2}.

Figure 7.2.2: Case $\left(t, r_{1}\right)$ $=\left(p_{4}, p_{2}\right),\left(p_{4}, p_{3}\right), t=p_{8}$ in P_{2}.

Figure 7.3.1: Case $a=p_{2}$ in P_{3}.

Figure 7.3.2: Case $a=p_{1}$ in P_{3}.

Lemma 7.3 If we start tiling from P_{3}, it is contained by either P_{2} or P_{5}.
Proof. Letting a be the vertex shown in Figure 2.2.3, we have
(1) If $a=p_{1}$, we have P_{5} (Figure 7.3.2, A).
(2) If $a=p_{2}$, we have P_{2} (Figure 7.3.1, A).

Lemma 7.4 If we start tiling from P_{6}, it is contained by one of $P_{1}, P_{2}, P_{4}, P_{5}, P_{8}$.
Proof. Letting a, b, c, d be the vertices shown in Figure 2.2.6, we have
(1) If $a=p_{2}$, we have P_{2} (Figure 7.4.2, A).
(2) If $(a, b)=\left(p_{3}, p_{1}\right)$, we have P_{5} (Figure 7.4.3, A).
(3) If $(a, b)=\left(p_{3}, p_{2}\right)$, we have P_{2} (Figure 7.4.2, B).
(4) If $b=p_{1}$, we have P_{1} (Figure 7.4.1, A).
(5) If $c=p_{4}, p_{5}, p_{8}$, we have P_{4}, P_{5}, P_{8} respectively (figures are omitted).

$$
A: b=1
$$

Figure 7.4.1: Case $b=p_{1}$ in P_{6}.

Figure 7.4.2: Case $a=p_{2}$ or $(a, b)=\left(p_{3}, p_{2}\right)$ in P_{6}.

8. Appendix 2

If we connect two single arrows in two rhombs by a curve (Figure 8.1), we have some curves in the Penrose tiling (Figures 8.2, 8.3, 8.4).

In this section, we study some basic properties of these curves ${ }^{7}$. These curves are topologically equivalent to what is found by Conway [4], and in fact the statement of Theorem 8.1 is the same as his observation, which treats the problem on how many curves are of infinite length. We recall that, as was discussed in Section 5, each congruence class of PT are characterized by the sequence $\rho=\left(a_{1}, a_{2}, \ldots\right), a_{n} \in$ $I=\{1,2, \ldots, 20\}$ which indicates how smaller patches are embedded to larger ones.

[^5]

Figure 7.4.3: Case $(a, b)=\left(p_{3}, p_{1}\right)$ in P_{6}.

Figure 8.1: curves connecting single arrows in two rhomb tiles.

Figure 8.2: curves in P_{6}.

Theorem 8.1 (i) If $a_{n}=8$ for large n, then PT has two curves of infinite length.
(ii) If $a_{n} \in\{3,4,6,7,9,10\}$ or $a_{n} \in\{12,14,15,16,17,19\}$ for large n, then PT has a curve of infinite length.
(iii) Otherwise, all curves are closed.

Proof. Figures 8.2, 8.3, 8.4 show the curves on $P_{6}, P_{8}, P_{8}^{\prime}$ respectively. By combining two curves in P_{6} suitably, we have two long curves, four closed ones, and seven ones with open ends in P_{8} (Figure 8.3), which in turn glues together to make two long curves, four closed ones, and seven ones with open ends in P_{8}^{\prime} (Figure 8.4). Because the overlapping rules of $A_{n}^{\prime} s$ are all equivalent, we can show that every A_{n} has two long curves and four closed ones on the same places. Since the Patch 8 in Figure 5.1 is the only one which includes both of two long curves, and since patches $\{3,4,6,7,9,10\}$ include the upper one, and patches $\{12,14,15,16,17,19\}$ include the lower one, we have the statement of Theorem 8.1.

Figure 8.4: curves in P_{8}^{\prime}.

Figure 8.3: curves in P_{8}.

The nature of curves (closed or extended) directly reflects how the patch A_{n} are embedded to A_{n+1} so that we can reconstruct PT from the distribution of them. Some concrete investigation of combination of curves further show that an finite area of PT has five-fold symmetry if and only if they are surrounded by a closed curve.

The self-similar nature of PT implies that these curves have some fractal structure. To have some quantitative statement, we would like to consider "the thermodynamic limit" of A_{n} and to compute the Hausdorff dimension of that. Since the inflation rule says the size of A_{n} is proportional to $\tau^{2 n}\left(\tau=\frac{1+\sqrt{5}}{2}\right)$, we overlap $\tau^{-2 n} A_{n}$ so that each two long curve and four closed ones in $A_{n}^{\prime} s$ defines the fractal set denoted by $X_{1}, X_{2}, Y_{1}, \ldots, Y_{4}$ in Figure 8.3^{8}. By the standard method of computing the Hausdorff dimension (e.g., [3]), we have the following fact.

Theorem 8.2

$$
\begin{aligned}
& \rho_{1}:=\operatorname{dim}_{H}\left(X_{1}\right)=\operatorname{dim}_{H}\left(Y_{1}\right)=\frac{\log 2}{\log \tau} \\
& \rho_{2}:=\operatorname{dim}_{H}\left(X_{2}\right)=\operatorname{dim}_{H}\left(Y_{j}\right)=\frac{\log \alpha}{2 \log \tau}, \quad j=2,3,4, \quad \alpha=\frac{3+\sqrt{17}}{2} .
\end{aligned}
$$

[^6]The fact $1<\rho_{2}<\rho_{1}$ reflects the difference of the density of A_{n-1} 's in A_{n} between the upper and lower sides of A_{n}.

Acknowledgments. The authors would like to thank Ms. Hiroko Hayashi for graphics.

References

[1] N. G. de Bruijn, Algebraic theory of Penrose's non-periodic tilings of the plane. I,II, Kon. Nederl. Akad. Wetesch. Proc Ser.A. (=Indag. Math.) (1981), 39-66.
[2] N. G. de Bruijn, Updown generation of Penrose patterns, Kon. Nederl. Akad. Wetesch. Proc Ser.A.(=Indag. Math. N. S. 1) (1990), 201-220.
[3] G. Folland, Real analysis, 2nd ed., Wiley-Interscience, 1999.
[4] M. Gardner, Mathematical games. Extraordinary nonperiodic tiling that enriches the theory of tiles, Scientific American 236 (1977), 110-121.
[5] B. Grünbaum and G. C. Shephard, Tilings and patterns, W. H. Freeman and Company, New York, 1987.
[6] C. Goodman-Strauss, Matching rules and substitution tilings, Annal. of Math. 147(2) (1998), 181-223.
[7] P. Gummelt, Penrose tilings as coverings of congruent decagons, Geometriae Dedicata, 62 (1996), 1-17.
[8] R. Penrose, The role of aesthetics in pure and applied mathematical research, Bull. Inst. Math. Appl. 10 (1974), 266-271.
[9] M. Senechal, Quasicrystals and geometry, Cambridge university press, 1995.
[10] T. Tokitou, Representation of quasiperiodic tilings by automata (in Japanese), Master thesis, Kochi Univ., 2004.
(Kazushi Komatsu and Fumihiko Nakano) Faculty of Science, Department of Mathematics and Information Science, Kochi University, 2-5-1, Akebonomachi, Kochi 780-8520, Japan

E-mail address: komatsu@math.kochi-u.ac.jp (K. Komatsu), nakano@math.kochi-u.ac.jp (F. Nakano)

Received May 5, 2008
Revised November 22, 2008

[^0]: 2000 Mathematics Subject Classification. Primary 52C23; Secondary 52C20, 05B45.
 Key words and phrases. Penrose tiling, matching rule, inflation rule.
 This work by Fumihiko Nakano is partially supported by the Grant-in-Aid for Scientific Research (No.18540125), Japan Society for Promotion of Science.
 ${ }^{1}$ The matching rule is to draw single and double arrows on edges of each prototiles and arrange these tiles on the plane by matching those arrows (Figure 1.1).
 ${ }^{2}$ They are equal to the connected components of the empires [5].

[^1]: ${ }^{3}$ Figure 2.3.1 is drawn by "tilings.exe" made by V. C. Gulyaev.

[^2]: ${ }^{4}$ Since Figures 3.1-3.4 are related to Figures 3.5-3.8, we number the figures of this section in this way.

[^3]: ${ }^{5}$ The definition of l_{j} 's, r_{j} 's and b_{j} 's are given in Figure 2.2.8.

[^4]: ${ }^{6}$ The "matching rule" of A_{n} as a prototile is inductively proved to be the same as that of P_{6}.

[^5]: ${ }^{7}$ The curves obtained by connecting double arrows are always closed around each vertices, and are not studied here.

[^6]: ${ }^{8}$ To be precise, we define the similarity transformation between $\tau^{-2 n} A_{n}$ and $\tau^{-2(n+1)} A_{n+1}$ and consider the unique invariant set determined by these transformations. For instance, in X_{1}, the similarity transformation is like that in the snowflake curve but we have also to attach some pieces taken from the lower long curve.

