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APPROXIMATION OF COMMON SOLUTIONS FOR
MONOTONE INCLUSION PROBLEMS AND
EQUILIBRIUM PROBLEMS IN HILBERT SPACES

MAYUMI HOJO AND WATARU TAKAHASHI

ABSTRACT. Let H be a real Hilbert space and let C' be a nonempty closed convex
subset of H. Let a > 0 and let A be an a-inverse-strongly monotone mapping
of C' into H. Let B be a maximal monotone operator on H and let F' be a
maximal monotone operator on H such that the domain of F' is included in C.
Let (A+ B)~'0 and F~10 be the sets of zero points of A+ B and F, respectively.
In this paper, we prove a strong convergence theorem for finding a point zy €
(A+ B)~*0N F~10 which is a unique fixed point of a nonlinear operator and also
a unique solution of a variational inequality. Using this result, we obtain new and
well-known strong convergence theorems in a Hilbert space which are useful in
Nonlinear Analysis and Optimization.

1. Introduction

Let H be a real Hilbert space and let C' be a nonempty closed convex subset of
H. Let T be a mapping of C' into H. We denote by F(T) the set of fixed points
of T. A mapping g : H — H is a contraction if there exists k& € (0, 1) such that
llg(x) — g(y)|| < k||lx — y|| for all ,y € H. We call such g a k-contraction. A linear
bounded operator G : H — H is called strongly positive if there exists 7 > 0 such
that (Gz,z) > 7||z||* for all z € H. We call such G a strongly positive operator
with coefficient 7 > 0. Let N and R be the sets of positive integers and real numbers,
respectively. A mapping U : C' — H is a strict pseudo-contraction [6] if there exists
r € R with 0 < r < 1 such that

(U2 Uyl < llz = yl> + 7| (I - U)x — (I — Uyl VayeC.

We call such U an r-strict pseudo-contraction. For a > 0, a mapping A : C' — H is
called a-inverse-strongly monotone if

(r —y, Az — Ay) > al|Az — Ay|*, Va,y e C.
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Let f : C x C — R be a bifunction and let A be a mapping of C into H. A
generalized equilibrium problem (with respect to C') is to find & € C' such that

f@y)+(Az,y—2) >0, VyeC. (1.1)
The set of such solutions # is denoted by EP(f, A), i.e
P(f,A) ={z e C: f(i,y) +{AL,y =) 2 0, Vy € C}.

In the case of A =0, EP(f, A) is denoted by EP(f). In the case of f =0, EP(f, A)
is also denoted by VI(C, A). This is the set of solutions of the variational inequality
for A; see [14] and [18]. For solving the equilibrium problem, let us assume that the
bifunction f : C' x C' — R satisfies the following conditions:

(A1) f(z,z) =0 for all z € C;
(A2) f is monotone, i.e., f(z,y) + f(y,z) <0 for all z,y € C;
(A3) for all z,y,2z € C,

limsup f(tz + (1 — t)x,y) < f(x,y);
10

(A4) for all z € C, f(x,-) is convex and lower semicontinuous.

Recently, Liu [10] proved the following theorem.

Theorem 1. Let H be a real Hilbert space and let C' be a nonempty closed convex
subset of H. Letr € R with 0 < r <1 and let U be an r-strict pseudo-contraction
of C into H. Let f be a bifunction of C x C into R satisfying (Al) — (A4). Let
0 <k <1 andlet g be a k-contraction of H into itself. Let G be a strongly positive
bounded linear self-adjoint operator on H with coefficient 7 > 0. Let 0 < v < Z
and suppose F(U)NEP(f) # 0. Let v1 = x € H and let {x,} C H be a sequence

generated by

1
(U, ) + —(y — Unyup — 2,) >0, WYy €C,

n

Tri1 = anyg(zn) + (I — o, G){(1 — t,)U + t, 1 }u,
for all n € N, where {a,,} C (0,1), {t,} C[0,1) and {r,} C (0,00) satisfy

o oo
a, — 0, g oy, = 00, 5 la, — apy1] < 00,
n=1

n=1

r<t,<b<l, limt, Z|t — tpi| < 00,

x
liminfr, >0, and E |7 — Tna1| < 0.
n—oo 1

n=
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Then the sequence {x,} converges strongly to a point zy of F(U) N EP(f), where
20 € F(U)NEP(f) is a unique fived point of Ppannep)(I — G +vg). This point
20 € F(U)N EP(f) is also a unique solution of the variational inequality

(G —~9)z0,q — 20) >0, Vg€ F(U)NEP(f).

Let f be a bifunction of C'x C into R satisfying (A1) —(A4). Defining a set-valued
mapping Ay C H x H by

b {zeH: flr,y) > {y—ux,2), VyeC}, VreCl,
0, VxéC,

we have from [19] that Ay is a maximal monotone operator such that the domain
is included in C'; see Lemma 12 in Section 4 for more details. On the other hand,
putting A = I — U for an r-strict pseudo-contraction U : C' — H with 0 < r < 1,
we have that A: C' — H is 1; -inverse-strongly monotone; see, for example, [13].
In this paper, motivated by these results, we prove a strong convergence theo-
rem for finding a point zy € (A + B)~'0 N F~10 which is a unique fixed point of

Piayy-10np—10(I —=G+7g), where A is an a-inverse-strongly monotone mapping of C

into H with a > 0, B is a maximal monotone operator on H, F'is a maximal mono-
tone operator on H such that the domain of F' is included in C, g is a k-contraction
of H into itself with 0 < k& < 1, G is a strongly positive bounded linear self-adjoint
operator on H with coefficient 7 > 0 and 7 is a real number with 0 < v < % Using
this result, we obtain new and well-known strong convergence theorems in a Hilbert
space which are useful in Nonlinear Analysis and Optimization.

2. Preliminaries

Throughout this paper, let N be the set of positive integers, let H be a real Hilbert
space with inner product (-, -) and norm | -||. When {z,} is a sequence in H,
we denote the strong convergence of {z,} to x € H by x, — z and the weak
convergence by z, — x. We have from [22] that for any x,y € H and X € R,

lz +ylI* < llel* + 2{y, = + ), (2.1)
Az + (1= N)yl* = Alz]* + (1 = Nllyll* = A1 = M)z — yI*. (2.2)
Furthermore we have that for z,y,u,v € H,
2z —yu—v) =z —ol> + ly — ul® = lz = ul* = [ly — ", (2.3)
All Hilbert spaces satisfy Opial’s condition, that is,

liminf ||z, — u| < liminf ||z, — v|| (2.4)
n—oo n—oo
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if ,, = w and u # v; see [16]. Let C' be a nonempty closed convex subset of a Hilbert
space H. A mapping T': C' — H is called nonexpansive if | Tz — Ty| < ||z — y||
for all x,y € C. If T : C — H is nonexpansive, then F(7T) is closed and convex;
see [22]. For a nonempty closed convex subset D of H, the nearest point projection
of H onto D is denoted by Pp, that is, ||t — Ppz| < ||z — y|| for all x € H and
y € D. Such Pp is called the metric projection of H onto D. We know that the
metric projection Pp is firmly nonexpansive; || Pz — Ppyl|* < (Ppx — Ppy,x — )
for all x,y € H. Further (x — Ppx,y — Ppz) < 0 holds for all z € H and y € D;
see [20].

If A is a-inverse-strongly monotone, then we have that (x — y, Az — Ay) > 0 and
|Az — Ay|| < (1/a) ||z —y]| for all z,y € C; see, for example, [15,24] for inverse-
strongly monotone mappings. Let B be a mapping of H into 27. The effective
domain of B is denoted by dom(B), that is, dom(B) = {x € H : Bx # (}. A multi-
valued mapping B is said to be a monotone operator on H if (x —y,u —v) > 0 for
all z,y € dom(B), u € Bz, and v € By. A monotone operator B on H is said to be
maximal if its graph is not properly contained in the graph of any other monotone
operator on H. For a maximal monotone operator B on H and r > 0, we may
define a single-valued operator J, = (I +rB)~': H — dom(B), which is called the
resolvent of B for r. We denote by A, = (I — J,) the Yosida approximation of B
for r > 0. We know from [21] that

A.x € BJyx, Vxe H, r>0. (2.5)

Let B be a maximal monotone operator on H and let B~'0 ={z € H : 0 € Bz}. It
is known that B~10 = F(J,) for all r > 0 and the resolvent J, is firmly nonexpansive,
ie.,

Sz — Jyl* < (x — vy, Joo — Jy), Va,y€ H. (2.6)

We also know the following lemma from [19].

Lemma 2. Let H be a real Hilbert space and let B be a mazximal monotone operator
on H. Forr >0 and x € H, define the resolvent J,.x. Then the following holds:

s—1
s
forall s,t >0 and x € H.

(Jox — Jyx, Jox — x) > ||z — Jox||?

From Lemma 2, we have that
[z = Juzll < (IA = pl /A) o = Jaz|

for all A, 4 > 0 and = € H; see also [8,20].
To prove our main result, we need the following lemmas:
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Lemma 3 ([2]; see also [27]). Let {s,} be a sequence of nonnegative real numbers, let
{an} be a sequence of [0,1] with Y 7, o, = 00, let {B,} be a sequence of nonnegative
real numbers with Y ", B, < 0o, and let {v,} be a sequence of real numbers with
lim sup,,_, o 7 < 0. Suppose that

Sn+1 S (1 - an)sn + ApYn + Bn
foralln=1,2,.... Then lim,,_,o s, = 0.
Lemma 4 ([11]). Let {I',} be a sequence of real numbers that does not decrease at
infinity in the sense that there exists a subsequence {I'y.} of {I'n} which satisfies
[y, <Ty,11 for all i € N. Define the sequence {T(n)}n>n, of integers as follows:
7(n) = max{k <n: [y < T},

where ng € N such that {k <ng: Ty < Tri1} # 0. Then, the following hold:
(i) 7(ng) < 7(no+1) < ... and 7(n) — oo;
(11) FT(TL) < F7'(71)—&—1 and I',, < FT(TZ)+17 Vn > no-

3. Strong Convergence Theorem

Let C' be a nonempty closed and convex subset of a Hilbert space H. Let o > 0 and
let A be an a-inverse-strongly monotone mapping of C' into H. If 0 < A < 2a, then
I — MA : C — H is nonexpansive. In fact, we have that for all z,y € C,

I(1 = M)z — (I = AA)y|* = [lz — y — MAz — Ay)||*

= [l = yl* = 2\ — y, Az — Ay) + (V)?|| Az — Ay||?

<z —yl® = 22al|Az — Ay[]* + (V)?|| Az — Ay]|?

— llo = gl + A — 20) | Az — Ay?

<z -yl
Thus, I — MA : C — H is nonexpansive. A mapping g : H — H is a contraction
if there exists k € (0, 1) such that||g(z) — g(y)|| < k||lz — y|| for all z,y € H. We
also call such a mapping g a k-contraction. A linear bounded self-adjoint operator
G : H — H is called strongly positive if there exists ¥ > 0 such that (Gz, ) > 7| z||?
for all z € H. In general, a nonlinear operator 7' : H — H is called strongly
monotone if there exists ¥ > 0 such that (x — y, Tz — Ty) > 7|z — y||* for all

x,y € H. Such T is also called 7-strongly monotone. We know the following result
from Marino and Xu [12].

Lemma 5. Let H be a Hilbert space and let G be a strongly positive bounded linear
self-adjoint operator on H with coefficienty > 0. If0 < v < ||G||7*, then ||[I—vG|| <
1—~7.
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For proving the main theorem, we also need the following lemma which is proved
simply by Takahashi [23].

Lemma 6. Let H be a real Hilbert space and let C' be a nonempty closed convex
subset of H. Let a > 0 and let A be an a-inverse-strongly monotone mapping of
C into H and let B be a mazximal monotone operator on H. Let F' be a mazimal
monotone operator on H such that the domain of F' is included in C'. Let 0 < k < 1
and let g be a k-contraction of H into itself. Let G be a strongly positive bounded
linear self-adjoint operator on H with coefficient™ > 0. Let v be a real number with
0<y< Z Then for any nonempty closed convex subset C' of H, Po(I — G + vg)
has a unique fized point zy in C'. This point zy € C is also a unique solution of the
variational inequality

(G —79)20,q — 20) >0, VqeC.

In particular, the set (A+ B)~'0N F~10 is a nonempty closed and convex subset of
H and P sy py-10nr-10(I — G +79) has a unique fized point zy in (A+B)'0NEF~10.

Using Lemmas 5 and 6, we prove the following strong convergence theorem of
Halpern’s type [9] in a Hilbert space.

Theorem 7. Let H be a real Hilbert space and let C' be a nonempty closed convex
subset of H. Let a > 0 and let A be an a-inverse-strongly monotone mapping of
C into H. Let B be a mazximal monotone operator on H and let F' be a maximal
monotone operator on H such that the domain of F is included in C. Let Jy, =
(I +AB)™! and let T, = (I + rF)~! be the resolvents of B and F for X > 0 and
r > 0, respectively. Let 0 < k <1 and let g be a k-contraction of H into itself. Let
G be a strongly positive bounded linear self-adjoint operator on H with coefficient
3 >0. Let 0 <~ < + and suppose (A+ B)'0NF0#0. Let 21 =z € H and let
{z,} C H be a sequence generated by

Tni1 = Bpn + (1 = Bu){anyg(zn) + (I — anG)Jx, (I = \A)T,, x0}

for all n € N, where {\,} C (0,00), {6,} C (0,1), {eav,} C (0,1) and {r,} C (0, 00)
satisfy
0<a<)\ <2 0<liminfg, <limsupf, <1,
n—oo

n—oo

o
lim o, =0, Zan =00, and liminfr, > 0.
n—oo 1 n—oo

o

Then, the sequence {x,} converges strongly to a point zy of (A + B)~'0 N F~10,
where 2y = Piasp)-1onr-10(I — G+ 79) 2.
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Proof. Let z € (A+ B)"'0NF~!0. Then, z = Jy,(I — \,A)z and 2z = T, z. Putting
zn = Jn, (I — \A)T,, x,, and u,, = T, x,, we obtain that

20 = 2|l = [[Jx,(I = AnA) T, 20 — 2|
= ||\, (I = \A)T,, 2y — Iy, (I — X\ A)T,, 2| (3.1)
< flan — 2]
Putting vy, = anvg(x,) + (I — a,G)Jy, (I — M\ A)T,, xy, from 2z = ,Gz + 2z — a,,Gz
and Lemma 5 we have that
[y — 2[| = llan(vg(zn) — Gz) + (I — anG) (20 — 2)|
< any kllan — 2| + anllvg(2) — Gzl + (1 — an?) |20 — 2||
<A{L—an(¥ =7 B)} |z — 2(| + anllrvg(z) — G=|.
Using this, we get
[2ns1 = 2l = [|Bn(@n — 2) + (1 = Bn)(yn — 2)
< Brllen — 2l + (1 = Bn) llyn — =l
< B [lzn — 2|
+ (1 =Bu)({1 — (¥ =7 B)} 20 — 2l + cwllvg(2) — Gz])
={1 -1 =Fn)an(¥ =7 k)}Hlzn — 2|

1= Buan(y — o L

Putting K = max{||z; — z||, W}, we have that ||z, — z|]| < K for all n € N.
Then {z,} is bounded. Furthermore, {u,}, {z,} and {y,} are bounded.
Using Lemma 6, we can take 29 € (A + B)~'0 N F~10 such that

20 = Parpy-1onr-10( — G +79)20.
From the definition of {x,}, we have that
Tnt1 = Tn = Bun + (1 = Bu){anv9(@n) + (I — anG)zn} — s
and hence
Tni1 — T — (1=Fn)anyg(@n) = Bpan + (1 = Ba) (I — anG)zp —
= (1 =B { — oGz — wn}
=(1—=Bu){zn — xp — Gz, }.
Thus we have that
(Tnt1—n — (1 = Bp)anvg(n), T — 20)
= (1= Bn){(zn — T, n — 20) — (1 = Bp){nGz, Ty — 20) (3.2)
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= _(1 - ﬁn><xn — Zn, Tp — ZO) - (1 - 5n)an<GZm Tn — ZO>-
From (2.3) and (3.1), we have that

2(Ty = Zn, Tn—20) = ||75 — 20”2 + {20 — an2 — [lzn — ZOH2
> [|zn — 20]* + [|2n — znll* = [l2n — 20? (3.3)
= ||zn — xn”2

From (3.2) and (3.3), we have that
—2(Tp, — Tpy1, Tn — 20) = 2(1 = Bu)an{vg9(zn), Tn — 20)
—2(1 = Bo){xn — 2z, Tn — 20) — 2(1 = Bn)an(Gzp, Ty — 20) (3.4)
< 2(1 = Bu)an{yg(@n), Tn — 20)
— (1= B) 120 — 20| — 2(1 — Bp)an{Gzp, 7 — 2).
Furthermore using (2.3) and (3.4), we have that
1z = 20l*=[l2n = zasa | = llzn — 20|
< 2(1 = Bn)om(v9(2n), Tn — 20)
— (L= Bu)llzn = @all* = 2(1 = Bp)an(Gn, 25 — 20)-
Setting ', = ||, — 20||%, we have that
L1 = Do = |20 — 2 ||
< 2(1 = Bn)an(v9(xn), Tn — 20) (3.5)
— (1= B) 120 — 20| — 2(1 — Bp)an(Gzpn, 2 — 2).
Noting that
@01 = @all = |(1 = Bu)on(vg(zn) — Gzn) + (1= Bu)(zn —x)[|  (3.6)
< (1= Ba) (120 = zall + cnllvg(za) — Gzall)
and hence
i =zall® < (1= ) (ll2n = 2all + aull7g(2n) = Gzul)”
= (1= B — 2l (37
+ (1= Ba)* (20|20 — 2ulll79(z0) — Gzall + aglvg(@n) — Gall?).
Thus we have from (3.5) and (3.7) that
Lor1=Ln < [lon = 2|+ 2(1 = Ba)an(vg(zn), 0 — 20)
— (1= Bu)llzn = 2all* = 2(1 = Bu)an(G2n, 20 — 20)
< (1= Ba)?ll2n — zal®

+ (1 - ﬁn>2(2an”zn — Tl |79(0n) — Gz + O‘?@H'Vg(xn) - Gzn||2)
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+ 2(1 - ﬂn)an<’yg<xn)v Tn — Z0> - (1 - ﬂn)”zn - anQ
—2(1 = Bn)an(Gzpn, x, — 20)

and hence

Lpp1 =D + Br(1 — ﬁn)”'zn - $n||2
< (1= Ba)*(2amllze — zallllvg(en) — Gzall + @2llvg(2n) — Gzal?)  (3.8)
+2(1 = Bp)an(vg(xn), xn — 20) — 2(1 — Bn)an(Gzp, xy — 20)-

We will divide the proof into two cases.

Case 1: Suppose that I',,; < T, for all n € N. In this case, lim, _,,, '), exists
and then lim, . (I'n11 — ') = 0. Using lim, oo @, = 0 and 0 < liminf, . 3, <
limsup,,_,, Bn < 1, we have from (3.8) that

lim ||z, — z,|| = 0. (3.9)
n—oo
From (3.6), we have that
lim ||zp41 — x| = 0. (3.10)
n—o0
We also have that
Hyn - Zn” = Han'Vg(:Un) + (I - anG)Zn - Zn” (3'11)

= apl[79(zn) — Gzl — 0.
Furthermore, from ||y, — @, < [|yn — 2all + |20 — zn||, we have that
lim ||y, — 2, = 0. (3.12)
n—oo
For zp € (A+ B)~'0N F~'0, we have from (2.6) that
2||up — Z0H2 =2||T},z, — TrnZOHQ
S 2<xn — 20, Up — ZO>
= Hxn - ZOHQ + Hun - 20”2 - Hun - mn”2
and hence
2 2 2
|un — 20" < [|n — 20[]° = |Jun — za||*.
Then we have that
120 = 20]1* < flun — 20l* < flzn — 20l° = [lun — 2|1 (3.13)
Thus we have
[t — 2] < Nz — 20]1* = [l20 — 20|?
< ”xn - Zn”(“*rn - ZOH + Hzn - ZO”)

and hence
lim ||z, — u,|| = 0. (3.14)
n—oo
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Then we have from (3.12) and (3.14) that
19 = unll < llyn = zall + llzn — unll = 0. (3.15)
Furthermore, we have from (3.9) and (3.14) that
20 = uall < 20 = @all + [[#0 — uall = 0. (3.16)
Take \g € [a,2a] arbitrarily. Put w,, = u,, — \, Au,,, where u,, = T, x,. Using
zn = I, (I — N\pA)u, and y, = apyg(zn) + (I — 0, G) Iy, (I — M A)uy,
we have from Lemma 2 and z,, = o,,Gz,, + z,, — &,,Gz,, that

lanyg(xn) + (I — anG) g (I — Ao A)uy — 2|
= llan(vg(zn) — Gzn) + (I — anG)(Jr (I = AoA)un — 2,) ||
< on(y kllzn = zoll + [179(20) — Gzall)
+ (1 — a,¥) [ Ing (I — Mo A)tuy, — 25|
< on(y kllzn = zoll + [179(20) — Gzall) (3.17)
+ [ I (I — XoA)uy, — Iag (I — Ny A)uy, + Jrwn — Iy, wn|
< on(y kllzn = zoll + [179(20) — Gzall)
[ Ao —

A
Po =2l — vl

+ 1o = Aal [ Atal] + 2
0

We also have

|t —Ixg (I — Ao A) |
< lun = 2all + 120 = fanyg(@n) + (I = anG)JIro (I = AoA)un}||
+ o yg(xn) + (I — anG)Ixg (I — Ao Ay, — Jng(I — XoA)u,||  (3.18)
= [lun = zull + 120 = {anyg(@n) + (I = anG)Jrg (I = AoA)un}||
+anllyg(@n) — G (I = AoA)un|.
We will use (3.17) and (3.18) later.

For a unique fixed point zg of P(atp)-10nr-10(] — G +7g) in (A+ B)~10N F~10,
let us show that

limsup (G — v9)z0, Yn — 20) = 0.

n—oo

Put [ = limsup,,_, . ((G — v9)z0, Yn — 20) . Without loss of generality, there exists
a subsequence {y,,} of {y,} such that | = lim; ,o ((G — 79)20, Yn, — 20) and {yn,}
converges weakly to some point w € H. From ||y, — u,|| — 0, we also have that
{un,} converges weakly to w € C. On the other hand, since 0 < a < A,, < 2a,
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there exists a subsequence {)\mj} of {\,,} such that {)\nij} converges to a number
Ao € [a,2a]. Using (3.17), we have that

Hanij fyg(a:nij) + (I — O, G)Jy, (I — )\OA)um.j — Zn, | — 0.
Furthermore, using (3.18), we have that
lttn,, = Tro(T = Mo A,
< Nttny, — 2, |+ 2, — {tn 1900, + (T =, GV g (T = Mo AYtn, 3
'yg(a:nij) — GJy\, (I — )\OA)umj | = 0.

+ i,
Since Jy,(I — X\pA) is nonexpansive, we have w = Jy,(I — A\gA)w. This means that

0 € Aw + Bw. We show w € F~'0. Since —4——~— ¢ FT,,, @y, and Fis a

n; .
’j

monotone operator, we have that for any (u,v) € F,

T,

— Unp,
. Mg .
j j

) > 0.

(u—unij,v—

Tn,,
Since liminf,,_ o, 7, > 0, Up,, — W and Ly, — Un,, — 0, we have
(u—w,v) > 0.

Since F' is a maximal monotone operator, we have 0 € Fw and hence w € F~10.
Thus we have w € (A + B)~'0 N F~10. So, we have

L= lim (G —99)20, Yn,, — 20) = (G —19)70, w — 20) 2 0. (3.19)
Since y, — 20 = an(v9(xn) — G2o) + (I — @, G) (I, (I — A\A)u, — 20), we have
lyn = 2001 < (1 = @) |, (I = AnA)tin = 20| + 2000 (vg(20) — G20, yn — 20) -
Thus we have
lyn = 20l1* < (1 = ¥)? [lun — 20lI* + 2cn (v9(x0) = G20,y — 20)
< (1= an¥)? ||z — 20l|* + 20 (v9(0) — G20, yn — 20) -
Thus we have that
a1 — 20ll* < B llzn — 20ll* + (1 = Ba) lyn — 20]|”
< Bo ll#n — 20]”
+ (1= Ba) (1= ¥)? |20 = 20]|* + 200 (v9(20) — G0, yn — 20))
= (Bn+ (1= Ba)(1 = @)?) [l — 20|
+2(1 = Bu)om (vg(2n) — G20, yn — 20)
< (1= (1= 8) 207 = (7)) 1 = 20’
+2(1 = Ba)awy Ellzn — 2|1 +2(1 = Ba)an(v9(20) — G20, Yn — 20)
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= (1= 2(1 = Ba)an(¥ =7 k) l2n — 20"
+ (1 - ﬁn)(anﬁ)QHxn - 20”2 + 2(1 - ﬁn)an<f}/g(20) - Gz(b Yn — ZO>
< (1=2(1 = Ba)an(¥ =7 k) [l2n — 2ol
=2 2
- a7y [lzn — 20lI* | (79(20) — G20, yn — o)
+21—ﬁnan’y—’yk( — + — .
( Jon{ ) 2= k) Tk
Since Y 21 2(1 — B,)o (¥ — v k) = oo, from (3.19) and Lemma 3, we obtain that
Ty, — 2o, Where 2o = Piayp)-10np-10(I — G+ 79)20.
Case 2: Suppose that there exists a subsequence {I',,;} C {I',;} such that I, <
[, 41 for all ¢ € N. In this case, define the sequence {7(n)},>n, as follows:

7(n) =max{k <n: T, < T},

where ng € N such that {k < ng : I'), < T'yy1} # 0. Then we have from Lemma 4
that I';(,) < I'r(n)+1. Thus we have from (3.8) that for all n € N,

Brm)(1=Brm)) | 2r(m) = Tl
< (1= Brw) 20012700 = 2oy | 179(27 ) = Gzl
+ (1 = Brw) @2y 19 (@2 ) — Gzrmy 1P (3.20)
+2(1 = Br(n))r(n) (Y9 (Tr(n)), Tr(n) — Z0)
= 2(1 = Br(n)) Ar(n){G2r(n), Tr(n) — 20)-

Using lim,,_,oo o, = 0 and 0 < liminf, , B, < limsup,_,. B, < 1, we have from
(3.20) and Lemma 4 that

lim [|z;(n) —z.(n)|| = 0. (3.21)

n—oo

As in the proof of Case 1 we have that

lim ||u7(n) - JZT(n)H = 0. (3.22)

n—oo

Since || Yrm) — Urm)ll < 1Wrn) — Tr@) || + [|Tr(n) — Ur@) ||, We have that

lim ||y.,-(n) - uf(n)H = 0. (323)

n—oQ

Let us show that
limsup (G — 79)20, Yrn) — 20) > 0.

n—oo

Put [ = limsup,,_,., {(G' — 79)20, Yr(n) — 20) . Without loss of generality, there exists
a subsequence {y-n,)} of {y-(n)} such that [ = lim;_, <(G —Y9)20, Yr(ny) — zo> and
{Yr(n,) } converges weakly some point w € H. From ||y, — u,|| — 0, we also have
that {u,(,,)} converges weakly to w € C. As in the proof of Case 1 we have that
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w € (A+ B)7'0. Since F is a maximal monotone operator, as in the proof of Case
1 we can also show w € F~10. Thus we have w € (A+ B)~'0N F~!0. Then we have

L= lim (G = 79)20, Yr(n,) — 20) = ((G = 79) 70, w — 2) = 0.

1—00

As in the proof of Case 1, we also have that

2 _ 2
[y = 20]|” < (1 = ar@yD)? ||y = 20| + 200() (Y9(2r ) — G20, Yr () — 20)
and then
_ 2
2 my1 = 20l < (1= 2(1 = Brny) r(m)(F =7 ) || 2y — 20|
+ (1 = Brm) (@rm)¥) |2y — 20l + 2(1 = Brimy) ) (v9(20) — G20, Yr(m) — 20)-
From I';(,) < I'z(n)41, We have that
_ 2
2(1 = Brw)r(m)(T — 7 k) |27y — 20|
S (1 - Bf(n))(aT(n)ﬁ)QHxT(n) - ZO||2 + 2(1 - 5T(n))a7(n) <’79(ZO) - GZO> yT(n) - ZO)'
Since (1 = Br(n))0r(n) > 0, we have that
_ 2
23 = k) |27 — 0|
< )7 N2y — 20l° + 2(v9(20) — G20, Yr(n) — 20)-

Thus we have that
limsup 2(y — v k) HxT(n) — zo||2 <0

n—o0o
and hence ||z, — 20| = 0 asn — oco. From (3.6), we have also that () =741 —
0. Thus ||%-(n)+1 — 20| = 0 as n — co. Using Lemma 4 again, we obtain that

|20 — 20ll < |Zr(n)+1 — 20l = 0

as n — o0o. This completes the proof. 0

4. Applications

In this section, using Theorem 7, we can obtain well-known and new strong conver-
gence theorems for in a Hilbert space. Let H be a Hilbert space and let f be a proper
lower semicontinuous convex function of H into (—oo,00]. The subdifferential 0 f

of f is defined as follows:

Of(x) ={2€ H: f(x) +(z,y —x) < f(y), Vy € H}

for all x € H. From Rockafellar [17], we know that Jf is a maximal monotone
operator. Let C' be a nonempty closed convex subset of H and let i¢ be the indicator
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function of C| i.e.,

, 0, zed,
fole) = oo, z¢C

Then i¢ is a proper lower semicontinuous convex function on H and then the sub-
differential dic of ic is a maximal monotone operator. Thus we can define the
resolvent Jy of dic for A > 0, i.e.,

I = (I + N\i¢) o
for all z € H. We have that for any x € H and u € C,

u=Jyr <= € u+ \Nicu <= x € u+ A\Ncu
<— x—u€ ANcu

1
<:>X<w—u,v—u>§0, Yvel
— (r—u,v—u) <0, Yoel

< u = Pz,
where Ngu is the normal cone to C' at u, i.e.,
Neu={z€ H: {(z,v—u) <0, YveC}.

Using Theorem 7, we first prove a strong convergence theorem for inverse-strongly
monotone operators in a Hilbert space.

Theorem 8. Let H be a real Hilbert space and let C' be a nonempty closed convex
subset of H. Let a > 0 and let A be an a-inverse-strongly monotone mapping of
C into H. Let 0 < k < 1 and let g be a k-contraction of H into itself. Let G be
a strongly positive bounded linear self-adjoint operator on H with coefficient 7 > 0.
Let 0 < v < % and suppose VI(C,A) # 0. Let x1 = x € H and let {x,} C H be a
sequence generated by

for all n € N, where {\,} C (0,00), {£,} C (0,1), and {a,} C (0,1) satisfy
0<a< )\ <2a 0<liminfg, <limsupp, <1,
n—oo

n—oo

n—oo

o
lim o, =0, and E Qa, = 00.
n=1

Then the sequence {x,} converges strongly to a point zy of VI(C,A), where zy =
Pyrc.aI — G +v9)z.
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Proof. Put B = F = 0i¢ in Theorem 7. Then we have that for A, > 0 and r, > 0,
I, =T, = Pe.
Furthermore, we have (9ic)™'0 = C and (A+Jic) 10 = VI(C, A). In fact, we have
that for z € C,
2z € (A+0ic) 10 <0 € Az + dicz
<= 0€ Az+ Ngz
<—— —Az € Ngz
— (—Az,v—2) <0, YveC
— (Az,v—2) >0, Yvel
— 2 VI(C,A).
Thus we obtain the desired result by Theorem 7. U

Let C be a nonempty closed convex subset of H. Then, U : C' — H is called a
widely strict pseudo-contraction if there exists » € R with » < 1 such that

Uz = Uy|* < llz = yl* +rl|(1 = U)z = (I = U)y|*, Va,y € C.

We call such U a widely r-strict pseudo-contraction. If 0 < r < 1, then U is a strict
pseudo-contraction. Furthermore, if r = 0, then U is nonexpansive. Conversely, let
T : C'— H be a nonexpansive mapping and define U : C' — H by U = IJ%”T—F ol
for allz € C'and n € N. Then U is a widely (—n)-strict pseudo-contraction. In fact,
from the definition of U, it follows that "= (1+n)U —nl. Since T is nonexpansive,

we have that for any z,y € C,

I(1+n)Uz —nz — (1 +n)Uy —ny)||* < [l — y|?
and hence

Uz = Uy < ||z = yl|* = nl|(I = U)z — (I = U)y|*.

Using Theorem 7, we obtain the following strong convergence theorem [28] which is
related to Zhou’s result [28] in a Hilbert space.

Theorem 9. Let H be a real Hilbert space and let C' be a nonempty closed convex
subset of H. Let r € R with r < 1 and let U be a widely r-strict pseudo-contraction
of C into H such that F(U) # 0. Let x; = x € C and let {z,,} C C be a sequence
generated by

for all n € N, where {t,} C (—o0,1), {8,} € (0,1), and {ca,} C (0,1) satisfy

r<t,<b<l1l, O0<liminfg, <limsup/p, <1,
n—oo

n—oo
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o0
lim o, =0, and E = 00.
n=1

n—oo
Then, the sequence {x,} converges strongly to a point zy of F(U), where zog = Ppu.

Proof. Put B =F = 0ic and A =1 — U in Theorem 7. Furthermore, put g(z) = u
and G(x) = z for all x € H. Then

(G(x), 2) = [l2]* >

e

N | —

Thus we have 7 = £. Since ||g(z) — g(y)|| =0 < 3lla — y| for all z,y € H, we can

take k = % and hence set v = 1. Puttinga=1—-b\, =1—1¢, and 2aa =1—1rin
Theorem 7, we get from r <t, <b < 1that 0 <a <\, < 2a,

SS) oo
Z |An+1 - /\n| - Z |tn+1 - tn' < o0
n=1 n=1

and
I—-MA=IT—-(1-t,)I-U)=(1—-t,)U +t,I.

Furthermore, we have that for z € C,

2 € (A+0ic) 10 <= 0¢€ Az + Dicz
<~ 0€z—Uz+ N¢oz
<—Uz—2z¢€ Ncz
— (Uz—2z,v—2)<0, Yvel
— P Uz =z
Since F(U) # 0, we get, as in the proof of [28, Fact 3], that F(PcU) = F(U). We

also have 2y = Ppan(I — G +v9)20 = Pran(20 — 20 + 1 - u) = Ppyu. Thus we
obtain the desired result by Theorem 7. U

Let f: C'x C — R be a bifunction which satisfies the conditions (A1) — (A4)
in Introduction. Then, we know the following lemma which appears implicitly in
Blum and Oettli [4].

Lemma 10 (Blum and Oettli). Let C be a nonempty closed convez subset of H and
let f be a bifunction of C' x C into R satisfying (A1) — (A4). Letr >0 and x € H.

Then, there exists z € C' such that
1

The following lemma was also given in Combettes and Hirstoaga [7].
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Lemma 11. Assume that f : C x C — R satisfies (A1) — (A4). Forr > 0 and
x € H, define a mapping T, : H — C' as follows:

1
TTZL‘:{ZECf(Z,y)+;<y—Z,Z—£C>ZO, VyEC}

for all x € H. Then, the following hold:

(1) T, is single-valued;
(2) T, is a firmly nonexpansive mapping, i.e., for all x,y € H,

||T7“x - TTyHQ S <TT~T - Try’x - y>;

(3) F(T,) = EP(f);
(4) EP(f) is closed and conver.

We call such T, the resolvent of f for r > 0. Using Lemmas 10 and 11, Takahashi,
Takahashi and Toyoda [19] obtained the following lemma. See [1] for a more general
result.

Lemma 12. Let H be a Hilbert space and let C' be a nonempty closed convex subset
of H. Let f: C x C — R satisfy (Al) — (A4). Let Ay be a set-valued mapping of H
into itself defined by

Apo JEEH fly) 2ly—u,2), Wel}, Vred,
e 0, VxécdC.

Then, EP(f) = A;l() and Ay is a maximal monotone operator with dom(Ay) C C.
Furthermore, for any x € H and r > 0, the resolvent T, of f coincides with the
resolvent of Ay, i.e.,

Tx=+rA;) 'z

Using Theorem 7, we obtain the following strong convergence theorem which is
related to Liu’s result [10] for strict pseudo-contractions in a Hilbert space.

Theorem 13. Let H be a real Hilbert space and let C' be a nonempty closed convex
subset of H. Let r € R with r < 1 and let U be a widely r-strict pseudo-contraction
of C into H and let f be a bifunction of C' x C into R satisfying (A1) — (A4). Let T,
be the resolvent of f forr > 0. Let 0 < k < 1 and let g be a k-contraction of H into
itself. Let G be a strongly positive bounded linear self-adjoint operator on H with
coefficient 7 > 0. Let 0 < v < % and suppose F(U)NEP(f) # 0. Let x;y =x € H
and let {x,} C H be a sequence generated by

Tnt1 = By + (1 = Bu){anvg(zn) + (I — an G{(1 = t,)U + t, 1}, 20 }
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foralln € N, where {t,,} C (—o0,1), {#.} C (0,1), {a,} C (0,1) and {r,,} C (0, 00)
satisfy
r<t,<b<1, O0<liminfg, <limsupp, <1,
n—oo

n—oo

oo
lim o, =0, 5 a, =00, and liminfr, > 0.
n—oo 1 n—oo

-

Then, the sequence {x,} converges strongly to a point zy of F'(U) N EP(f), where
Z0 = PF(U)mEP(f)([ -G+ ’79)20-

Proof. For the bifunction f : C'x C' = R, we can define Ay in Lemma 12. Putting
A=1-U, Br=0forall € H and F = Ay in Theorem 7, we obtain from Lemma
12 that Jy, = I for all A, > 0 and T, = (I + r,Ay)~"! for all r, > 0. As in the
proof of Theorem 9, the sequence {t,,} and U are changed in {),} and A. We have
also from Lemma 12 that FP(f) = (A;)~'0 = F~'0. Furthermore, we have that
for z € C,

2 € (A+B) 0 < 0= Az + Bz
— 0= Az
= z2=Uz
<z € F(U).

So, we obtain the desired result by Theorem 7. O

References

[1] K. Aoyama, Y. Kimura, and W. Takahashi, Mazimal monotone operators and mazimal mono-
tone functions for equilibrium problems, J. Convex Anal. 15 (2008), 395-409.

[2] K. Aoyama, Y. Kimura, W. Takahashi, and M. Toyoda, Approzimation of common fixed points
of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007),
2350-2360.

, On a strongly nonexpansive sequence in Hilbert spaces, J. Nonlinear Convex Anal. 8
(2007), 471-489.

[4] E.Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems,
Math. Student 63 (1994), 123-145.

[5] F.E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces,
Math. Z. 100 (1967), 201-225.

[6] F. E. Browder and W. V. Petryshyn, Construction of fized points of nonlinear mappings in
Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228.

[7] P.L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear
Convex Anal. 6 (2005), 117-136.

[8] K. Eshita and W. Takahashi, Approzimating zero points of accretive operators in general
Banach spaces, JP J. Fixed Point Theory Appl. 2 (2007), 105-116.

[9] B. Halpern, Fized points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961.

— 132 —



[10]
11]
12)
13]
14

[15]

Y. Liu, A general iterative method for equilibrium problems and strict pseudo-contractions in
Hilbert spaces, Nonlinear Appl. 71 (2009), 4852-4861.

P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and non-
strictly conver minimization, Set-Valued Anal. 16 (2008), 899-912.

G. Marino and H.-K. Xu, A general iterative method for nonexpansive mappings in Hilbert
spaces, J. Math. Anal. Appl. 318 (2006), 43-52.

, Weak and strong convergence theorems for strich pseudo-contractions in Hilbert
spaces, J. Math. Anal. Appl. 329 (2007), 336-346.

A. Moudafi, Weak convergence theorems for nonexpansive mappings and equilibrium problems,
J. Nonlinear Convex Anal. 9 (2008), 37-43.

N. Nadezhkina and W. Takahashi, Strong convergence theorem by hybrid method for nonez-
pansive mappings and Lipschitz-continuous monotone mappings, SITAM J. Optim. 16 (2006),
1230-1241.

Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive
mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.

R. T. Rockafellar, On the mazimal monotonicity of subdifferential mappings, Pacific J. Math.
33 (1970), 209-216.

S. Takahashi and W. Takahashi, Strong convergence theorem for a generalized equilibrium
problem and a nonexpansive mapping in o Hilbert space, Nonlinear Anal. 69 (2008), 1025—
1033.

S. Takahashi, W. Takahashi, and M. Toyoda, Strong convergence theorems for mazimal mono-
tone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl. 147 (2010),
27-41.

W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.

, Convexr Analysis and Approximation of Fized Points, Yokohama Publishers, Yoko-
hama, 2000 (Japanese).

, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama,
2009.

, Strong convergence theorems for mazimal and inverse-strongly monotone mappings
in Hilbert spaces and applications, J. Optim. Theory Appl., to appear.

W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and
monotone mappings, J. Optim. Theory Appl. 118 (2003), 417-428.

W. Takahashi, J.-C. Yao, and K. Kocourek, Weak and strong convergence theorems for general-
ized hybrid nonself-mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 567-586.
R. Wittmann, Approrimation of fixed points of nonexpansive mappings, Arch. Math. 58
(1992), 486-491.

H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull.
Austral. Math. Soc. 65 (2002), 109-113.

H. Zhou, Convergence theorems of fixed points fot k-strict pseudo-contractions in Hilbert
spaces, Nonlinear Anal. 69 (2008), 456—462.

— 133 —



(Mayumi Hojo) Graduate School of Science and Technology, Niigata University, Niigata, Japan
E-mail address: £07n013g@alumni.niigata-u.ac.jp

(Wataru Takahashi) Department of Mathematical and Computing Sciences, Tokyo Institute of
Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
E-mail address: wataru@is.titech.ac. jp

Received September 18, 2012

— 134 —



