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CHARACTERIZATION AND AUTOMATIC
CONTINUITY OF SEPARATING MAPS

BETWEEN BANACH MODULES

LIDA MOUSAVI AND FERESHTEH SADY

Abstract. A linear map T : A −→ B between algebras (or spaces of functions) A
and B is called separating if x ·y = 0 implies Tx ·Ty = 0 for all x, y ∈ A. It is well

known that a separating map between certain commutative semisimple Banach

algebras is very close to being a weighted composition operator on the maximal

ideal spaces. In this paper, after introducing the notion of the cozero set for the

elements of a Banach module, we first extend the notion of the separating maps

to Banach module case. Our approach depends on the notion of point multipliers

on a Banach module X and the relation between hyper maximal submodules of

X and point multipliers on it. Then we generalize some well known results about

separating maps between certain subspaces of continuous functions to Banach

module case. In particular, we show that, imposing some additional assumptions

on Banach modules, such map can be represented as a variation of a weighted

composition operator. We also obtain a result concerning the automatic continuity

of a bijective separating map whose inverse is also separating.

1. INTRODUCTION

Given two arbitrary algebras (or spaces of functions) A and B, a linear map T :

A −→ B is said to be separating if Tx · Ty = 0 for all x, y ∈ A with x · y = 0. If

A and B are spaces of complex-valued functions on some topological spaces, then

a linear map T : A −→ B is separating whenever for each f, g ∈ A with disjoint

cozero sets, their images under T have disjoint cozero sets as well.

Separating maps between Lp-spaces were studied by Banach in [5]. Later on, J.

Lamperti [16] and W. Arendt [4] continued studying such maps called Lamperti

operators.

Evidently every algebra homomorphism is a separating map. Weighted composi-

tion operators are typical examples of separating maps between algebras of functions.

2010 Mathematics Subject Classification. Primary 46H25, 47B37.
Key words and phrases. separating maps, Banach modules, automatic continuity, cozero set,

point multipliers.

— 75 —



In fact, in certain important cases, separating maps are very close to being a ho-

momorphism or a weighted composition operator. For instance, for the supremum

norm Banach algebras C(X) and C(Y ) of all continuous complex-valued functions

on compact Hausdorff spaces X and Y , respectively, a description of a separating

map T : C(X) −→ C(Y ) was given by K. Jarosz in [11] and it was shown that if

T is bijective, then T is automatically continuous and is a weighted composition

operator which induces a homeomorphism between X and Y . These results have

been extended by J.J. Font in [9] for the case where C(X) and C(Y ) are replaced

by regular commutative semisimple Banach algebras. Fredholm separating maps

between the Banach algebras C0(X) and C0(Y ) of all continuous complex-valued

functions on locally compact Hausdorff spaces X and Y vanishing at infinity, were

studied by J.S. Jeang and N.C. Wong in [13] and it was proved that when such

operator exists, X and Y are homeomorphic after removing finite subsets.

In recent years there has been a considerable attention to study separating maps

between other algebras. We refer to [18] for some results on separating maps between

certain operator algebras, to [15] for the study of such maps between algebras of

differentiable functions and to [2] and [14] for separating maps between certain spaces

of Lipschitz functions.

We should note that the notion of separating maps between vector lattices E and

F is also well-known. For such structures a linear map T : E −→ F is separating if

|f | ∧ |g| = 0 implies |Tf | ∧ |Tg| = 0, see [1] and [4] for some related results in the

lattice case.

In this paper we shall develop the notion of separating maps to Banach module

case and investigate the well known results for this more general case. Our approach

depends on the notion of point multipliers and hyper maximal submodules of a

Banach module and their properties given in [7]. Using this idea we define the

notion of cozero set for the elements of a Banach module and then we extend the

results of [9] to give a representation for a separating map between certain Banach

modules. We show that under certain conditions a linear separating map T : X −→
Y between (left) Banach modules X and Y over commutative semisimple Banach

algebras can be represented as a variation of weighted composition operators. We

also give a result concerning the automatic continuity of a bijective separating map

whose inverse is also separating.

2. Preliminaries

Let A be a Banach algebra with or without unit. We denote the set of all characters

(non-trivial complex homomorphisms) onA by σ(A) and in the commutative case we

may call it the maximal ideal space of A. The standard unitization of A is denoted
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by A1. Hence, for a commutative Banach algebra A, the maximal ideal space of

A1 can be identified by σ0(A) := σ(A) ∪ {0}. The Jacobson radical of A will be

denoted by Rad(A) and when σ(A) ̸= ∅, â denotes the Gelfand transformation of

a ∈ A.

Let A be a commutative Banach algebra. For a non-empty subset S ⊆ σ(A), the

kernel of S is defined by kA(S) = ∩φ∈S ker(φ) and for an ideal J in A the hull of J

is defined by hA(J) = {φ ∈ σ(A) : J ⊆ kerφ}.
A commutative Banach algebra A is said to satisfy the Ditkin’s condition if for

every a ∈ A and φ ∈ σ(A) with â(φ) = 0, there exists a sequence {an} of elements of

A such that each ân, n ∈ N, vanishes on a neighborhood of φ and ∥a ·an−a∥ −→ 0.

If, furthermore, A is not unital, then for every a ∈ A there must exist a sequence

{an} in A such that each ân has a compact support and ∥a · an − a∥ −→ 0.

We should note that in the above definition of Ditkin’s condition (which comes

from [10]), for a point φ ∈ σ(A) and a ∈ A with â(φ) = 0 it is not assumed that the

elements of the corresponding sequence {an} has compact support. However, some

authors consider this additional assumption in the definition, see for example [8].

Let A be a Banach algebra. We say that a left Banach A-module X is essential

if A · X = X , where A·X = span{a ·x : a ∈ A, x ∈ X}. It is evident that every left

Banach A-module X can be considered as a left Banach A1-module with the module

action defined by (a, λ) · x = a · x+ λx, for a ∈ A, λ ∈ C and x ∈ X . Clearly, under

this module action X is unital, i.e. 1A1 · x = x for every x ∈ X . Let X be a left

Banach module over a Banach algebra A. Following [7], for a point φ ∈ σ0(A), a

linear functional ξ ∈ X ∗ is said to be a point multiplier at φ if ⟨ξ, a · x⟩ = φ(a)⟨ξ, x⟩
for all a ∈ A and x ∈ X . The submodules of X with codimension one will be

referred to as hyper maximal (left) submodules of X . Obviously the kernel of each

non-trivial point multiplier is a closed hyper maximal left submodule of X . It is

easy to see that for any closed hyper maximal submodule P of X there exists a

non-trivial point multiplier ξ ∈ X ∗ at some point φ ∈ σ0(A), such that P = ker(ξ)

(see for example [6] for the unital case). If, moreover, X is essential, then there is

no non-trivial point multiplier at 0 and so in this case any closed hyper maximal

submodule P of X is the kernel of a point multiplier at some point of σ(A). We

denote the set of all closed hyper maximal left submodules of X by ∆A(X ) and we

set ∆1
A(X ) = ∆A(X ) ∪ {X}.

Let A be a commutative Banach algebra and X be an essential left Banach A-

module. We define the natural map νX : ∆A(X ) −→ σ(A) in such a way that for each
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P ∈ ∆A(X ), νX (P ) is the unique point in σ(A) corresponding to P ∈ ∆A(X ). We

also consider the extended map ν̃X : ∆1
A(X ) −→ σ0(A) of νX by setting ν̃X (X ) = 0.

In the sequel we assume that A is a commutative Banach algebra with non-empty

maximal ideal space and X is an essential left Banach A-module with ∆A(X ) ̸= ∅.
Based on [7], we call a multiplier T on X a simple multiplier if T (P ) ⊆ P for each

P ∈ ∆A(X ). The annihilator of a subset M of X , is the set annA(M) = {a ∈ A :

a ·M = {0}} and the Gelfand radical of X is defined by radA(X ) =
∩

P∈∆A(X ) P

(see [7]). We say that X is hyper semisimple if radA(X ) = {0}. For a non-empty

subset S ⊆ ∆1
A(X ), the kernel of S denoted by kX (S) is defined by kX (S) = ∩P∈SP ,

we also set kX (∅) = X . For an element Q ∈ ∆1
A(X ) we may use the notation

kX (Q) for kX ({Q}) which is clearly equal to Q. For a submodule M of X we set

(M :A X ) = {a ∈ A : a · X ⊆ M} and the hull of M is defined by hX (M) = {P ∈
∆A(X ) : (M :A X ) ⊆ (P :A X )}. Clearly for any subset S of ∆A(X ), kX (S) is

a closed submodule of X containing radA(X ). The corresponding topology to the

closure operation S 7→ hXkX (S), S ⊆ ∆A(X ), is called the hull-kernel topology on

∆A(X ). For some preliminaries about the hulls and kernels hX (M) and kX (S), we

refer the reader to [7].

We note that a linear functional ξ ∈ X ∗, is a non-trivial point multiplier on the

left Banach A-module X at a point φ ∈ σ(A) if and only if ξ is a non-trivial point

multiplier on X as a left A1-module at the extension of φ on A1. Thus, since X is

assumed to be essential we get easily that ∆A(X ) = ∆A1(X ) and consequently X is

a hyper semisimple left Banach A-module if and only if it is hyper semisimple as a

left Banach A1-module.

The next proposition has been proved in [7] for the case that A is unital and X
is a unital left A-module.

Proposition 2.1. The following statements hold:

(a) kA(νX (S)) = (kX (S) :A X ), for each S ⊆ ∆A(X ).

(b) If σ(A) and ∆A(X ) are endowed with their corresponding hull-kernel topolo-

gies, then the natural map νX : ∆A(X ) −→ σ(A) is continuous and sends

every closed (open) subset of ∆A(X ) to a closed (open) subset of νX (∆A(X )).

(c) If X is hyper semisimple and νX is surjective, then Rad(A) = annA(X ) =

annA1(X ).

Proof. The proofs of (a) and (b) are minor modifications of Propositions 3.4 and 3.5

in [7].

(c) Using part (a), since νX is surjective and X is hyper semisimple, we have

Rad(A) = kA(σ(A)) = kA(νX (∆A(X ))) = (kX (∆A(X )) :A X ) = (0 :A X ) = annA(X ).
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Consider now X as an A1-module. Then, as we noted before, ∆A1(X ) = ∆A(X )

and so νX can be considered as the corresponding natural map for the A1-module

X . Hence using part (a) for A1 instead of A, since X is hyper semisimple as an

A1-module, we get

Rad(A1) = kA1(σ0(A)) = kA1(σ(A)) = kA1(νX (∆A1(X )))

= (kX (∆A1(X )) :A1 X ) = (0 :A1 X ) = annA1(X ).

Therefore, annA1(X ) = Rad(A1) = Rad(A) = annA(X ).

�

Remark. We note that for a commutative unital Banach algebra A, considering

A as a module over itself, it follows easily from Example 2.2 in [7] that Rad(A) =

radA(A). It was shown also in Proposition 3.6 in [7] that if A is unital and X
is a hyper semisimple unital left Banach A-module, then the natural map νX :

∆A(X ) −→ σ(A) is surjective if and only if annA(X ) = radA(A). However, the

following example shows that the equality annA(X ) = radA(A) is not sufficient

for surjectivity of νX . The proof of Proposition 3.6 in [7] shows, indeed, that if

annA(X ) = radA(A), then νX (∆A(X )) is hull-kernel dense in σ(A).

Example 2.1. Let A be a commutative unital semisimple Banach algebra satisfying

the Ditkin’s condition. Identifying A with its image under the Gelfand transforma-

tion, we can assume that each element in A is a continuous function on σ(A). Let

σ(A) have infinitely many points. Then there exists a non-singular point φ0 in σ(A).

Consider now the (maximal) ideal X = {f ∈ A : f(φ0) = 0} in A, which is clearly

a unital Banach module over A. Clearly for each φ ∈ σ(A)\{φ0}, the restriction

φ|X is a non-trivial point multiplier on X . This implies easily that X is a hyper

semisimple Banach left A-module. On the other hand, if ξ ∈ X ∗ is a non-trivial

point multiplier at some point φ ∈ σ(A), then since A satisfies the Ditkin’s condi-

tion, it follows easily that φ ̸= φ0. Choosing g0 ∈ X with ⟨ξ, g0⟩ = 1, we conclude

that for each g ∈ X

φ(g0)⟨ξ, g⟩ = ⟨ξ, g0g⟩ = ⟨ξ, gg0⟩ = φ(g)⟨ξ, g0⟩ = φ(g),

that is ξ = λφ|X for some non-zero scalar λ. Thus ∆A(X ) = {ker(φ) ∩ X : φ ∈
σ(A)\{φ0}} and therefore νX : ∆A(X ) −→ σ(A) is not surjective, while since φ0 is a

non-singular point of σ(A), it can be easily verified that annA(X ) = radA(A) = {0}.

For an example of a Banach algebra satisfying the hypotheses of the above ex-

ample, we can refer to the supremum norm Banach algebra C(K) where K is an

infinite compact Hausdorff space. For 0 < α ≤ 1 and an infinite compact metric

space (K, d), the Banach algebra lip(K,α) consisting of all complex-valued functions
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f on K satisfying the Lipschitz condition of order α such that lim |f(x)−f(y)|
d(x,y)α

= 0 as

d(x, y) → 0, has also the desired properties.

3. LINEAR SEPARATING MAPS BETWEEN BANACH

MODULES

In this section we introduce the notion of cozero sets for elements of an essential left

Banach module over a commutative Banach algebra. Then we extend the concept

of separating maps for Banach module case and give some results related to the

representation and the automatic continuity of separating maps. We need to recall

that in our earlier work [19] we introduced the concept of cozero set for the elements

of a Banach module, based on point multipliers, and gave some results concerning

Banach module valued separating maps defined on a commutative Banach algebra.

Here we apply an alternative idea and obtain more general results.

As before, in this section we assume that A is a commutative Banach algebra

with σ(A) ̸= ∅ and X is an essential left Banach A-module with ∆A(X ) ̸= ∅ unless

otherwise is specified.

Definition 3.1. For each x ∈ X we define the hyper cozero set and the cozero set

of x by cozh(x) := {P ∈ ∆A(X ) : x ̸∈ P} and coz(x) := νX (cozh(x)), respectively.

If A is a commutative Banach algebra such that A2 = A, then considering A as a

left A-module with usual action, we see that ∆A(A) = {ker(φ) : φ ∈ σ(A)} and for

any a ∈ A, coz(a) is, indeed, the cozero set of the continuous function â on σ(A).

We note that since ∆A1(X ) = ∆A(X ), it follows that the cozero set of each x ∈ X
as an element of the A-module X is the same as its cozero set when we consider X
as an A1-module.

In the next proposition we state some elementary properties of the defined cozero

sets.

Proposition 3.1. The following statements hold:

(a) For each a ∈ A and x ∈ X , coz(a · x) ⊆ coz(â) ∩ coz(x).

(b) If X is hyper semisimple and coz(x) = ∅, then x = 0.

(c) coz(x1 + x2) ⊆ coz(x1) ∪ coz(x2) for each x1, x2 in X .

Proof. It is straightforward. �

It should be noted that, the notion of the support for an element of a left Ba-

nach A-module X is well-known, see for example [7] and [17]. In fact, the support

suppA(x) of an element x ∈ X is defined as hA(annA(X )), i.e. the hull of the ideal
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annA(x) in A. The next proposition shows that if X is hyper semisimple, then the

support of x ∈ X is the hull-kernel closure of the above defined coz(x).

Proposition 3.2. If X is hyper semisimple, then for each x ∈ X , annA(x) =

kA(coz(x)). In particular, suppA(x) = hAkA(coz(x)).

Proof. Let a ∈ annA(x) and P ∈ cozh(x). Let ξ ∈ X ∗ be a non-trivial point

multiplier such that P = ker(ξ). Then νX (P )(a)⟨ξ, x⟩ = ⟨ξ, a · x⟩ = 0 thus

νX (P )(a) = 0, since x ̸∈ P . Consequently a ∈ ker(νX (P )) for any P ∈ cozh(x),

that is a ∈ kA(coz(x)). Conversely, assume that a ∈ kA(coz(x)), then for each

P ∈ cozh(x), a ∈ ker(νX (P )) and consequently ⟨ξ, a · x⟩ = νX (P )(a)⟨ξ, x⟩ = 0.

Hence a · x ∈ ker(ξ) = P and this implies easily that a · x ∈ radA(X ) = {0}, i.e.
a · x = 0 as desired. �

Definition 3.2. Let A and B be commutative Banach algebras and X and Y be

essential left Banach modules over A and B, respectively. We say that a linear map

T : X −→ Y is separating if coz(Tx1)∩coz(Tx2) = ∅ whenever coz(x1)∩coz(x2) = ∅,
for each x1, x2 ∈ X. A linear bijective map T : X −→ Y is biseparating if T and

T−1 are both separating.

If A and B are commutative semisimple Banach algebras which are unital, or more

generally each one is essential as a Banach module over itself, then, since the cozero

sets of the algebra elements are the cozero sets of their Gelfand representations,

every linear separating map T : A −→ B in the usual sense is separating for the

above defined module case and vice versa. The other examples of separating mapa

are as follows.

Example 3.1. (a) If X is an essential left Banach module over a commutative Banach

algebra A and T : X −→ X is a linear map satisfying T (P ) ⊆ P for each P ∈
∆A(X), then it is easy to see that T is a separating map. In particular, every simple

multiplier on X is a separating map.

(b) Let A be a commutative Banach algebra andX, Y be two essential left Banach

A-modules such that νY is injective, for instance for A = C([0, 1]) and Y = C([0, 1])∗,

the natural map νY is injective by Example 4.4 in [7]. Let Φ : ∆A(Y ) −→ ∆A(X)

be an arbitrary map and T : X −→ X be a linear map such that T (Φ(P )) ⊆ P for

each P ∈ ∆A(Y ). Then it can be easily verified that T is separating.

(c) Let A be a commutative semisimple Banach algebra such that A2 is dense in

A. Considering A as a Banach A1-module, we have ∆A1(A) = {ker(φ) : φ ∈ σ(A)}.
Moreover, every multiplier on A is a simple multiplier by Example 4.3 in [7], and so

is a separating map.

Remark. It should be noted that for a commutative semisimple Banach algebra

A, since closed codimensional one ideals in A are not necessarily modular, it follows
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that ∆A1(A) is not necessarily the set of all maximal modular ideals in A without

assuming that A2 is dense in A. Consider, for example, the Banach space A =

C([0, 1]) of all continuous complex-valued functions on [0, 1] equipped with the new

defined product f ◦ g(t) = tf(t)g(t), for f, g ∈ A and t ∈ [0, 1]. Then one can see

that σ(A) = {tδt : t ∈ (0, 1]}, where for each t ∈ [0, 1], δt is the evaluation functional

at t. Hence A is semisimple and ker(δ0) is a one codimensional closed ideal in A

which is not modular. However, it is easy to see that, this is true if we assume,

furthermore, that A2 is dense in A.

In the sequel we assume that A is a commutative semisimple regular Banach

algebra, B is a commutative Banach algebra and X and Y are essential left Banach

modules over A and B, respectively, such that ∆A(X ) and ∆B(Y ) are non-empty

and the natural map ν̃X : ∆1
A(X ) −→ σ0(A) is surjective. We also assume that

T : X −→ Y is a linear separating map.

For every P ∈ ∆B(Y), let δP : Y −→ Y/P be the quotient map δP (y) = y + P ,

y ∈ Y . We now divide ∆B(Y) into three disjoint parts as follows

∆0(Y) = {P ∈ ∆B(Y) : δP ◦ T = 0},
∆c(Y) = {P ∈ ∆B(Y)\∆0(Y) : δP ◦ T is continuous},
∆d(Y) = {P ∈ ∆B(Y)\∆0(Y) : δP ◦ T is discontinuous}.

Definition 3.3. For any P ∈ ∆B(Y)\∆0(Y), we define V (δP ◦ T ) as the set of all

Q ∈ ∆1
A(X ) such that for any open neighborhood U of ν̃X (Q) in σ0(A), there exists

a point x ∈ X with coz(x) ⊆ U and Tx ̸∈ P . We call the set V (δP ◦ T ) the support

of T at P .

Proposition 3.3. For any P ∈ ∆B(Y)\∆0(Y), the set V (δP ◦ T ) is non-empty.

Proof. Assume on the contrary that P ∈ ∆B(Y)\∆0(Y) and V (δP ◦T ) = ∅. Then by

the definition of V (δP ◦T ), for each Q ∈ ∆1
A(X ), there exists an open neighborhood

UQ of ν̃X (Q) in σ0(A) such that for any x ∈ X with coz(x) ⊆ UQ, we have Tx ∈ P .

Since ν̃X is assumed to be surjective σ0(A) =
∪

Q∈∆1
A(X ) UQ and so the compactness

of σ0(A) implies that there exist Q1, ..., Qn ∈ ∆1
A(X ) such that σ0(A) =

∪n
i=1 UQi

.

By the regularity of A1, we can find elements ai ∈ A1, i = 1, 2, ..., n, such that

coz(âi) ⊆ UQi
for each 1 ≤ i ≤ n and

∑n
i=1 âi = 1 on σ0(A). Hence

∑n
i=1 ai = 1A1

since A1 is semisimple. Considering X as an A1-module we have x = 1A1 · x =

(
∑n

i=1 ai)·x =
∑n

i=1 ai·x for each x ∈ X . Since for i = 1, ..., n the cozero set coz(ai·x)
is contained in coz(âi) it follows that coz(ai · x) ⊆ UQi

. Therefore, T (ai · x) ∈ P

for each i = 1, ..., n, and consequently δP ◦ T (x) =
∑n

i=1 δP (T (ai · x)) = 0, that is,

P ∈ ∆0(Y), which is a contradiction. �
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Proposition 3.4. Let P ∈ ∆B(Y)\∆0(Y).

(a) If Q ∈ V (δP ◦ T ) and x ∈ X such that ν̃X (Q) ̸∈ clσ0(A)(coz(x)), where

clσ0(A)(·) denotes the closure in σ0(A), then Tx ∈ P .

(b) If Q1, Q2 ∈ V (δP ◦ T ), then ν̃X (Q1) = ν̃X (Q2).

Proof. (a) Set U = σ0(A)\clσ0(A)(coz(x)). Then U is a neighborhood of ν̃X (Q)

in σ0(A) and so, there exists x0 ∈ X such that coz(x0) ⊆ U and Tx0 ̸∈ P , i.e.

νY(P ) ∈ coz(Tx0). Since coz(x0)∩coz(x) = ∅, it follows that coz(Tx0)∩coz(Tx) = ∅
and so νY(P ) ̸∈ coz(Tx), that is Tx ∈ P .

(b) Let Q1, Q2 ∈ V (δp ◦ T ). Assume that ν̃X (Q1) ̸= ν̃X (Q2) and choose disjoint

neighborhoods U1 and U2 of ν̃X (Q1) and ν̃X (Q2), respectively. Since Q1, Q2 ∈ V (δP ◦
T ), we can find elements x1, x2 ∈ X such that coz(x1) ⊆ U1, coz(x2) ⊆ U2, Tx1 ̸∈
P and Tx2 ̸∈ P . Then clearly coz(x1) ∩ coz(x2) = ∅, and therefore coz(Tx1) ∩
coz(Tx2) = ∅ while νY(P ) ∈ coz(Tx1) ∩ coz(Tx2), which is a contradiction. �

In the following we impose an additional assumption on X which will be called

hyper Ditkin’s condition to ensure that for each P ∈ ∆B(Y)\∆0(Y), the support set

V (δP ◦ T ) is a singleton.

Definition 3.4. Let A be a commutative Banach algebra and X be a left essential

Banach A-module. We say that X satisfies the hyper Ditkin’s condition if for each

x ∈ X and Q ∈ ∆1
A(X) with x ∈ Q, there exists a sequence {an} in A such that

each ân vanishes on a neighborhood of ν̃X(Q) in σ0(A) and ∥an.x− x∥ −→ 0 in X.

Remark. If A is a commutative Banach algebra satisfying the Ditkin’s condition,

then since A2 = A, we have ∆A(A) = {ker(φ) : φ ∈ σ(A)} and it follows easily that

A satisfies the hyper Ditkin’s condition as a module over itself. It is also easy to

see that for each φ0 ∈ σ(A) the maximal modular ideal M = ker(φ0) in A is an

essential A-module with ∆A(M) = {ker(φ|M) : φ ∈ σ(A)\{φ0}}, and consequently

M satisfies the hyper Ditkin’s condition as well.

Example 3.2. Let A be a non-unital commutative Banach algebra and let X be a

dense ideal in A. Assume, furthermore, that ∥.∥X is a norm onX making it a Banach

algebra satisfying the Ditkin’s condition such that ∥a ·x∥X ≤ ∥a∥ ∥x∥X holds for all

a ∈ A and x ∈ X. Then the restriction map φ 7→ φ|X defines a continuous injective

map from σ(A) onto σ(X) and it is easy to see that X is an essential A-module with

∆A(X) = {ker(φ|X) : φ ∈ σ(A)}, and consequently X satisfies the hyper Ditkin’s

condition. In particular, every Segal algebra on a locally compact abelian group G

satisfies the hyper Ditkin’s condition as an L1(G)-module.

Lemma 3.1. Let X satisfy the hyper Ditkin’s condition. Then for each P ∈
∆B(Y)\∆0(Y), the support V (δP ◦ T ) of T is a singleton.
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Proof. Let P ∈ ∆B(Y)\∆0(Y). For each Q ∈ ∆1
A(X ) we set

JQ = {x ∈ X : ν̃X (Q) /∈ clσ0(A)(coz(x))}.

Then for each x ∈ JQ, since ν̃X (Q) ̸∈ coz(x), it follows that x ∈ Q. This shows

that JQ (and hence its closure) is contained in Q. We shall show that JQ = Q. For

suppose that x ∈ Q, then by the hypothesis, there exists a sequence {an} in A such

that each ân vanishes on a neighborhood Vn of ν̃X (Q) and ∥an · x− x∥ −→ 0. Since

coz(an · x) ⊆ coz(ân) ⊆ σ0(A)\Vn, it follows that Vn ∩ coz(an · x) = ∅ for all n ∈ N.
Therefore, ν̃X (Q) ̸∈ clσ0(A)(coz(an · x)), that is, an · x ∈ JQ. Hence x ∈ JQ and

consequently JQ = Q.

Now let Q1 and Q2 be two distinct points in V (δP ◦ T ). By Proposition 3.4(b),

ν̃X (Q1) = ν̃X (Q2), and therefore JQ1 = JQ2 . Hence Q1 = JQ1 = JQ2 = Q2, as

desired. �

In the case where X satisfies the hyper Ditkin’s condition, the above lemma

allows us to define a map Φ : ∆B(Y)\∆0(Y) −→ ∆1
A(X ) by {Φ(P )} = V (δP ◦ T ),

P ∈ ∆B(Y)\∆0(Y).

Lemma 3.2. Let X satisfy the hyper Ditkin’s condition and P ∈ ∆B(Y)\∆0(Y).

Then P ∈ ∆c(Y) if and only if Φ(P ) = T−1(P ).

Proof. Assume first that P ∈ ∆c(Y). For each Q ∈ ∆1
A(X ), let JQ be defined

as in the previous lemma. If x ∈ JΦ(P ), then ν̃X (Φ(P )) ̸∈ clσ0(A)(coz(x)) and so

by Proposition 3.4(a), T (x) ∈ P , i.e. x ∈ ker(δP ◦ T ). This shows that JΦ(P ) ⊆
ker(δP ◦ T ) and since δP ◦ T is continuous JΦ(P ) ⊆ ker(δP ◦ T ). As it was shown in

the proof of the preceding lemma, Φ(P ) = JΦ(P ), hence Φ(P ) ⊆ ker(δP ◦ T ). On

the other hand, ker(δP ◦ T ) = T−1(P ) ̸= X , since δP ◦ T ̸= 0, thus Φ(P ) ̸= X and

consequently Φ(P ) = T−1(P ), since Φ(P ) is a hyper maximal submodule.

Assume now that P ∈ ∆B(Y)\∆0(Y) such that Φ(P ) = T−1(P ). Then clearly

Φ(P ) ̸= X . Let ω(P ) : X/Φ(P ) −→ Y/P be defined by ω(P )(x+Φ(P )) = Tx+P =

δP ◦ T (x), x ∈ X . Since Φ(P ) has codimension one in X , it follows that the linear

map ω(P ) is continuous, which implies that δP ◦ T is continuous as well. �

The proof of the above lemma shows, in particular, that Φ(∆c(Y)) ⊆ ∆A(X ).

Now we give a description of the separating map T as follows. Consider first the

following subset of ΠP∈∆A(X )X/P :

X = {x = (xP + P )P∈∆A(X ) : sup
P∈∆A(X )

∥xP + P∥ <∞}.

Then X is a Banach space under the norm defined by ∥x∥ = supP∈∆A(X ) ∥xp + P∥,
x = (xP + P )P∈∆A(X ) ∈ X which is actually a left Banach A-module in a natural
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way (see [7] for the case that A is unital). Furthermore, for each x ∈ X the map

GX : X −→ X defined by GX (x) = x̂, where for each x ∈ X , x̂ = (x+P )P∈∆A(X ) is a

norm decreasing map which is injective if X is hyper semisimple. Similar notations

will be applied for the left Banach module Y .

Theorem 3.1. Under the hypotheses of Lemma 3.2, there exists a complex-valued

function ω : ∆c(Y ) −→ C such that T̂ x(P ) = ω(P ) · x̂(Φ(P )) for all P ∈ ∆c(Y ).

Proof. Let P ∈ ∆c(Y ) and let ω(P ) : X/Φ(P ) −→ Y/P be defined by ω(P )(x +

Φ(P )) = Tx + P = δP ◦ T (x), x ∈ X. Then clearly ω(P ) is well-defined since

Φ(P ) = T−1(P ). We note that since Φ(P ) and P have codimension one in X and

Y , respectively, we can regard the linear map ω(P ) as a scalar in the complex field.

Considering the function ω : ∆c(Y ) −→ C defined in this way we see that for each

P ∈ ∆c(Y ), T̂ x(P ) = Tx+ P = ω(P ) · (x+ Φ(P )) = ω(P ) · x̂(Φ(P )). �

Another way to give a description of a separating map in module case is as follows:

For each Q ∈ ∆A(X ), set (Q) = {ξ ∈ X ∗ : ker(ξ) = Q} and then put ∆̃c(Y) =∪
P∈∆c(Y)(P ) × (Φ(P )). We consider ∆̃c(Y) with the relative product topology in-

herited from Y∗ × X ∗, where X ∗ and Y∗ are equipped with their corresponding

weak-star topologies.

Lemma 3.3. There exists a continuous map ω̃ : ∆̃c(Y) −→ C such that for each

non-trivial point multiplier ξ on X , ξ ◦ T = ω̃(ξ, ζ) · ζ, for all ζ ∈ X∗ with (ξ, ζ) ∈
∆̃c(Y)

Proof. Suppose that P ∈ ∆c(Y) and (ξ, ζ) ∈ (P )× (Φ(P )). Since Φ(P ) = T−1(P ),

it follows that ker(ζ) = ker(ξ ◦ T ), which implies that there exists a nonzero scalar

ω̃(ξ, ζ) such that ξ ◦ T = ω̃(ξ, ζ).ζ. Now we shall prove that the function ω̃ :

∆̃c(Y) −→ C obtained in this way is continuous. For suppose that (ξ0, ζ0) ∈ ∆̃c(Y).

Then there exists a non-zero element x ∈ X such that ⟨ζ0, x⟩ ̸= 0 and there exists

a weak-star open neighborhood U of ζ0 in X ∗ such that for each η ∈ U , ⟨η, x⟩ ̸= 0.

Therefore, we can write ω̃(ξ, ζ) = ⟨ξ,Tx⟩
⟨ζ,x⟩ for all (ξ, ζ) in the neighborhood (Y∗×U)∩

∆̃c(Y) of (ξ0, ζ0) in ∆̃c(Y) , which concludes that ω̃ is continuous as desired. �

In the case where X satisfies the Ditkin’s condition, we define a map

Ψ : ∆B(Y)\∆0(Y) −→ σ0(A)

by Ψ(P ) = ν̃X (Φ(P )), P ∈ ∆B(Y)\∆0(Y ). In the next theorem, we generalize

Propositions 3 and 6 in [9] and give more properties for the given partition of ∆B(Y).

Theorem 3.2. Let X be hyper semisimple and satisfy the hyper Ditkin’s condition.

Then the following statements hold;
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(a) Ψ(cozh(Tx)) ⊆clσ0(A)(coz(x)).

(b) If x ∈ X and U is an open subset of σ0(A) such that x ∈ kX (ν̃
−1
X (U)), then

Tx ∈ kY(Ψ
−1(U)).

(c) Ψ(∆d(Y)) is a finite subset of σ0(A) consisting of non-singular points of

σ0(A).

(d) If T is surjective, then ∆0(Y) = ∅.
(e) If T is injective and Y is hyper semisimple, then clσ0(A)(Ψ(∆c(Y)∪∆d(Y))) =

clσ0(A)(Ψ(∆c(Y)) = σ0(A) and hXkX (Φ(∆c(Y))) = ∆A(X ).

Proof. (a) It is immediate from Proposition 3.4 (a).

(b) Let x ∈ X and U be an open subset of σ0(A) such that x ∈ kX (ν̃
−1
X (U)).

Let P ∈ Ψ−1(U), then U is an open neighborhood of Ψ(P ) = ν̃X (Φ(P )). Since

ν̃X is assumed to be surjective, for every φ ∈ σ0(A))\U there exists an element

Qφ ∈ ∆1
A(X ) with φ = ν̃X (Qφ). Clearly Qφ ̸= Φ(P ), and hence there exists

an open neighborhood Uφ of φ in σ0(A) such that for any t ∈ X with coz(t) ⊆
Uφ we have Tt ∈ P . Since σ0(A)\U ⊆

∪
φ∈σ0(A)\U Uφ, it follows that there exist

φ1, ..., φn ∈ σ0(A)\U such that σ0(A)\U ⊆
∪n

i=1 Uφi
. Set Ui = Uφi

for i = 1, ..., n

and Un+1 = U . Then σ0(A) ⊆
∪n+1

i=1 Ui and so, by the regularity of A1, there exist

ai ∈ A1, i = 1, ..., n + 1 such that coz(âi) ⊆ Ui, i = 1, 2, ..., n + 1, and
∑n+1

i=1 âi = 1

on σ0(A). We claim that an+1 · x = 0. Since x ∈ kX (ν̃
−1
X (U)), it follows that x ∈ Q

for each Q ∈ ν̃−1
X (U). Hence cozh(x) ⊆ ∆1

A(X )\ν̃−1
X (U) = ν̃−1

X (σ0(A)\U), and so

coz(x) ⊆ σ0(A)\U , since ν̃X is surjective. Thus coz(an+1 ·x) ⊆ coz(x)∩ coz(ân+1) ⊆
(σ0(A)\U) ∩ U = ∅ and so an+1 · x = 0 by Proposition 3.1(b). This establishes

the claim. Now since for i = 1, ..., n, coz(ai · x) ⊆ coz(âi) ⊆ Ui it follows that

T (ai · x) ∈ P and consequently Tx + P =
∑n

i=1 T (ai · x) + P = P . Hence Tx ∈ P

for all P ∈ Ψ−1(U), that is Tx ∈ kY(Ψ
−1(U)).

(c) Assume on the contrary that Ψ(∆d(Y)) has infinitely many points and let

{Pn}n∈N be a sequence in ∆d(Y) such that {Ψ(Pn)}n∈N is a sequence of distinct

points in Ψ(∆d(Y)). Since for each n, Pn ̸∈ ∆c(Y), it follows from Lemma 3.2 that

T−1(Pn) ̸= Φ(Pn) and consequently Φ(Pn) is not contained in T−1(Pn), since Φ(Pn)

is either a hyper maximal submodule of X or is X itself. Hence for each n ∈ N, there
exists xn ∈ X such that xn ∈ Φ(Pn) and xn ̸∈ T−1(Pn). Replacing each xn by a

scalar multiple of xn, we can assume that for each n ∈ N, ∥Txn+Pn∥ ≥ n. Since X
satisfies the hyper Ditkin’s condition, for each n ∈ N there exists an element an ∈ A
such that ân vanishes on a neighborhood Un of Ψ(Pn) and ∥an · xn − xn∥ ≤ 1

n2 . We

may assume that Un ∩ Um = ∅ for all n ̸= m.

We now claim that for each n ∈ N, there exists an element zn ∈ X such that

∥Tzn + Pn∥ ≥ n, coz(zn) ⊆ Un and ∥zn∥ ≤ 1
n2 . Set tn = xn − an · xn, n ∈ N, then

clearly for each n ∈ N, tn ∈ Φ(Pn). We note that, similar to Proposition 2.1(a), it is
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easy to see that for each n ∈ N, kA1(Un) = (kX (ν̃
−1
X (Un)) :A1 X ) and consequently

an · X ⊆ kX (ν̃
−1
X (Un)). Hence for each n ∈ N, xn − tn = an · xn ∈ kX (ν̃

−1
X (Un)) and

it follows from part (b) that Txn − Ttn ∈ kY(Ψ
−1(Un)) ⊆ Pn. Thus ∥Ttn + Pn∥ =

∥Txn + Pn∥ ≥ n. For each n ∈ N, choose an open neighborhood Wn of Ψ(Pn) such

that clσ0(A)(Wn) ⊆ Un. Then there exists a sequence {bn} in A1 such that b̂n = 1

on Wn and b̂n = 0 on σ0(A)\Un. Put sn = bn · tn, then clearly sn ∈ Φ(Pn) and since

bn − 1A1 = 0 on Wn, i.e. bn − 1A ∈ kA1(Wn) = (kX (ν̃
−1
X (Wn)) :A1 X ), it follows that

sn − tn = (bn − 1A1)tn ∈ kX (ν̃
−1
X (Wn)). Therefore, Tsn − Ttn ∈ kY(Ψ

−1(Wn)) ⊆ Pn

by part (b), which implies that ∥Tsn + Pn∥ = ∥Ttn + Pn∥ ≥ n. We note also that

coz(sn) = coz(bn · tn) ⊆ coz(b̂n) ⊆ Un, n ∈ N. For each n ∈ N choose cn ∈ A1

such that ĉn vanishes on a neighborhood of Ψ(Pn) and ∥sn − cn · sn∥ ≤ 1
n2 . Setting

zn = sn − cn · sn, we see that zn ∈ Φ(Pn), ∥zn∥ ≤ 1
n2 and coz(zn) ⊆ coz(sn) ⊆ Un.

Moreover, since for each n ∈ N, zn − sn = cn · sn and cn vanishes on a neighborhood

of ψ(Pn) an argument as above shows that Tzn − Tsn ∈ Pn. Hence ∥Tzn + Pn∥ =

∥Tsn + Pn∥ ≥ n as we claimed.

Obviously for the above sequence {zn} we have coz(zn) ∩ coz(zm) = ∅, for all

n ̸= m, which implies that coz(Tzn)∩coz(Tzm) = ∅. Since for each n ∈ N, Tzn ̸∈ Pn

it follows that Pn ∈ cozh(Tzn). Therefore, for each n ̸= m, Pn /∈ cozh(Tzm) that is

Tzm ∈ Pn. Put now z =
∑∞

n=1 zn. Then since for each n ̸= m, coz(zm) ∩ Un = ∅,
we can easily deduce that z − zn ∈ kX (ν̃

−1
X (Un)). This implies that Tz − Tzn ∈

kY(Ψ
−1(Un)) ⊆ Pn by part (b). Hence ∥Tz∥ ≥ ∥Tz + Pn∥ = ∥Tzn + Pn∥ ≥ n, for

each n ∈ N, which is impossible. This contradiction shows that Ψ(∆d(Y)) is finite.

We shall show that each point in Ψ(∆d(Y)) is a non-singular point of σ0(A). Let

P0 ∈ ∆d(Y) such that Ψ(P0) is a singular point of σ0(A) and set U = {Ψ(P0)}.
Then U is an open subset of σ0(A). Let x ∈ Φ(P0), then since X satisfies the hyper

Ditkin’s condition there exists a sequence {an} in A such that ân(Ψ(P0)) = 0 for

each n ∈ N, and ∥an · x − x∥ −→ 0. Furthermore, for any Q ∈ ν̃−1
X (U), since

ker(ψ(P0)) = ker(ν̃X (Q)) = kA1(ν̃X (Q)) = (kX (Q) :A1 X) and an ∈ ker(ψ(P0))

it follows that an · x ∈ kX (Q) = Q, which implies that x ∈ Q. This shows that

Φ(P0) ⊆ kX (ν̃
−1
X (U)) ⊆ Φ(P0), that is Φ(P0) = kX (ν̃

−1
X (U)). Thus using part (b)

we conclude that T (Φ(P0)) ⊆ kY(Ψ
−1(U)) ⊆ P0, that is Φ(P0) ⊆ T−1(P0), and

consequently Φ(P0) = T−1(P0) ̸= X . Hence P0 ∈ ∆c(Y), by Lemma 3.2, which is a

contradiction. Therefore, each point in Ψ(∆d(Y)) is non-singular.

(d) Assume on the contrary that T is surjective and ∆0(Y) ̸= ∅. Let P ∈ ∆0(Y),

then TX ⊆ P ⊆ Y which implies, by the surjectivity of T , that Y = P , a contra-

diction.

(e) Let T be injective and Y be hyper semisimple. Let φ ∈ σ0(A) and assume that

there exists an open neighborhood V of φ with V ∩Ψ(∆c(Y)∪∆d(Y)) = ∅. Choosing
a neighborhood U of φ with clσ0(A)(U) ⊆ V , we can find a non-zero element a ∈ A1
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such that coz(â) ⊆ U . Then clσ0(A)(coz(a · x)) ⊆ clσ0(A)(U) ⊆ V for all x ∈ X and

consequently for any P ∈ ∆c(Y) ∪ ∆d(Y), Ψ(P ) ̸∈ clσ0(A)(coz(a · x)). Therefore,

T (a · x) ∈ P , by Proposition 3.4(a). This clearly implies that T (a · x) ∈ radB(Y) =

{0} for all x ∈ X . The injectivity of T concludes that a · x = 0 for all x ∈ X ,

i.e. a ∈ annA1(X ) = Rad(A) = {0} by Proposition 2.1(c), which is a contradiction.

Thus Ψ(∆c(Y) ∪∆d(Y)) is dense in σ0(A).

For the other equality we need only to show that Ψ(∆d(Y)) ⊆ clσ0(A)(Ψ(∆c(Y))).

For suppose that φ ∈ Ψ(∆d(Y)) and let U be an open neighborhood of φ such that

U ∩ Ψ(∆c(Y)) = ∅. By (c) we can assume that (U\{φ}) ∩ Ψ(∆d(Y)) = ∅. Then

obviously (U\{φ})∩Ψ(∆c(Y)∪∆d(Y)) = ∅, while since φ is a non-singular point of

σ0(A), U\{φ} is a non-empty open subset of σ0(A) and so it has a non-empty inter-

section with Ψ(∆c(Y) ∪∆d(Y)). This contradiction shows that clσ0(A)(Ψ(∆c(Y)) =

σ0(A)

We now prove that Φ(∆c(Y)) is dense in ∆A(X ) with respect to the hull-kernel

topology. Since Ψ(∆c(Y)) is dense in σ0(A) and A is regular, we have

hA1kA1(Ψ(∆c(X ))) = σ0(A)

which concludes that kA1(Ψ(∆c(Y)) = {0}. Similar to Proposition 2.1(a) we have

kA1(Ψ(∆c(Y)) = (kX (Φ(∆c(Y))) :A1 X )

and consequently (kX (Φ(∆c(Y))) :A X ) ⊆ (kX (Φ(∆c(Y))) :A1 X ) = {0}. Thus, by

the definition of the hull, hXkX (Φ(∆c(Y))) = ∆A(X ), as desired. �

Definition 3.5. Let X be a left Banach module over a commutative Banach algebra

A. We say that X is a Banach multiplication module if for any closed left submodule

N of X there exists an ideal I in A such that N = I ·X, where I ·X = span{a · x :

a ∈ I, x ∈ X}.

Clearly every commutative Banach algebra with approximate identity is a Banach

multiplication module over itself. Commutative semisimple Banach algebras satis-

fying the Ditkin’s condition are other examples of Banach multiplication modules

over itself.

Let S(G) be a Segal algebra on a locally compact abelian group G. Then since

S(G) satisfies the Ditkin’s condition, for any closed L1(G)-submodule N of S(G)

we have S(G) ·N = N . Hence every Segal algebra on G is a Banach multiplication

L1(G)-module.

Remark. We note that if X is an essential left Banach multiplication module

over a commutative Banach algebra A, then it can be easily verified that for closed

submodulesM and P of X, (M :A X) ⊆ (P :A X) if and only ifM ⊆ P . We observe

that in this case for each x ∈ X, hXkX (∆A(X)\ cozh(x)) = ∆A(X)\ cozh(x), which
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implies that cozh(x) is an open subset of ∆A(X) in the hull-kernel topology. Hence

if the natural map ν̃X is surjective, it follows from Proposition 2.1(b) that coz(x) is

an open subset of σ0(A) in the hull-kernel topology.

Lemma 3.4. Let X satisfy the hyper Ditkin’s condition. If Y is, in addition, a

Banach multiplication module, then the restriction of Φ to ∆c(Y) is continuous.

Proof. We first show that Ψ is continuous on ∆B(Y)\∆0(Y). Assume on the con-

trary that there exists a net {Pα}α∈I in ∆B(Y)\∆0(Y) converging to a point P0 ∈
∆B(Y)\∆0(Y) and {Ψ(Pα)}α∈I does not converge to Ψ(P0). By compactness of

σ0(A), passing through a subnet, we can assume that {Ψ(Pα)} converges to a point

φ distinct from Ψ(P0). Let U0 and U be disjoint neighborhoods of Ψ(P0) and φ

in σ0(A), respectively. By the definition of Ψ(P0), there exists an element x0 ∈ X
such that coz(x0) ⊆ U0 and Tx0 ̸∈ P0. Since Y is a Banach multiplication mod-

ule cozh(Tx0) is an open subset of ∆B(Y) and so for sufficiently large α, we have

Ψ(Pα) ∈ U and Pα ∈ cozh(Tx0). Thus for such α we can find xα ∈ X such that

coz(xα) ⊆ U and Txα ̸∈ Pα. Therefore, coz(x0) ∩ coz(xα) = ∅ while νY(Pα) ∈
coz(Tx0) ∩ coz(Txα) which is a contradiction. Hence Ψ : ∆B(Y)\∆0(Y) −→ σ0(A)

is continuous.

To prove that Φ is continuous on ∆c(Y), we shall show that for each subset S of

∆c(Y), Φ(hYkY(S) ∩ ∆c(Y)) ⊆ hXkX (Φ(S)). We note that the restriction of Ψ to

∆c(Y) maps this set into σ(A), hence the continuity of Ψ implies that Ψ(hYkY(S)∩
∆c(Y)) ⊆ hAkA(Ψ(S)). Now let P0 ∈ hYkY(S)∩∆c(Y), then Ψ(P0) ∈ hAkA(Ψ(S)),

i.e. kA(Ψ(S)) ⊆ kerΨ(P0), which implies that (kX (Φ(S)) :A X ) ⊆ (Φ(P0) :A X ),

by Proposition 2.1 (a). Hence Φ(P0) ∈ hXkX (Φ(S)), that is Φ(hYkY(S)∩∆c(Y)) ⊆
hXkX (Φ(S)) as desired.

�

Theorem 3.3. Let A,B and X ,Y be as in Theorem 3.2. If, in addition, X is a

Banach multiplication module, Y is hyper semisimple and T : X −→ Y is a bijective

separating map, then

(a) T is continuous.

(b) If T is biseparating and B, Y satisfy the same conditions as A and X , re-

spectively, then Φ is a homeomorphism.

Proof. (a) By Theorem 3.2(d), ∆0(Y) = ∅ and as it was shown in the proof of part

(e) of this theorem, (kX (Φ(∆c(Y))) :A X ) = {0} ⊆ (0 :A X ). Since X is a Banach

multiplication module this inclusion implies kX (Φ(∆c(Y))) = {0}. Let now {xn} be

a sequence in X converging to 0 and Txn −→ Tz for some z ∈ X . Then given any

P ∈ ∆c(Y), we have δP ◦ T (xn) −→ δP ◦ T (z) and δP ◦ T (xn) −→ δP ◦ T (0) = P .

Thus Tz + P = P , for any P ∈ ∆c(Y) which implies that Tz ∈ kY(∆c(Y)). Hence
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z ∈ T−1(P ) = Φ(P ) for all P ∈ ∆c(Y), that is, z ∈ kX (Φ(∆c(Y))) = {0}. This

shows that T is continuous.

(b) The above discussion shows, in particular, that ∆B(Y) = ∆c(Y) and so by

Lemma 3.4, Φ is a continuous map on ∆B(Y) since Y is assumed to be a Banach mul-

tiplication module. By the hypotheses T−1 is separating and hence it is continuous

by the first part. Therefore, the corresponding support map Γ : ∆A(X ) −→ ∆B(Y)

of T−1 is a continuous map with a dense range. Moreover, by Lemma 3.2, we have

Γ(Φ(P )) = T (Φ(P )), for each P ∈ ∆B(Y). On the other hand, for each P ∈ ∆B(Y)

we have Φ(P ) = T−1(P ), which implies that Γ(Φ(P )) = P . In a similar manner, we

can prove that Φ(Γ(Q)) = Q, for every Q ∈ ∆A(X ). Hence Φ is a homeomorphism

from ∆B(Y) onto ∆A(X ). �
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