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APPROXIMATION OF COMMON SOLUTIONS FOR
MONOTONE INCLUSION PROBLEMS AND

EQUILIBRIUM PROBLEMS IN HILBERT SPACES

MAYUMI HOJO AND WATARU TAKAHASHI

Abstract. Let H be a real Hilbert space and let C be a nonempty closed convex

subset of H. Let α > 0 and let A be an α-inverse-strongly monotone mapping

of C into H. Let B be a maximal monotone operator on H and let F be a

maximal monotone operator on H such that the domain of F is included in C.

Let (A+B)−10 and F−10 be the sets of zero points of A+B and F , respectively.

In this paper, we prove a strong convergence theorem for finding a point z0 ∈
(A+B)−10∩F−10 which is a unique fixed point of a nonlinear operator and also

a unique solution of a variational inequality. Using this result, we obtain new and

well-known strong convergence theorems in a Hilbert space which are useful in

Nonlinear Analysis and Optimization.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of

H. Let T be a mapping of C into H. We denote by F (T ) the set of fixed points

of T . A mapping g : H → H is a contraction if there exists k ∈ (0, 1) such that

∥g(x)− g(y)∥ ≤ k∥x− y∥ for all x, y ∈ H. We call such g a k-contraction. A linear

bounded operator G : H → H is called strongly positive if there exists γ > 0 such

that ⟨Gx, x⟩ ≥ γ∥x∥2 for all x ∈ H. We call such G a strongly positive operator

with coefficient γ > 0. Let N and R be the sets of positive integers and real numbers,

respectively. A mapping U : C → H is a strict pseudo-contraction [6] if there exists

r ∈ R with 0 ≤ r < 1 such that

∥Ux− Uy∥2 ≤ ∥x− y∥2 + r∥(I − U)x− (I − U)y∥2, ∀x, y ∈ C.

We call such U an r-strict pseudo-contraction. For α > 0, a mapping A : C → H is

called α-inverse-strongly monotone if

⟨x− y, Ax− Ay⟩ ≥ α∥Ax− Ay∥2, ∀x, y ∈ C.

2010 Mathematics Subject Classification. 47H05, 47H10, 58E35.
Key words and phrases. Equilibrium problem, fixed point, inverse-strongly monotone mapping,

iteration procedure, maximal monotone operator, resolvent, strict pseudo-contraction.

— 115 —



Let f : C × C → R be a bifunction and let A be a mapping of C into H. A

generalized equilibrium problem (with respect to C) is to find x̂ ∈ C such that

f(x̂, y) + ⟨Ax̂, y − x̂⟩ ≥ 0, ∀y ∈ C. (1.1)

The set of such solutions x̂ is denoted by EP (f, A), i.e.,

EP (f, A) = {x̂ ∈ C : f(x̂, y) + ⟨Ax̂, y − x̂⟩ ≥ 0, ∀y ∈ C}.

In the case of A = 0, EP (f, A) is denoted by EP (f). In the case of f = 0, EP (f, A)

is also denoted by V I(C,A). This is the set of solutions of the variational inequality

for A; see [14] and [18]. For solving the equilibrium problem, let us assume that the

bifunction f : C × C → R satisfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for all x, y, z ∈ C,

lim sup
t↓0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) for all x ∈ C, f(x, ·) is convex and lower semicontinuous.

Recently, Liu [10] proved the following theorem.

Theorem 1. Let H be a real Hilbert space and let C be a nonempty closed convex

subset of H. Let r ∈ R with 0 ≤ r < 1 and let U be an r-strict pseudo-contraction

of C into H. Let f be a bifunction of C × C into R satisfying (A1) − (A4). Let

0 < k < 1 and let g be a k-contraction of H into itself. Let G be a strongly positive

bounded linear self-adjoint operator on H with coefficient γ > 0. Let 0 < γ < γ
k

and suppose F (U) ∩ EP (f) ̸= ∅. Let x1 = x ∈ H and let {xn} ⊂ H be a sequence

generated by

f(un, y) +
1

rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

xn+1 = αnγg(xn) + (I − αnG){(1− tn)U + tnI}un

for all n ∈ N, where {αn} ⊂ (0, 1), {tn} ⊂ [0, 1) and {rn} ⊂ (0,∞) satisfy

αn → 0,
∞∑
n=1

αn = ∞,
∞∑
n=1

|αn − αn+1| < ∞,

r ≤ tn ≤ b < 1, lim
n→∞

tn = b,

∞∑
n=1

|tn − tn+1| < ∞,

lim inf
n→∞

rn > 0, and

∞∑
n=1

|rn − rn+1| < ∞.
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Then the sequence {xn} converges strongly to a point z0 of F (U) ∩ EP (f), where

z0 ∈ F (U) ∩ EP (f) is a unique fixed point of PF (U)∩EP (f)(I − G + γg). This point

z0 ∈ F (U) ∩ EP (f) is also a unique solution of the variational inequality

⟨(G− γg)z0, q − z0⟩ ≥ 0, ∀q ∈ F (U) ∩ EP (f).

Let f be a bifunction of C×C into R satisfying (A1)−(A4). Defining a set-valued

mapping Af ⊂ H ×H by

Afx =

{
{z ∈ H : f(x, y) ≥ ⟨y − x, z⟩, ∀y ∈ C}, ∀x ∈ C,

∅, ∀x /∈ C,

we have from [19] that Af is a maximal monotone operator such that the domain

is included in C; see Lemma 12 in Section 4 for more details. On the other hand,

putting A = I − U for an r-strict pseudo-contraction U : C → H with 0 ≤ r < 1,

we have that A : C → H is 1−r
2

-inverse-strongly monotone; see, for example, [13].

In this paper, motivated by these results, we prove a strong convergence theo-

rem for finding a point z0 ∈ (A + B)−10 ∩ F−10 which is a unique fixed point of

P(A+B)−10∩F−10(I−G+γg), where A is an α-inverse-strongly monotone mapping of C

into H with α > 0, B is a maximal monotone operator on H, F is a maximal mono-

tone operator on H such that the domain of F is included in C, g is a k-contraction

of H into itself with 0 < k < 1, G is a strongly positive bounded linear self-adjoint

operator on H with coefficient γ > 0 and γ is a real number with 0 < γ < γ
k
. Using

this result, we obtain new and well-known strong convergence theorems in a Hilbert

space which are useful in Nonlinear Analysis and Optimization.

2. Preliminaries

Throughout this paper, let N be the set of positive integers, let H be a real Hilbert

space with inner product ⟨ · , · ⟩ and norm ∥ · ∥. When {xn} is a sequence in H,

we denote the strong convergence of {xn} to x ∈ H by xn → x and the weak

convergence by xn ⇀ x. We have from [22] that for any x, y ∈ H and λ ∈ R,

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, (2.1)

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2. (2.2)

Furthermore we have that for x, y, u, v ∈ H,

2⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2. (2.3)

All Hilbert spaces satisfy Opial’s condition, that is,

lim inf
n→∞

∥xn − u∥ < lim inf
n→∞

∥xn − v∥ (2.4)

— 117 —



if xn ⇀ u and u ̸= v; see [16]. Let C be a nonempty closed convex subset of a Hilbert

space H. A mapping T : C → H is called nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥
for all x, y ∈ C. If T : C → H is nonexpansive, then F (T ) is closed and convex;

see [22]. For a nonempty closed convex subset D of H, the nearest point projection

of H onto D is denoted by PD, that is, ∥x− PDx∥ ≤ ∥x− y∥ for all x ∈ H and

y ∈ D. Such PD is called the metric projection of H onto D. We know that the

metric projection PD is firmly nonexpansive; ∥PDx− PDy∥2 ≤ ⟨PDx − PDy, x − y⟩
for all x, y ∈ H. Further ⟨x− PDx, y − PDx⟩ ≤ 0 holds for all x ∈ H and y ∈ D;

see [20].

If A is α-inverse-strongly monotone, then we have that ⟨x− y, Ax− Ay⟩ ≥ 0 and

∥Ax− Ay∥ ≤ (1/α) ∥x− y∥ for all x, y ∈ C; see, for example, [15, 24] for inverse-

strongly monotone mappings. Let B be a mapping of H into 2H . The effective

domain of B is denoted by dom(B), that is, dom(B) = {x ∈ H : Bx ̸= ∅}. A multi-

valued mapping B is said to be a monotone operator on H if ⟨x− y, u− v⟩ ≥ 0 for

all x, y ∈ dom(B), u ∈ Bx, and v ∈ By. A monotone operator B on H is said to be

maximal if its graph is not properly contained in the graph of any other monotone

operator on H. For a maximal monotone operator B on H and r > 0, we may

define a single-valued operator Jr = (I + rB)−1 : H → dom(B), which is called the

resolvent of B for r. We denote by Ar =
1
r
(I − Jr) the Yosida approximation of B

for r > 0. We know from [21] that

Arx ∈ BJrx, ∀x ∈ H, r > 0. (2.5)

Let B be a maximal monotone operator on H and let B−10 = {x ∈ H : 0 ∈ Bx}. It
is known that B−10 = F (Jr) for all r > 0 and the resolvent Jr is firmly nonexpansive,

i.e.,

∥Jrx− Jry∥2 ≤ ⟨x− y, Jrx− Jry⟩, ∀x, y ∈ H. (2.6)

We also know the following lemma from [19].

Lemma 2. Let H be a real Hilbert space and let B be a maximal monotone operator

on H. For r > 0 and x ∈ H, define the resolvent Jrx. Then the following holds:

s− t

s
⟨Jsx− Jtx, Jsx− x⟩ ≥ ∥Jsx− Jtx∥2

for all s, t > 0 and x ∈ H.

From Lemma 2, we have that

∥Jλx− Jµx∥ ≤ (|λ− µ| /λ) ∥x− Jλx∥

for all λ, µ > 0 and x ∈ H; see also [8, 20].

To prove our main result, we need the following lemmas:
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Lemma 3 ([2]; see also [27]). Let {sn} be a sequence of nonnegative real numbers, let

{αn} be a sequence of [0, 1] with
∑∞

n=1 αn = ∞, let {βn} be a sequence of nonnegative

real numbers with
∑∞

n=1 βn < ∞, and let {γn} be a sequence of real numbers with

lim supn→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αnγn + βn

for all n = 1, 2, .... Then limn→∞ sn = 0.

Lemma 4 ([11]). Let {Γn} be a sequence of real numbers that does not decrease at

infinity in the sense that there exists a subsequence {Γni
} of {Γn} which satisfies

Γni
< Γni+1 for all i ∈ N. Define the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max{k ≤ n : Γk < Γk+1},

where n0 ∈ N such that {k ≤ n0 : Γk < Γk+1} ̸= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ . . . and τ(n) → ∞;

(ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0.

3. Strong Convergence Theorem

Let C be a nonempty closed and convex subset of a Hilbert space H. Let α > 0 and

let A be an α-inverse-strongly monotone mapping of C into H. If 0 < λ ≤ 2α, then

I − λA : C → H is nonexpansive. In fact, we have that for all x, y ∈ C,

∥(I − λA)x− (I − λA)y∥2 = ∥x− y − λ(Ax− Ay)∥2

= ∥x− y∥2 − 2λ⟨x− y, Ax− Ay⟩+ (λ)2∥Ax− Ay∥2

≤ ∥x− y∥2 − 2λα∥Ax− Ay∥2 + (λ)2∥Ax− Ay∥2

= ∥x− y∥2 + λ(λ− 2α)∥Ax− Ay∥2

≤ ∥x− y∥2.

Thus, I − λA : C → H is nonexpansive. A mapping g : H → H is a contraction

if there exists k ∈ (0, 1) such that∥g(x) − g(y)∥ ≤ k∥x − y∥ for all x, y ∈ H. We

also call such a mapping g a k-contraction. A linear bounded self-adjoint operator

G : H → H is called strongly positive if there exists γ > 0 such that ⟨Gx, x⟩ ≥ γ∥x∥2
for all x ∈ H. In general, a nonlinear operator T : H → H is called strongly

monotone if there exists γ > 0 such that ⟨x − y, Tx − Ty⟩ ≥ γ∥x − y∥2 for all

x, y ∈ H. Such T is also called γ-strongly monotone. We know the following result

from Marino and Xu [12].

Lemma 5. Let H be a Hilbert space and let G be a strongly positive bounded linear

self-adjoint operator on H with coefficient γ > 0. If 0 < γ ≤ ∥G∥−1, then ∥I−γG∥ ≤
1− γγ.
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For proving the main theorem, we also need the following lemma which is proved

simply by Takahashi [23].

Lemma 6. Let H be a real Hilbert space and let C be a nonempty closed convex

subset of H. Let α > 0 and let A be an α-inverse-strongly monotone mapping of

C into H and let B be a maximal monotone operator on H. Let F be a maximal

monotone operator on H such that the domain of F is included in C. Let 0 < k < 1

and let g be a k-contraction of H into itself. Let G be a strongly positive bounded

linear self-adjoint operator on H with coefficient γ > 0. Let γ be a real number with

0 < γ < γ
k
. Then for any nonempty closed convex subset C of H, PC(I − G + γg)

has a unique fixed point z0 in C. This point z0 ∈ C is also a unique solution of the

variational inequality

⟨(G− γg)z0, q − z0⟩ ≥ 0, ∀q ∈ C.

In particular, the set (A+B)−10∩ F−10 is a nonempty closed and convex subset of

H and P(A+B)−10∩F−10(I−G+γg) has a unique fixed point z0 in (A+B)−10∩F−10.

Using Lemmas 5 and 6, we prove the following strong convergence theorem of

Halpern’s type [9] in a Hilbert space.

Theorem 7. Let H be a real Hilbert space and let C be a nonempty closed convex

subset of H. Let α > 0 and let A be an α-inverse-strongly monotone mapping of

C into H. Let B be a maximal monotone operator on H and let F be a maximal

monotone operator on H such that the domain of F is included in C. Let Jλ =

(I + λB)−1 and let Tr = (I + rF )−1 be the resolvents of B and F for λ > 0 and

r > 0, respectively. Let 0 < k < 1 and let g be a k-contraction of H into itself. Let

G be a strongly positive bounded linear self-adjoint operator on H with coefficient

γ > 0. Let 0 < γ < γ
k
and suppose (A+B)−10 ∩ F−10 ̸= ∅. Let x1 = x ∈ H and let

{xn} ⊂ H be a sequence generated by

xn+1 = βnxn + (1− βn){αnγg(xn) + (I − αnG)Jλn(I − λnA)Trnxn}

for all n ∈ N, where {λn} ⊂ (0,∞), {βn} ⊂ (0, 1), {αn} ⊂ (0, 1) and {rn} ⊂ (0,∞)

satisfy

0 < a ≤ λn ≤ 2α, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞, and lim inf
n→∞

rn > 0.

Then, the sequence {xn} converges strongly to a point z0 of (A + B)−10 ∩ F−10,

where z0 = P(A+B)−10∩F−10(I −G+ γg)z0.
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Proof. Let z ∈ (A+B)−10∩F−10. Then, z = Jλn(I−λnA)z and z = Trnz. Putting

zn = Jλn(I − λnA)Trnxn and un = Trnxn, we obtain that

∥zn − z∥ = ∥Jλn(I − λnA)Trnxn − z∥
= ∥Jλn(I − λnA)Trnxn − Jλn(I − λnA)Trnz∥ (3.1)

≤ ∥xn − z∥ .

Putting yn = αnγg(xn) + (I − αnG)Jλn(I − λnA)Trnxn, from z = αnGz + z − αnGz

and Lemma 5 we have that

∥yn − z∥ = ∥αn(γg(xn)−Gz) + (I − αnG)(zn − z)∥
≤ αnγ k ∥xn − z∥+ αn∥γg(z)−Gz∥+ (1− αnγ) ∥zn − z∥
≤ {1− αn(γ − γ k)} ∥xn − z∥+ αn∥γg(z)−Gz∥.

Using this, we get

∥xn+1 − z∥ = ∥βn(xn − z) + (1− βn)(yn − z)∥
≤ βn ∥xn − z∥+ (1− βn) ∥yn − z∥
≤ βn ∥xn − z∥

+ (1− βn)({1− αn(γ − γ k)} ∥xn − z∥+ αn∥γg(z)−Gz∥)
= {1− (1− βn)αn(γ − γ k)}∥xn − z∥

+ (1− βn)αn(γ − γ k)
∥γg(z)−Gz∥

γ − γ k
.

Putting K = max{∥x1 − z∥, ∥γg(z)−Gz∥
γ−γ k

}, we have that ∥xn − z∥ ≤ K for all n ∈ N.
Then {xn} is bounded. Furthermore, {un}, {zn} and {yn} are bounded.

Using Lemma 6, we can take z0 ∈ (A+B)−10 ∩ F−10 such that

z0 = P(A+B)−10∩F−10(I −G+ γg)z0.

From the definition of {xn}, we have that

xn+1 − xn = βnxn + (1− βn){αnγg(xn) + (I − αnG)zn} − xn

and hence

xn+1 − xn − (1−βn)αnγg(xn) = βnxn + (1− βn)(I − αnG)zn − xn

= (1− βn){(I − αnG)zn − xn}
= (1− βn){zn − xn − αnGzn}.

Thus we have that

⟨xn+1−xn − (1− βn)αnγg(xn), xn − z0⟩
= (1− βn)⟨zn − xn, xn − z0⟩ − (1− βn)⟨αnGzn, xn − z0⟩ (3.2)
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= −(1− βn)⟨xn − zn, xn − z0⟩ − (1− βn)αn⟨Gzn, xn − z0⟩.

From (2.3) and (3.1), we have that

2⟨xn − zn, xn−z0⟩ = ∥xn − z0∥2 + ∥zn − xn∥2 − ∥zn − z0∥2

≥ ∥xn − z0∥2 + ∥zn − xn∥2 − ∥xn − z0∥2 (3.3)

= ∥zn − xn∥2.

From (3.2) and (3.3), we have that

−2⟨xn − xn+1, xn − z0⟩ = 2(1− βn)αn⟨γg(xn), xn − z0⟩
− 2(1− βn)⟨xn − zn, xn − z0⟩ − 2(1− βn)αn⟨Gzn, xn − z0⟩ (3.4)

≤ 2(1− βn)αn⟨γg(xn), xn − z0⟩
− (1− βn)∥zn − xn∥2 − 2(1− βn)αn⟨Gzn, xn − z0⟩.

Furthermore using (2.3) and (3.4), we have that

∥xn+1 − z0∥2−∥xn − xn+1∥2 − ∥xn − z0∥2

≤ 2(1− βn)αn⟨γg(xn), xn − z0⟩
− (1− βn)∥zn − xn∥2 − 2(1− βn)αn⟨Gzn, xn − z0⟩.

Setting Γn = ∥xn − z0∥2, we have that

Γn+1 − Γn − ∥xn − xn+1∥2

≤ 2(1− βn)αn⟨γg(xn), xn − z0⟩ (3.5)

− (1− βn)∥zn − xn∥2 − 2(1− βn)αn⟨Gzn, xn − z0⟩.

Noting that

∥xn+1 − xn∥ = ∥(1− βn)αn(γg(xn)−Gzn) + (1− βn)(zn − xn)∥ (3.6)

≤ (1− βn)
(
∥zn − xn∥+ αn∥γg(xn)−Gzn∥

)
and hence

∥xn+1−xn∥2 ≤ (1− βn)
2
(
∥zn − xn∥+ αn∥γg(xn)−Gzn∥

)2
= (1− βn)

2∥zn − xn∥2 (3.7)

+ (1− βn)
2
(
2αn∥zn − xn∥∥γg(xn)−Gzn∥+ α2

n∥γg(xn)−Gzn∥2
)
.

Thus we have from (3.5) and (3.7) that

Γn+1−Γn ≤ ∥xn − xn+1∥2 + 2(1− βn)αn⟨γg(xn), xn − z0⟩
− (1− βn)∥zn − xn∥2 − 2(1− βn)αn⟨Gzn, xn − z0⟩

≤ (1− βn)
2∥zn − xn∥2

+ (1− βn)
2
(
2αn∥zn − xn∥∥γg(xn)−Gzn∥+ α2

n∥γg(xn)−Gzn∥2
)
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+ 2(1− βn)αn⟨γg(xn), xn − z0⟩ − (1− βn)∥zn − xn∥2

− 2(1− βn)αn⟨Gzn, xn − z0⟩

and hence

Γn+1−Γn + βn(1− βn)∥zn − xn∥2

≤ (1− βn)
2
(
2αn∥zn − xn∥∥γg(xn)−Gzn∥+ α2

n∥γg(xn)−Gzn∥2
)

(3.8)

+ 2(1− βn)αn⟨γg(xn), xn − z0⟩ − 2(1− βn)αn⟨Gzn, xn − z0⟩.

We will divide the proof into two cases.

Case 1: Suppose that Γn+1 ≤ Γn for all n ∈ N. In this case, limn→∞ Γn exists

and then limn→∞(Γn+1 − Γn) = 0. Using limn→∞ αn = 0 and 0 < lim infn→∞ βn ≤
lim supn→∞ βn < 1, we have from (3.8) that

lim
n→∞

∥zn − xn∥ = 0. (3.9)

From (3.6), we have that

lim
n→∞

∥xn+1 − xn∥ = 0. (3.10)

We also have that

∥yn − zn∥ = ∥αnγg(xn) + (I − αnG)zn − zn∥ (3.11)

= αn∥γg(xn)−Gzn∥ → 0.

Furthermore, from ∥yn − xn∥ ≤ ∥yn − zn∥+ ∥zn − xn∥, we have that

lim
n→∞

∥yn − xn∥ = 0. (3.12)

For z0 ∈ (A+B)−10 ∩ F−10, we have from (2.6) that

2∥un − z0∥2 = 2∥Trnxn − Trnz0∥2

≤ 2⟨xn − z0, un − z0⟩
= ∥xn − z0∥2 + ∥un − z0∥2 − ∥un − xn∥2

and hence

∥un − z0∥2 ≤ ∥xn − z0∥2 − ∥un − xn∥2.
Then we have that

∥zn − z0∥2 ≤ ∥un − z0∥2 ≤ ∥xn − z0∥2 − ∥un − xn∥2. (3.13)

Thus we have

∥un − xn∥2 ≤ ∥xn − z0∥2 − ∥zn − z0∥2

≤ ∥xn − zn∥(∥xn − z0∥+ ∥zn − z0∥)

and hence

lim
n→∞

∥xn − un∥ = 0. (3.14)
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Then we have from (3.12) and (3.14) that

∥yn − un∥ ≤ ∥yn − xn∥+ ∥xn − un∥ → 0. (3.15)

Furthermore, we have from (3.9) and (3.14) that

∥zn − un∥ ≤ ∥zn − xn∥+ ∥xn − un∥ → 0. (3.16)

Take λ0 ∈ [a, 2α] arbitrarily. Put wn = un − λnAun, where un = Trnxn. Using

zn = Jλn(I − λnA)un and yn = αnγg(xn) + (I − αnG)Jλn(I − λnA)un,

we have from Lemma 2 and zn = αnGzn + zn − αnGzn that

∥αnγg(xn) + (I − αnG)Jλ0(I − λ0A)un − zn∥
= ∥αn(γg(xn)−Gzn) + (I − αnG)(Jλ0(I − λ0A)un − zn)∥
≤ αn(γ k∥xn − zn∥+ ∥γg(zn)−Gzn∥)

+ (1− αnγ)∥Jλ0(I − λ0A)un − zn∥
≤ αn(γ k∥xn − zn∥+ ∥γg(zn)−Gzn∥) (3.17)

+ ∥Jλ0(I − λ0A)un − Jλ0(I − λnA)un + Jλ0wn − Jλnwn∥
≤ αn(γ k∥xn − zn∥+ ∥γg(zn)−Gzn∥)

+ |λ0 − λn|∥Aun∥+
|λ0 − λn|

λ0

∥wn − Jλ0wn∥.

We also have

∥un−Jλ0(I − λ0A)un∥
≤ ∥un − zn∥+ ∥zn − {αnγg(xn) + (I − αnG)Jλ0(I − λ0A)un}∥

+ ∥αnγg(xn) + (I − αnG)Jλ0(I − λ0A)un − Jλ0(I − λ0A)un∥ (3.18)

= ∥un − zn∥+ ∥zn − {αnγg(xn) + (I − αnG)Jλ0(I − λ0A)un}∥
+ αn∥γg(xn)−GJλ0(I − λ0A)un∥.

We will use (3.17) and (3.18) later.

For a unique fixed point z0 of P(A+B)−10∩F−10(I −G+ γg) in (A+B)−10 ∩ F−10,

let us show that

lim sup
n→∞

⟨(G− γg)z0, yn − z0⟩ ≥ 0.

Put l = lim supn→∞ ⟨(G− γg)z0, yn − z0⟩ . Without loss of generality, there exists

a subsequence {yni
} of {yn} such that l = limi→∞ ⟨(G− γg)z0, yni

− z0⟩ and {yni
}

converges weakly to some point w ∈ H. From ∥yn − un∥ → 0, we also have that

{uni
} converges weakly to w ∈ C. On the other hand, since 0 < a ≤ λni

≤ 2α,
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there exists a subsequence {λnij
} of {λni

} such that {λnij
} converges to a number

λ0 ∈ [a, 2α]. Using (3.17), we have that

∥αnij
γg(xnij

) + (I − αnij
G)Jλ0(I − λ0A)unij

− znij
∥ → 0.

Furthermore, using (3.18), we have that

∥unij
− Jλ0(I − λ0A)unij

∥

≤ ∥unij
− znij

∥+ ∥znij
− {αnij

γg(xnij
) + (I − αnij

G)Jλ0(I − λ0A)unij
}∥

+ αnij
∥γg(xnij

)−GJλ0(I − λ0A)unij
∥ → 0.

Since Jλ0(I − λ0A) is nonexpansive, we have w = Jλ0(I − λ0A)w. This means that

0 ∈ Aw + Bw. We show w ∈ F−10. Since
xnij

−Trnij
xnij

rnij

∈ FTrnij
xnij

and F is a

monotone operator, we have that for any (u, v) ∈ F ,

⟨u− unij
, v −

xnij
− unij

rnij

⟩ ≥ 0.

Since lim infn→∞ rn > 0, unij
⇀ w and xnij

− unij
→ 0, we have

⟨u− w, v⟩ ≥ 0.

Since F is a maximal monotone operator, we have 0 ∈ Fw and hence w ∈ F−10.

Thus we have w ∈ (A+B)−10 ∩ F−10. So, we have

l = lim
j→∞

⟨(G− γg)z0, ynij
− z0⟩ = ⟨(G− γg)z0, w − z0⟩ ≥ 0. (3.19)

Since yn − z0 = αn(γg(xn)−Gz0) + (I − αnG)(Jλn(I − λnA)un − z0), we have

∥yn − z0∥2 ≤ (1− αnγ)
2 ∥Jλn(I − λnA)un − z0∥2 + 2αn ⟨γg(xn)−Gz0, yn − z0⟩ .

Thus we have

∥yn − z0∥2 ≤ (1− αnγ)
2 ∥un − z0∥2 + 2αn ⟨γg(xn)−Gz0, yn − z0⟩

≤ (1− αnγ)
2 ∥xn − z0∥2 + 2αn ⟨γg(xn)−Gz0, yn − z0⟩ .

Thus we have that

∥xn+1 − z0∥2 ≤ βn ∥xn − z0∥2 + (1− βn) ∥yn − z0∥2

≤ βn ∥xn − z0∥2

+ (1− βn)
(
(1− αnγ)

2 ∥xn − z0∥2 + 2αn ⟨γg(xn)−Gz0, yn − z0⟩
)

=
(
βn + (1− βn)(1− αnγ)

2
)
∥xn − z0∥2

+ 2(1− βn)αn ⟨γg(xn)−Gz0, yn − z0⟩

≤
(
1− (1− βn)(2αnγ − (αnγ)

2)
)
∥xn − z0∥2

+ 2(1− βn)αnγ k∥xn − z0∥2 + 2(1− βn)αn⟨γg(z0)−Gz0, yn − z0⟩
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= (1− 2(1− βn)αn(γ − γ k)) ∥xn − z0∥2

+ (1− βn)(αnγ)
2∥xn − z0∥2 + 2(1− βn)αn⟨γg(z0)−Gz0, yn − z0⟩

≤ (1− 2(1− βn)αn(γ − γ k)) ∥xn − z0∥2

+ 2(1− βn)αn(γ − γ k)

(
αnγ

2∥xn − z0∥2

2(γ − γ k)
+

⟨γg(z0)−Gz0, yn − z0⟩
γ − γ k

)
.

Since
∑∞

n=1 2(1 − βn)αn(γ − γ k) = ∞, from (3.19) and Lemma 3, we obtain that

xn → z0, where z0 = P(A+B)−10∩F−10(I −G+ γg)z0.

Case 2: Suppose that there exists a subsequence {Γni
} ⊂ {Γn} such that Γni

<

Γni+1 for all i ∈ N. In this case, define the sequence {τ(n)}n≥n0 as follows:

τ(n) = max{k ≤ n : Γk < Γk+1},

where n0 ∈ N such that {k ≤ n0 : Γk < Γk+1} ̸= ∅. Then we have from Lemma 4

that Γτ(n) < Γτ(n)+1. Thus we have from (3.8) that for all n ∈ N,

βτ(n)(1−βτ(n))∥zτ(n) − xτ(n)∥2

≤ (1− βτ(n))
22ατ(n)∥zτ(n) − xτ(n)∥∥γg(xτ(n))−Gzτ(n)∥

+ (1− βτ(n))
2α2

τ(n)∥γg(xτ(n))−Gzτ(n)∥2 (3.20)

+ 2(1− βτ(n))ατ(n)⟨γg(xτ(n)), xτ(n) − z0⟩
− 2(1− βτ(n))ατ(n)⟨Gzτ(n), xτ(n) − z0⟩.

Using limn→∞ αn = 0 and 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, we have from

(3.20) and Lemma 4 that

lim
n→∞

∥zτ (n)− xτ (n)∥ = 0. (3.21)

As in the proof of Case 1 we have that

lim
n→∞

∥uτ(n) − xτ(n)∥ = 0. (3.22)

Since ∥yτ(n) − uτ(n)∥ ≤ ∥yτ(n) − xτ(n)∥+ ∥xτ(n) − uτ(n)∥, we have that

lim
n→∞

∥yτ(n) − uτ(n)∥ = 0. (3.23)

Let us show that

lim sup
n→∞

⟨
(G− γg)z0, yτ(n) − z0

⟩
≥ 0.

Put l = lim supn→∞
⟨
(G− γg)z0, yτ(n) − z0

⟩
. Without loss of generality, there exists

a subsequence {yτ(ni)} of {yτ(n)} such that l = limi→∞
⟨
(G− γg)z0, yτ(ni) − z0

⟩
and

{yτ(ni)} converges weakly some point w ∈ H. From ∥yn − un∥ → 0, we also have

that {uτ(ni)} converges weakly to w ∈ C. As in the proof of Case 1 we have that
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w ∈ (A+ B)−10. Since F is a maximal monotone operator, as in the proof of Case

1 we can also show w ∈ F−10. Thus we have w ∈ (A+B)−10∩F−10. Then we have

l = lim
i→∞

⟨(G− γg)z0, yτ(ni) − z0⟩ = ⟨(G− γg)z0, w − z0⟩ ≥ 0.

As in the proof of Case 1, we also have that∥∥yτ(n) − z0
∥∥2 ≤ (1− ατ(n)γ)

2
∥∥xτ(n) − z0

∥∥2
+ 2ατ(n)

⟨
γg(xτ(n))−Gz0, yτ(n) − z0

⟩
and then

∥xτ(n)+1 − z0∥2 ≤
(
1− 2(1− βτ(n))ατ(n)(γ − γ k)

) ∥∥xτ(n) − z0
∥∥2

+ (1− βτ(n))(ατ(n)γ)
2∥xτ(n) − z0∥2 + 2(1− βτ(n))ατ(n)⟨γg(z0)−Gz0, yτ(n) − z0⟩.

From Γτ(n) < Γτ(n)+1, we have that

2(1− βτ(n))ατ(n)(γ − γ k)
) ∥∥xτ(n) − z0

∥∥2

≤ (1− βτ(n))(ατ(n)γ)
2∥xτ(n) − z0∥2 + 2(1− βτ(n))ατ(n)⟨γg(z0)−Gz0, yτ(n) − z0⟩.

Since (1− βτ(n))ατ(n) > 0, we have that

2(γ − γ k)
∥∥xτ(n) − z0

∥∥2

≤ ατ(n)γ
2∥xτ(n) − z0∥2 + 2⟨γg(z0)−Gz0, yτ(n) − z0⟩.

Thus we have that

lim sup
n→∞

2(γ − γ k)
∥∥xτ(n) − z0

∥∥2 ≤ 0

and hence ∥xτ(n)−z0∥ → 0 as n → ∞. From (3.6), we have also that xτ(n)−xτ(n)+1 →
0. Thus ∥xτ(n)+1 − z0∥ → 0 as n → ∞. Using Lemma 4 again, we obtain that

∥xn − z0∥ ≤ ∥xτ(n)+1 − z0∥ → 0

as n → ∞. This completes the proof. �

4. Applications

In this section, using Theorem 7, we can obtain well-known and new strong conver-

gence theorems for in a Hilbert space. Let H be a Hilbert space and let f be a proper

lower semicontinuous convex function of H into (−∞,∞]. The subdifferential ∂f

of f is defined as follows:

∂f(x) = {z ∈ H : f(x) + ⟨z, y − x⟩ ≤ f(y), ∀y ∈ H}

for all x ∈ H. From Rockafellar [17], we know that ∂f is a maximal monotone

operator. Let C be a nonempty closed convex subset of H and let iC be the indicator
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function of C, i.e.,

iC(x) =

{
0, x ∈ C,

∞, x /∈ C.

Then iC is a proper lower semicontinuous convex function on H and then the sub-

differential ∂iC of iC is a maximal monotone operator. Thus we can define the

resolvent Jλ of ∂iC for λ > 0, i.e.,

Jλx = (I + λ∂iC)
−1x

for all x ∈ H. We have that for any x ∈ H and u ∈ C,

u =Jλx ⇐⇒ x ∈ u+ λ∂iCu ⇐⇒ x ∈ u+ λNCu

⇐⇒ x− u ∈ λNCu

⇐⇒ 1

λ
⟨x− u, v − u⟩ ≤ 0, ∀v ∈ C

⇐⇒ ⟨x− u, v − u⟩ ≤ 0, ∀v ∈ C

⇐⇒ u = PCx,

where NCu is the normal cone to C at u, i.e.,

NCu = {z ∈ H : ⟨z, v − u⟩ ≤ 0, ∀v ∈ C}.

Using Theorem 7, we first prove a strong convergence theorem for inverse-strongly

monotone operators in a Hilbert space.

Theorem 8. Let H be a real Hilbert space and let C be a nonempty closed convex

subset of H. Let α > 0 and let A be an α-inverse-strongly monotone mapping of

C into H. Let 0 < k < 1 and let g be a k-contraction of H into itself. Let G be

a strongly positive bounded linear self-adjoint operator on H with coefficient γ > 0.

Let 0 < γ < γ
k
and suppose V I(C,A) ̸= ∅. Let x1 = x ∈ H and let {xn} ⊂ H be a

sequence generated by

xn+1 = βnxn + (1− βn){αnγg(xn) + (I − αnG)PC(I − λnA)PCxn}

for all n ∈ N, where {λn} ⊂ (0,∞), {βn} ⊂ (0, 1), and {αn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ 2α, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

lim
n→∞

αn = 0, and

∞∑
n=1

αn = ∞.

Then the sequence {xn} converges strongly to a point z0 of V I(C,A), where z0 =

PV I(C,A)(I −G+ γg)z0.
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Proof. Put B = F = ∂iC in Theorem 7. Then we have that for λn > 0 and rn > 0,

Jλn = Trn = PC .

Furthermore, we have (∂iC)
−10 = C and (A+∂iC)

−10 = V I(C,A). In fact, we have

that for z ∈ C,

z ∈ (A+ ∂iC)
−10 ⇐⇒ 0 ∈ Az + ∂iCz

⇐⇒ 0 ∈ Az +NCz

⇐⇒ −Az ∈ NCz

⇐⇒ ⟨−Az, v − z⟩ ≤ 0, ∀v ∈ C

⇐⇒ ⟨Az, v − z⟩ ≥ 0, ∀v ∈ C

⇐⇒ z ∈ V I(C,A).

Thus we obtain the desired result by Theorem 7. �

Let C be a nonempty closed convex subset of H. Then, U : C → H is called a

widely strict pseudo-contraction if there exists r ∈ R with r < 1 such that

∥Ux− Uy∥2 ≤ ∥x− y∥2 + r∥(I − U)x− (I − U)y∥2, ∀x, y ∈ C.

We call such U a widely r-strict pseudo-contraction. If 0 ≤ r < 1, then U is a strict

pseudo-contraction. Furthermore, if r = 0, then U is nonexpansive. Conversely, let

T : C → H be a nonexpansive mapping and define U : C → H by U = 1
1+n

T + n
1+n

I

for all x ∈ C and n ∈ N. Then U is a widely (−n)-strict pseudo-contraction. In fact,

from the definition of U , it follows that T = (1+n)U−nI. Since T is nonexpansive,

we have that for any x, y ∈ C,

∥(1 + n)Ux− nx− ((1 + n)Uy − ny)∥2 ≤ ∥x− y∥2

and hence

∥Ux− Uy∥2 ≤ ∥x− y∥2 − n∥(I − U)x− (I − U)y∥2.
Using Theorem 7, we obtain the following strong convergence theorem [28] which is

related to Zhou’s result [28] in a Hilbert space.

Theorem 9. Let H be a real Hilbert space and let C be a nonempty closed convex

subset of H. Let r ∈ R with r < 1 and let U be a widely r-strict pseudo-contraction

of C into H such that F (U) ̸= ∅. Let x1 = x ∈ C and let {xn} ⊂ C be a sequence

generated by

xn+1 = βnxn + (1− βn){αnu+ (1− αn)PC{(1− tn)U + tnI}xn}

for all n ∈ N, where {tn} ⊂ (−∞, 1), {βn} ⊂ (0, 1), and {αn} ⊂ (0, 1) satisfy

r ≤ tn ≤ b < 1, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,
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lim
n→∞

αn = 0, and

∞∑
n=1

αn = ∞.

Then, the sequence {xn} converges strongly to a point z0 of F (U), where z0 = PF (U)u.

Proof. Put B = F = ∂iC and A = I − U in Theorem 7. Furthermore, put g(x) = u

and G(x) = x for all x ∈ H. Then

⟨G(x), x⟩ = ∥x∥2 ≥ 1

2
∥x∥2

Thus we have γ = 1
2
. Since ∥g(x) − g(y)∥ = 0 ≤ 1

3
∥x − y∥ for all x, y ∈ H, we can

take k = 1
3
and hence set γ = 1. Putting a = 1 − b, λn = 1 − tn and 2α = 1 − r in

Theorem 7, we get from r ≤ tn ≤ b < 1 that 0 < a ≤ λn ≤ 2α,

∞∑
n=1

|λn+1 − λn| =
∞∑
n=1

|tn+1 − tn| < ∞

and

I − λnA = I − (1− tn)(I − U) = (1− tn)U + tnI.

Furthermore, we have that for z ∈ C,

z ∈ (A+ ∂iC)
−10 ⇐⇒ 0 ∈ Az + ∂iCz

⇐⇒ 0 ∈ z − Uz +NCz

⇐⇒ Uz − z ∈ NCz

⇐⇒ ⟨Uz − z, v − z⟩ ≤ 0, ∀v ∈ C

⇐⇒ PCUz = z.

Since F (U) ̸= ∅, we get, as in the proof of [28, Fact 3], that F (PCU) = F (U). We

also have z0 = PF (U)(I − G + γg)z0 = PF (U)(z0 − z0 + 1 · u) = PF (U)u. Thus we

obtain the desired result by Theorem 7. �

Let f : C × C → R be a bifunction which satisfies the conditions (A1) − (A4)

in Introduction. Then, we know the following lemma which appears implicitly in

Blum and Oettli [4].

Lemma 10 (Blum and Oettli). Let C be a nonempty closed convex subset of H and

let f be a bifunction of C ×C into R satisfying (A1)− (A4). Let r > 0 and x ∈ H.

Then, there exists z ∈ C such that

f(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C.

The following lemma was also given in Combettes and Hirstoaga [7].
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Lemma 11. Assume that f : C × C → R satisfies (A1) − (A4). For r > 0 and

x ∈ H, define a mapping Tr : H → C as follows:

Trx =

{
z ∈ C : f(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
for all x ∈ H. Then, the following hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive mapping, i.e., for all x, y ∈ H,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩;

(3) F (Tr) = EP (f);

(4) EP (f) is closed and convex.

We call such Tr the resolvent of f for r > 0. Using Lemmas 10 and 11, Takahashi,

Takahashi and Toyoda [19] obtained the following lemma. See [1] for a more general

result.

Lemma 12. Let H be a Hilbert space and let C be a nonempty closed convex subset

of H. Let f : C ×C → R satisfy (A1)− (A4). Let Af be a set-valued mapping of H

into itself defined by

Afx =

{
{z ∈ H : f(x, y) ≥ ⟨y − x, z⟩, ∀y ∈ C}, ∀x ∈ C,

∅, ∀x /∈ C.

Then, EP (f) = A−1
f 0 and Af is a maximal monotone operator with dom(Af ) ⊂ C.

Furthermore, for any x ∈ H and r > 0, the resolvent Tr of f coincides with the

resolvent of Af , i.e.,

Trx = (I + rAf )
−1x.

Using Theorem 7, we obtain the following strong convergence theorem which is

related to Liu’s result [10] for strict pseudo-contractions in a Hilbert space.

Theorem 13. Let H be a real Hilbert space and let C be a nonempty closed convex

subset of H. Let r ∈ R with r < 1 and let U be a widely r-strict pseudo-contraction

of C into H and let f be a bifunction of C×C into R satisfying (A1)− (A4). Let Tr

be the resolvent of f for r > 0. Let 0 < k < 1 and let g be a k-contraction of H into

itself. Let G be a strongly positive bounded linear self-adjoint operator on H with

coefficient γ > 0. Let 0 < γ < γ
k
and suppose F (U) ∩ EP (f) ̸= ∅. Let x1 = x ∈ H

and let {xn} ⊂ H be a sequence generated by

xn+1 = βnxn + (1− βn){αnγg(xn) + (I − αnG){(1− tn)U + tnI}Trnxn}
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for all n ∈ N, where {tn} ⊂ (−∞, 1), {βn} ⊂ (0, 1), {αn} ⊂ (0, 1) and {rn} ⊂ (0,∞)

satisfy

r ≤ tn ≤ b < 1, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞, and lim inf
n→∞

rn > 0.

Then, the sequence {xn} converges strongly to a point z0 of F (U) ∩ EP (f), where

z0 = PF (U)∩EP (f)(I −G+ γg)z0.

Proof. For the bifunction f : C × C → R, we can define Af in Lemma 12. Putting

A = I − U , Bx = 0 for all ∈ H and F = Af in Theorem 7, we obtain from Lemma

12 that Jλn = I for all λn > 0 and Trn = (I + rnAf )
−1 for all rn > 0. As in the

proof of Theorem 9, the sequence {tn} and U are changed in {λn} and A. We have

also from Lemma 12 that EP (f) = (Af )
−10 = F−10. Furthermore, we have that

for z ∈ C,

z ∈ (A+B)−10 ⇐⇒ 0 = Az +Bz

⇐⇒ 0 = Az

⇐⇒ z = Uz

⇐⇒ z ∈ F (U).

So, we obtain the desired result by Theorem 7. �
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