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ON TOTALLY GEODESIC COMPLEX
SUBMANIFOLDS OF PSEUDO-BOCHNER-FLAT

LOCALLY CONFORMAL KÄHLER MANIFOLDS IN
THE HERMITIAN SENSE
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Dedicated to Professor Kentaro Mikami on the occasion of his 65-th birthday.

Abstract. We prove the l.c.K. version of the characterization theorem, due to

B.-Y. Chen, L. Vanhecke and L. Verstraelen, for totally geodesic complex sub-

manifolds of Bochner-flat Kähler manifolds.

1. Introduction

In [1], B.-Y. Chen, L. Vanhecke and L. Verstraelen proved a characterization theorem

for totally geodesic complex submanifolds of Bochner-flat Kähler manifolds:

Theorem A ([1]) Let (M,J, g) be a complex m-dimensional Kähler submanifold of

a complex n-dimensional Bochner-flat Kähler manifold (M̃, J̃ , g̃). Then M is totally

geodesic if and only if the Ricci tensors R1 and R̃1 of M and M̃ satisfy the following

relation

R̃1 =
n+ 2

m+ 2
R1 +

{
r̃

4(n+ 1)
− (n+ 2)r

4(m+ 1)(m+ 2)

}
g,

where r and r̃ denote the scalar curvatures of M and M̃ respectively.

In [5] the author introduced the notion of the pseudo-Bochner curvature tensor

on a Hermitian manifold which is constructed out of the curvature tensor of the

Hermitian (or Chern) connection and is conformally invariant. In the Kähler case,

this tensor coincides with the original Bochner curvature tensor.

In this paper, the ambient manifolds are assumed to be locally conformal Kähler

(briefly, l.c.K.) manifolds. Then their complex submanifolds inherit l.c.K. structures.

By an l.c.K. submanifold, we mean a complex submanifold with the induced l.c.K.

structure.
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Our purpose of this paper is, with respect to l.c.K. submanifolds, to prove the

following theorem corresponding to Theorem A mentioned above.

Theorem 1.1. Let (M,J, g) be a complex m-dimensional l.c.K. submanifold of a

complex n-dimensional pseudo-Bochner-flat l.c.K. manifold M̃ . Then M is totally

geodesic in the Hermitian sense if and only if the pseudo-Ricci tensors P1 and P̃1

satisfy the following relation

P̃1 =
n+ 2

m+ 2
P1 +

{
p̃

4(n+ 1)
− (n+ 2)p

4(m+ 1)(m+ 2)

}
g, (∗)

where p and p̃ denote the pseudo-scalar curvatures of M and M̃ respectively.

Throughout this paper, we work in C∞-category and deal with connected complex

manifolds of complex dimension ≥ 2 without boundary only.

2. Pseudo-Bochner curvature tensor

LetM be a Hermitian manifold with complex structure J and compatible Riemann-

ian metric g. The Kähler form Ω on M is defined by Ω(X, Y ) = g(X, JY ) for all

vector fields X,Y on M . The Hermitian (or Chern) connection of M is a unique

affine connection D on M such that DJ = 0, Dg = 0, and the torsion tensor T

satisfies T (JX, Y ) = JT (X, Y ) (cf. [4]). The Hermitian connection D and the

Levi-Civita connection ∇ are related by

g(DXY, Z) = g(∇XY, Z) +
3
2
dΩ(JX, Y, Z) (2.1)

for all vector fields X,Y, Z on M . Let H be the Hermitian curvature tensor (the

curvature tensor of D) on M , i.e.,

H(X, Y )Z = DXDYZ −DYDXZ −D[X,Y ]Z.

We also use the Hermitian curvature tensor H of type (0, 4) given by

H(X,Y, Z,W ) = g(H(Z,W )Y,X).

Since DJ = 0 and Dg = 0, the curvature tensor H have the following properties:

For any vector fields X, Y, Z,W on M ,

H(X,Y, Z,W ) = −H(Y,X,Z,W ) = −H(X,Y,W,Z), (2.2)

H(JX, JY, Z,W ) = H(X,Y, JZ, JW ) = H(X, Y, Z,W ). (2.3)

Moreover, a general affine connection D satisfies the Bianchi’s first identity

SX,Y,Z

[
H(X, Y )Z − T (T (X,Y ), Z)− (DXT )(Y, Z)

]
= 0 (cf. [3]),
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or equivalently,

SY,Z,W

[
H(X,Y, Z,W )− g(X,T (T (Y, Z),W ))− g(X, (DY T )(Z,W ))

]
= 0.

Since the torsion tensor T of the Hermitian connection D satisfies T (JX, Y ) =

JT (X,Y ), we then also have

SY,Z,W

[
H(JX, JY, JZ, JW )

+g(X,T (T (Y, Z),W )) + g(JX, (DJY T )(Z,W ))
]
= 0.

Since, by (2.3), H(JX, JY, JZ, JW ) = H(X, Y, Z,W ), the Bianchi’s first identity

for the Hermitian connection D reduces to

SY,Z,W H(X, Y, Z,W ) (2.4)

= 1
2
SY,Z,W

[
g(X, (DY T )(Z,W ))− g(JX, (DJY T )(Z,W ))

]
.

For each unit vector X in TxM , the Hermitian holomorphic sectional curvature

H(X) for the holomorphic plane spanned by X and JX is given by

H(X) = H(X, JX,X, JX).

We have the unique tensor P , called the Hermitian pseudo-curvature tensor ([5]),

on M defined by

P (X, Y, Z,W ) = 1
8

[
H(X,Z, Y,W )−H(X,W, Y, Z) (2.5)

+H(Y,W,X,Z)−H(Y, Z,X,W )

+H(X, JZ, Y, JW )−H(X, JW, Y, JZ)

+H(Y, JW,X, JZ)−H(Y, JZ,X, JW )

+2H(X, Y, Z,W ) + 2H(Z,W,X, Y )
]

for all vector fields X, Y, Z,W on M . This tensor P has the same symmetries as the

Riemannian curvature tensor on a Kähler manifold.

Proposition 2.1. ([5]) For any vector fields X,Y, Z,W on M ,

P (X, Y, Z,W ) = −P (Y,X,Z,W ) = −P (X,Y,W,Z),

P (JX, JY, Z,W ) = P (X, Y, JZ, JW ) = P (X, Y, Z,W ),

P (X, Y, Z,W ) = P (Z,W,X, Y ),

SX,Y,Z P (X, Y )Z = 0
(
SY,Z,W P (X,Y, Z,W ) = 0

)
where g(P (X,Y )Z,W ) = P (W,Z,X, Y ).

In particular, it holds that P (X, JX,X, JX) = H(X, JX,X, JX) for all vector

field X on M . From this, we have the following theorem.
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Theorem 2.1. ([5]) A Hermitian manifold M is of pointwise constant Hermitian

holomorphic sectional curvature k if and only if P = k
8
g△ g.

Here, for any two tensors a, b of type (0,2), a△ b is defined by

a△ b = a⃝∧ b+ a⃝∧ b+ 2a⊗ b+ 2b⊗ a,

where a⃝∧ b denotes a tensor of type (0,4) given by

(a⃝∧ b)(X,Y, Z,W ) = a(X,Z)b(Y,W )− a(X,W )b(Y, Z)

+a(Y,W )b(X,Z)− a(Y, Z)b(X,W ),

and a(X, Y ) = a(X, JY ).

By means of the Hermitian pseudo-curvature tensor P , we also define the (Her-

mitian) pseudo-Ricci tensor P1 and the (Hermitian) pseudo-scalar curvature p as

follows:

P1(X, Y ) = tr
[
Z → P (Z, Y )X

]
, p = trP1.

Pseudo-Ricci tensor P1 is symmetric and compatible with J :

P1(X,Y ) = P1(Y,X), P1(JX, JY ) = P1(X,Y ).

Theorem 2.2. ([5]) Let M be a complex m-dimensional Hermitian manifold of

pointwise constant Hermitian holomorphic sectional curvature k. Then

P1 =
(m+ 1)k

2
g, p = m(m+ 1)k.

Moreover we define a tensor BH, called the pseudo-Bochner curvature tensor ([5]),

on M as follows:

BH = P − 1

2(m+ 2)
g△ P1 +

p

8(m+ 1)(m+ 2)
g△ g. (2.6)

Theorem 2.3. ([5]) The pseudo-Bochner curvature tensor on a Hermitian manifold

is conformally invariant.

Remark 2.1. (cf. [5]) Note that, on Kähler manifold, the pseudo-quantities P, P1, p

and BH defined above coincide with the curvature tensor, the Ricci tensor, the scalar

curvature and the original Bochner curvature tensor of the Levi-Civita connection

respectively.
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3. Locally conformal Kähler manifolds

A Hermitian manifold M is said to be locally conformal Kähler (briefly, l.c.K.)

if there is a closed 1-form ω on M , called the Lee form, such that dΩ = ω ∧ Ω

(cf. [7],[2]). In particular, if ω is exact, M is said to be globally conformal Kähler

(briefly, g.c.K.). If dimCM = m ≥ 3, the closedness of ω follows from the condition

dΩ = ω ∧ Ω. From (2.1), we have immediately the following lemma.

Lemma 3.1. The condition dΩ = ω ∧ Ω is equivalent to the condition

2T (X,Y ) = ω(X)Y − ω(Y )X − ω(JX)JY + ω(JY )JX,

where T is the torsion tensor of the Hermitian connection D of M .

We shall give a typical example of pseudo-Bochner-flat l.c.K. manifolds.

Example 3.1. Let α be any non-zero complex number with |α| ̸= 1, and let Gα be

the cyclic group generated by the transformation (z1, . . . , zm) → (αz1, . . . , αzm) of

Cm − {0}. Then Gα acts freely on Cm − {0} as a properly discontinuous group of

complex analytic transformations. Thus the quotient space Hm
α = (Cm − {0})/Gα

has the structure of a complex manifold. This manifold Hm
α is called the Hopf

manifold. As is well-known (cf. [4]), Hm
α is diffeomorphic with the product S1 ×

S2m−1 of two odd-dimensional spheres. In particular Hm
α is compact, and does not

admit any Kähler metric. On Cm − {0}, we consider a Hermitian metric

ds2 =
2

∥z∥2
m∑
i=1

dzidz̄i,

where ∥z∥2 =
∑m

i=1 z
iz̄i. Since this metric is invariant under the action of Gα, it

induces a Hermitian metric, called the Boothby metric, on Hm
α (cf. [2]). The Hopf

manifold Hm
α with the Boothby metric is an l.c.K. manifold whose local Kähler

metrics are flat. On such a manifold, the pseudo-Bochner curvature tensor vanishes

everywhere.

4. Locally conformal Kähler submanifolds

Let ψ : M → M̃ be a holomorphic immersion of a complex manifold (M,J) into

an l.c.K. manifold (M̃, J̃ , g̃). Then the Riemannian metric g = ψ∗g̃ induced on M

is Hermitian. Let Ω̃ and ω̃ be the Kähler form and Lee form on M̃ respectively.

Then dΩ̃ = ω̃ ∧ Ω̃. Putting Ω = ψ∗Ω̃ and ω = ψ∗ω̃, it is easy to see that Ω is the

Kähler form associated with g and satisfies dΩ = ω ∧Ω. Hence (M,J, g) is an l.c.K.

manifold. The normal space T⊥
x M is the orthogonal complement of TxM in TxM̃
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with respect to g̃. The tangent bundle of M̃ , restricted to M , is the Whitney sum

of the tangent bundle TM and the normal bundle T⊥M ;

TM̃ |M = TM ⊕ T⊥M. (4.1)

We denote by D̃ the Hermitian connection of M̃ with respect to g̃. Let X and Y

be any vector fields on M , and ξ any normal vector field on M . From (4.1) we may

then decompose D̃XY and D̃Xξ respectively as follows ([6]):

D̃XY = DXY + σ(X, Y ), (4.2)

D̃Xξ = −AξX +D⊥
Xξ, (4.3)

where DXY (resp. −AξX) and σ(X, Y ) (resp. D⊥
Xξ) are the tangential and normal

components respectively of D̃XY (resp. D̃Xξ). We call (4.2) (resp. (4.3)) G-formula

(resp. W-formula). D defines the Hermitian connection of M with respect to the

induced Hermitian metric g = ψ∗g̃. σ is a normal vector bundle valued symmetric

bilinear form on M . Since D̃J̃ = 0, σ satisfies

Lemma 4.1. σ(JX, Y ) = σ(X, JY ) = J̃σ(X, Y ).

As is an immediate consequence of Lemma 4.1, we have

Lemma 4.2. tr σ = 0.

This is corresponding to the well-known fact that every Kähler submanifold is

minimal. We call σ the Hermitian second fundamental form of l.c.K. submanifold

M .

With respect to general affine connections, totally geodesic submanifolds are de-

fined as follows:

Definition 4.1. A submanifold N of a manifold Ñ is totally geodesic if geodesics

of N are carried into geodesics of Ñ by the immersion.

In our l.c.K. case, we have the following.

Proposition 4.1. An l.c.K. submanifold M of an l.c.K. manifold M̃ is totally

geodesic in the Hermitian sense if and only if σ = 0 identically.

5. Fundamental Equations

Let M be a complex m-dimensional l.c.K. submanifold of a complex n-dimensional

l.c.K. manifold M̃ . Let H̃ be the curvature tensor of the Hermitian connection D̃

of M̃ . Then, for all vector fields X,Y, Z on M , we have

H̃(X, Y )Z = D̃XD̃YZ − D̃Y D̃XZ − D̃[X,Y ]Z.
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Thus, by using G-formula (4.2) and W-formula (4.3), we obtain

H̃(X, Y )Z = H(X, Y )Z − Aσ(Y,Z)X + Aσ(X,Z)Y

+σ(X,DYZ)− σ(Y,DXZ)− σ([X, Y ], Z)

+D⊥
Xσ(Y, Z)−D⊥

Y σ(X,Z),

where H is the curvature tensor of the Hermitian connection D of M . Therefore,

for all vector fields X, Y, Z,W on M , we have

H(X, Y, Z,W ) = H̃(X, Y, Z,W ) (5.1)

+g̃(σ(X,Z), σ(Y,W ))− g̃(σ(X,W ), σ(Y, Z)).

Equation (5.1) is called G-equation. Moreover, between the Hermitian pseudo-

curvature tensors P and P̃ , there is a similar relation:

P (X, Y, Z,W ) = P̃ (X, Y, Z,W ) (5.2)

+g̃(σ(X,Z), σ(Y,W ))− g̃(σ(X,W ), σ(Y, Z)).

Equation (5.2) is called PG-equation.

Now, suppose the ambient space M̃ is pseudo-Bochner-flat. Then, by (2.6), we

get

P̃ =
1

2(n+ 2)
g̃△ P̃1 −

p̃

8(n+ 1)(n+ 2)
g̃△ g̃ . (5.3)

Moreover, suppose that the pseudo-Ricci-tensors P1 and P̃1 of M and M̃ satisfy the

relation

P̃1(X, Y ) = αP1(X,Y ) + βg(X,Y ) (∗∗)

for any vector fields X, Y on M and for some functions α, β on M . Let E1, ..., E2m

be an orthonormal basis of the tangent space of M . Then, from (5.3), we find

2m∑
i=1

P̃ (Ei, X,Ei, Y ) (5.4)

=
m+ 2

n+ 2
P̃1(X, Y ) +

1

2(n+ 2)

{ 2m∑
i=1

P̃1(Ei, Ei)−
(m+ 1)p̃

n+ 1

}
g(X, Y )

Substituting (∗∗) to (5.4), we get

(n+ 2)
2m∑
i=1

P̃ (Ei, X,Ei, Y ) = (m+ 2)αP1(X, Y ) (5.5)

+

{
αp

2
+ 2(m+ 1)β − (m+ 1)p̃

2(n+ 1)

}
g(X, Y ).
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On the other hand, PG-equation (5.2) implies

2m∑
i=1

P̃ (Ei, X,Ei, Y ) = P1(X, Y ) +
2m∑
i=1

g̃(σ(X,Ei), σ(Y,Ei)).

Therefore we obtain

λP1(X, Y )− µg(X, Y ) = −(n+ 2)
2m∑
i=1

g̃(σ(X,Ei), σ(Y,Ei)), (5.6)

where

λ = n+ 2− (m+ 2)α, µ =
αp

2
+ 2(m+ 1)β − (m+ 1)p̃

2(n+ 1)
. (5.7)

Consequently we have the following.

Theorem 5.1. Let M be a complex m-dimensional l.c.K. submanifold of a com-

plex n-dimensional pseudo-Bochner-flat l.c.K. manifold M̃ satisfying (∗∗). Then

λP1(X,X) − µg(X,X) ≤ 0. The equality sign holds if and only if M is totally

geodesic in the Hermitian sense.

Corollary 5.1. Let M be a complex m-dimensional l.c.K. submanifold of a complex

n-dimensional pseudo-Bochner-flat l.c.K. manifold M̃ satisfying (∗∗). Then

(n+ 1)
[
{n+ 2− 2(m+ 1)α}p− 4m(m+ 1)β

]
≤ −m(m+ 1)p̃.

The equality sign holds if and only if M is totally geodesic in the Hermitian sense.

6. Proof of Theorem 1.1

If P1 and P̃1 satisfy (∗), then they satisfy (∗∗) with

α =
n+ 2

m+ 2
, β =

p̃

4(n+ 1)
− (n+ 2)p

4(m+ 1)(m+ 2)

from which we find λ = µ = 0, where λ and µ are given by (5.7). Thus, by Theorem

5.1, we see that M is totally geodesic in the Hermitian sense.

Conversely, if M is a totally geodesic submanifold of M̃ in the Hermitian sense,

then PG-equation (5.2) and (5.4) imply

P1 =
1

2(n+ 2)

2m∑
i=1

P̃1(Ei, Ei)g +
m+ 2

n+ 2
P̃1 −

(m+ 1)p̃

2(n+ 1)(n+ 2)
g (6.1)

on M . From this, we find

p =
2(m+ 1)

n+ 2

2m∑
i=1

P̃1(Ei, Ei)−
m(m+ 1)p̃

(n+ 1)(n+ 2)
(6.2)

on M . Substituting (6.2) into (6.1), we obtain (∗).
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Remark 6.1. On an l.c.K. submanifold M of M̃ , by (2.1) we have

D̃XY = ∇̃XY − 1

2
ω(X)Y − 1

2
ω(JX)JY +

1

2
g(X,Y )B̃,

DXY = ∇XY − 1

2
ω(X)Y − 1

2
ω(JX)JY +

1

2
g(X, Y )B

for all vector fields X, Y on M , where B = ω# and B̃ = ω̃# are the Lee vector fields

of M and M̃ , respectively. From these equations, we get

σ(X, Y ) = h(X, Y ) +
1

2
g(X,Y )B̃⊥,

where h denotes the (Riemannian) second fundamental form and B̃⊥ the normal

component of B̃, i.e., B̃⊥ = B̃ − B. Therefore σ = 0 means that for any normal

vector field ξ on M , we have

g(A∇
ξ (X), Y ) = g̃(h(X, Y ), ξ) = −1

2
ω̃(ξ)g(X, Y ),

where A∇
ξ denotes the Weingarten operator corresponding to ξ. Namely, an l.c.K.

submanifold M with σ = 0 is a totally umbilical submanifold of M̃ in the usual

Riemannian sense.
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