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PROPERTIES ON C∗-ALGEBRAS WITH OR
WITHOUT RESIDUAL DIMENSION FINITE

TAKAHIRO SUDO

Abstract. We study and develope a general theory for C∗-algebras by consid-

ering their residual dimension. For this we introduce a renewed notion that is

equivalent to RFD, to divide C∗-algebras into two classes to be clarified as a main

purpose.

1. Introduction

We study and develope a general theory for (Banach or) C∗-algebras by considering

their residual dimension. For this we introduce a renewed notion RDF (residual

dimension finite) to divide C∗-algebras into two classes to be clarified as a main

purpose. The notion for C∗-algebras is equivalent to their being residually finite

dimensional (RFD), but this time we would like to emphasize being RFD as an

independent role of dimension and to rename it to having RDF, slightly grammat-

ically different and possibly more convenient in usage, and to focus on it to study

its general properties in a systematic way to obtain a panorama of C∗-algebras.

This paper is organized as follows. In Section 2, we consider C∗-algebras with

RDF. In Section 3, we consider C∗-algebras without RDF. In Section 4, we introduce

yet another notion ARDF (approximate residual dimension finite). In these sections

we obtain several basic results on those C∗-algebras, which could be useful for further

study on this topic.

2. C∗-algebras with RDF

Definition 2.1. Let A be a (Banach or) C∗-algebra. We say that A has residual

dimension finite (RDF) if for any nonzero a ∈ A, there is a finite dimensional

representation π of A such that π(a) ̸= 0.
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Remark. We may assume that π is irreducible. It has been said that such an algebra

is residually finite dimensional (RFD) in the literature. This is also equivalent to

say that A has a separating family of finite dimensional representations of A.

Proposition 2.2. If A is a C∗-algebra with RDF, then a C∗-subalgebra B of A has

RDF. In particular, a closed ideal of A has RDF.

Proof. Let B ∋ b ̸= 0. Then there is a finite dimensional representation π of A

such that π(b) ̸= 0. Note that the restriction of π to B is also a finite dimensional

representation of B. �

Proposition 2.3. If A is an extension of a closed ideal I with RDF by a quotient

D with RDF, then it has RDF.

Proof. Let a ̸= 0 ∈ A. If a ∈ I, then there is a finite dimensional representation π

of I such that π(a) ̸= 0, and π corresponds to that of A on the same Hilbert space.

Note that as a fact in C∗-algebra theory, every irreducible representation π of A

with π(I) ̸= {0} is identified with that of I by restriction (see [4, Section 2.11] or

[6, Section 5.5]). A point of the proof for this as in [6] is that the state associated

to an irreducible representation of I can be extended to a state of A from which

one can construct an irreducible representation of A via the GNS construction (as

in [6]), and this extension preserves irreducibility of representation.

If a ̸∈ I, then q(a) ̸= 0, where q is the quotient map from A to D. Then there is

a finite dimensional representation ρ of D, such that ρ(q(a)) ̸= 0, with ρ ◦ q a finite

dimensional representation of A. �

Proposition 2.4. If A is a C∗-algebra with RDF and it has a split quotient D, then

D has RDF.

Proof. Let D ∋ d ̸= 0. Then there is a ∈ A such that π(a) = d, where π : A → D

is the quotient map. Since a ̸= 0, there is a finite dimensional representation π of

A such that π(a) ̸= 0. Let ρ : D → A be the split homomorphism. Then π ◦ ρ is a

finite dimensional representation of D with π ◦ ρ(d) = π(a) ̸= 0. �

Remark. The same statement with D a quotient of A is not true in general. For

example, it is known that the full C∗-algebra C∗(F2) of the free group F2 with

two generators is RFD ([2]), but there is a quotient which is not RFD. Such a

quotient can be taken by universality as the irrational rotation algebra generated by

two unitaries with a certain commutation relation, which is an infinite dimensional,

simple C∗-algebras, so that it has no finite dimensional irreducible representations.

In the propositions above (without using C∗-algebra technique), A may be a Banach

algebra.
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Let A be a (Banach or) C∗-algebra. We denote by A∧ the set of all unitary

equivalence classes of irreducible representations of A and by A∧
f the set of all unitary

equivalence classes of finite dimensional irreducible representations of A. It is well

known that A∧ separates elements of A (see [6]).

Lemma 2.5. A commutative C∗-algebra A and a finite dimensional C∗-algebra B

have RDF.

Proof. Note that A∧ = A∧
f with dimension 1 and B∧ = B∧

f . �

Proposition 2.6. A C∗-algebra A has RDF if and only if A can be embedded into,

i.e. be viewed as a C∗-subalgebra of, a direct product C∗-algebra ΠjMnj
(C) of some

matrix algebras Mnj
(C) over C with size nj ≥ 1, where if A is separable, then the

direct product can be a countable product.

Proof. Consider the direct product representation Φ = Ππ∈A∧
f
π of A into the direct

product C∗-algebra Ππ∈A∧
f
π(A). If A has RDF, then Φ is injective, so that A can

be embedded in the direct product. Conversely, if A is a C∗-subalgebra of a direct

product C∗-algebra of some matrix algebras over C, it has RDF by considering

projections to direct product factors. Note that any nonzero element of A has a

nonzero component of some direct product factor.

If A is a separable C∗-algebra with RDF, let {xj} be a countable dense subset of

A. Take a corresponding subset {πj} of A∧
f . Let Φ = Πjπj. Then Φ is injective on

the dense subset, and extends to A. Indeed, let a ̸= 0 ∈ A. Take 0 < ε < ∥a∥. Since
a = limk→∞ xj(k) for some subsequence {xj(k)}k of {xj} by density, we compute the

following norm:

∥Φ(a)∥ = ∥Φ(a− xj(k)) + Φ(xj(k))∥
≥ ∥Φ(xj(k))∥ − ∥Φ(a− xj(k))∥
= ∥xj(k)∥ − ∥Φ(a− xj(k))∥

where the last equality follows from the injectiveness of Φ on the dense subset (see

the proof of [6, Theorem 3.1.5]), and the first term ∥xj(k)∥ goes to ∥a∥ as k → ∞
and the second term goes to zero as k → ∞ since ∥Φ(a− xj(k))∥ ≤ ∥a− xj(k)∥, and
hence ∥Φ(a)∥ > ε > 0. This shows that Φ is injective on A. �

Remark. A C∗-subalgebra of such a countably infinite direct product C∗-algebra

has RDF, but not necessarily separable, because the direct product itself is non-

separable.

Proposition 2.7. Let A be a continuous field C∗-algebra over a locally compact

Hausdorff space X with fibers matrix algebras Mnx(C) over C with nx ≥ 1 for x ∈ X

(vanishing at infinity). Then A has RDF.
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Proof. Note that A∧ is identified with X (see [4, Chapter 10]), and A can be em-

bedded into Πx∈XMnx(C). �

Example 2.8. A direct sum of some matrix algebras Mnj
(C) for j ∈ N, which is

also a continuous field C∗-algebra over N with fibers Mnj
(C) (vanishing at infinity)

has RDF. The group C∗-algebra of a compact group G has RDF, because it is

isomorphic to such a continuous field C∗-algebra over the discrete dual group of G

with fibers matrix algebras over C.

Moreover,

Proposition 2.9. If A∧ = A∧
f , then A has RDF.

In particular, n-homogeneous or n-subhomogeneous C∗-algebras with n finite have

RDF.

Remark. Recall that a C∗-algebra is n-homogenous if its irreducible representations

are all n-dimensional, and a C∗-algebra is n-subhomogeneous if it is a C∗-subalgebra

of an n-homogeneous C∗-algebra.

Definition 2.10. We say that a C∗-algebra A has irreducible representation dimen-

sion finite (IRDF) if A∧ = A∧
f .

Remark. The class of C∗-algebras with IRDF is closed under taking quotients,

subalgebras, and extensions. This is deduced from several facts in the representation

theory of C∗-algebras (see [4]).

Proposition 2.11. If A has RDF and B is a finite dimensional C∗-algebra, then

their tensor product A⊗B has RDF.

Proof. Note that A⊗B ∼= ⊕l
j=1(A⊗Mnj

(C)) for some nj ≥ 1 and l ≥ 1. Note also

that any π ∈ A∧ corresponds to π⊗ id ∈ (A⊗Mnj
(C))∧, under which the spectrums

are homeomorphic. �

Theorem 2.12. Let A be a C∗-algebra with RDF and F be a finite abelian group.

Then the crossed product Aoα F of A by an action α of F has RDF.

Proof. The Takai dualtiy theorem implies that

(Aoα F )oα∧ F∧ ∼= A⊗M|F |(C),

where F∧ is the dual group of F and α∧ is the dual action of F∧, and |F | is the order
of F (see [10] or [7]). Since F∧ ∼= F is finite, A oα F is viewed as a C∗-subalgebra

of the tensor product above with RDF. �

Corollary 2.13. The crossed product of C∗(F2) by the flip action of Z2 on two

unitary generators has RDF.
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Corollary 2.14. Let A be a C∗-algebra with RDF. Then the crossed product AoαZ
with α reduced to an action of Zn = Z/nZ has RDF.

Proof. Recall that the crossed product is isomorphic to the mapping torus on Aoα

Zn, and we have

0 → C0(R)⊗ (Aoα Zn) → Aoα Z → Aoα Zn → 0

(see [1]). By the theorem above, the closed ideal and the quotient have RDF, so

does Aoα Z. �

Theorem 2.15. Let Γ be a finitely generated, two-step nilpotent group and C∗(Γ)

its group C∗-algebra. Then C∗(Γ) has RDF.

Proof. It is known that C∗(Γ) can be viewed as a continuous field over the dual

group Z∧ of the center Z of Γ with fibers C∗(Γ)λ for λ ∈ Z∧ that are also viewed

as a continuous field over the dual group of the quotient C(λ)/Z of the centralizer

C(λ) in Γ with respect to λ by Z, where

C(λ) = {g ∈ Γ |λ(ghg−1h−1) = 1 for any h ∈ Γ},

with fibers either matrix algebras over C or matrix algebras over a simple non-

commutative tori, which is obtained as a successive crossed product C∗-algebra by

actions of Z, and is viewed as a sort of quantization to the ordinary tori. This indeed

follows from the irreducible representaion theory and the structure of the primitive

ideal space of C∗(Γ) (cf. [8]). If 0 ̸= a ∈ C∗(Γ), then 0 ̸= πλ(a) ∈ C∗(Γ)λ for some

λ ∈ Z∧ whose fiber is Mn(C) for some n ≥ 1, where πλ : C∗(Γ) → C∗(Γ)λ is the quo-

tient map. Note that if Z ∼= Zk for some k ≥ 1, we have Z∧ ∼= Tk, so that the set of

points corresponding to rational rotations is dense in Z∧, and if Z contains a torsion

part, it corresponds to some direct summands of C∗(Γ). Let pλ : C∗(G)λ → Mn(C)
be the quotient map. Then pλ ◦ πλ is finite dimensional with pλ ◦ πλ(a) ̸= 0. �

Example 2.16. Let HZ
3 be the discrete Heisenberg group of rank 3, with center

Z = Z. Then C∗(HZ
3 ) is viewed as a continuous field over T ∼= Z∧ with fibers

the rational or irrational rotation C∗-algebras Aθ which correspond respectively to

rational or irrational rotations θ on T, also called noncommutative 2-tori. If θ is

rational, then Aθ is viewed as a continuous field over T2 = (C(θ)/Z)∧ with fibers a

matrix algebra over C, and if θ is irrational, then Aθ is simple with (C(θ)/Z)∧ = {1}
(cf. [8]). It follows that C∗(HZ

3 ) has RDF, since the rational rotation C∗-algebras

are finite homogeneous.

Example 2.17. The author [9] has defined the discrete ax+ b group of rank 2 and

the discrete Mautner group of rank 4 and their generalizations as the semi-direct

products Zn o Z (n ≥ 1) and Zn o Zn (n ≥ 2) with diagonal actions respectively,
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which are non-nilpotent, solvable discrete groups, and shown that their group C∗-

algebras have finite composition of closed ideals such that their subquotients are

finite homogeneous, so that the group C∗-algebras have RDF. Moreover, the discrete

Dixmier group of rank 7 and similar semi-direct products defined as (Z2×Z2)oHZ
3

and Z2n o HZ
3 (n ≥ 1), with HZ

3 the discrete Heisenberg group of rank 3, have

finite composition series such that subquotients can be viewed as continuous field

C∗-algebras as in the case of C∗(HZ
3 ), but with fibers which may be viewed as

noncommutative disjoint tori, so that their group C∗-algebras have RDF, because

those continuous field C∗-algebras have RDF as does C∗(HZ
3 ) in the example above.

Proposition 2.18. Let A and B be unital C∗-algebras and A⊗B be their minimal

or maximal tensor product C∗-algebra. Then A⊗B has RDF if and only if A and

B have RDF.

Proof. Note that any representation of A ⊗ B gives by restriction those of A and

B. Also, representations of A and B extends to that of A ⊗B by continuity (see

[6] and [11]). �

Remark. It is shown by Exel and Loring [5] that for two C∗-algebras, their full free

product has RDF if and only if both of them have RDF, and if they are unital, their

unital full free product has RDF if and only if both of them have RDF.

3. C∗-algebras without RDF

Lemma 3.1. An infinite dimensional, simple C∗-algebra does not have RDF.

Proof. Because A∧
f = ∅. �

Let K = K(H) denote the C∗-algebra of all compact operators on an infinite

dimensional Hilbert space H.

Lemma 3.2. For any C∗-algebra A, its tensor product with K does not have RDF.

In particular, a stable C∗-algebra A, i.e. A ∼= A⊗K, does not have RDF.

Proof. Note that any π ∈ A∧ corresponds to π ⊗ id ∈ (A ⊗ K)∧, under which the

spectrums are homeomorphic. �

Proposition 3.3. If a unital C∗-algebra A has a tensor factor which is an infinite

dimensional simple nuclear C∗-algebra, then it does not have RDF.

Proof. Note that in this case, such a tensor factor is a C∗-subalgebra of A without

RDF. �
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Theorem 3.4. Let A be a C∗-algebra and AoαG be the crossed product of A by an

action of a compact abelian group G that is not finite. Then Aoα G does not have

RDF.

Proof. The Takai dualtiy theorem implies that

(Aoα G)oα∧ G∧ ∼= A⊗K,

where K = K(L2(G)) on the Hilbert space L2(G). Note that the dual group G∧

of G compact is discrete, Thus A oα G is viewed as a C∗-subalgebra of the tensor

product above, and its representation theory is identified with that tensored with

K. �

On the other hand,

Example 3.5. The crossed product C∗(Z) oα Z with α the shift is isomorphic to

K, so that it does not have RDF, while C∗(Z) ∼= C(T) by the Fourier transform has

RDF, where T is the 1-torus. The crossed product C∗(R) oα R with α the shift is

isomorphic to K, while C∗(R) ∼= C0(R) by the Fourier transform.

Let A be a C∗-algebra. Denote by A∧
∞ the subspace of all infinite dimensional

irreducible representations of A in A∧.

Lemma 3.6. If A∧ = A∧
∞, then A does not have RDF.

In particular, an ∞-homogeneous C∗-algebra does not have RDF.

Remark. Recall that a C∗-algebra is ∞-homogenous if its images under irreducible

representations are all K.

Definition 3.7. We say that a C∗-algebra A has irreducible representation dimen-

sion infinite (IRDI) if A∧ = A∧
∞.

Remark. The class of C∗-algebras with IRDI is closed under taking closed ideals,

quotients, and extensions.

Example 3.8. Let G be a connected real semi-simple Lie group and C∗
r (G) be the

reduced group C∗-algebra of G. It is known that C∗
r (G) has IRDI and hence does

not have RDF.

Theorem 3.9. Let G be a connected solvable Lie group that is not commutative.

Then the group C∗-algebra C∗(G) of G does not have RDF.

Proof. Recall that any irreducible representation of G is either one or infinite di-

mensional, and the spectrum of G is identified with that of C∗(G). It follows that

we have the following short exact sequence:

0 → I → C∗(G) → C0(G
∧
1 ) → 0,
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where G∧
1 is the space of all one-dimensional representations of G, and I is the closed

ideal corresponding to C∗(G)∧∞, so that I∧ = I∧
∞. Since I does not have RDF, so

does not C∗(G). �

Example 3.10. If G is a connected, simply connected Lie group of dimension n,

then G is a successive semi-direct product by R, i.e. G ∼= R o R · · · o R, and then

C∗(G) ∼= C∗(R)oR · · ·oR a successive crossed product by R.
Let G be the real 3-dimensional Heisenberg Lie group, with G ∼= R2 o R. It is

well known that C∗(G) has the following decomposition:

0 → C0(R \ {0})⊗K → C∗(G) → C0(R2) → 0,

and the closed ideal has IRDI. Thus C∗(G) does not have RDF.

Let T be the Toeplitz algebra generated by a proper isometry. It is well known

that T has the following short exact sequence:

0 → K → T → C(T) → 0.

Hence T does not have RDF.

Let B be the C∗-algebra of all bounded operators on an infinite dimensional Hilbert

space. Then we have the following short exact sequence:

0 → K → B → Q → 0

where Q is the Calkin algebra B/K. Thus B does not have RDF, and so does not

Q simple.

Lemma 3.11. Let A be an infinite dimensional C∗-algebra and AoαZ be the crossed

product of A by a minimal action α of Z in the sense that the C∗-closure of any

orbit under α is A. Then Aoα Z does not have RDF.

Proof. In this case, the crossed product is simple (cf. [3]). �

4. C∗-algebras with ARDF

Definition 4.1. Let A be a (Banach or) C∗-algebra. We say that A has approximate

residual dimension finite (ARDF) if for any nonzero a ∈ A and ε > 0, there is a

C∗-subalgebra B of A, a finite dimensional representation π of B, and b ∈ B such

that π(b) ̸= 0 and ∥a− b∥ < ε.

Remark. A C∗-algebra with RDF has ARDF, but the converse is not true. For

instance, let K be the C∗-algebra of all compact operators on an infinite dimensional

Hilbert space, which is an inductive limit of finite dimensional C∗-algebras so that

K has ARDF, but it is simple so that it does not have RDF.
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Proposition 4.2. It A is an inductive limit of C∗-algebras with RDF, then A has

ARDF.

Proof. Note that A is the C∗-closure of the union of C∗-subalgebras with RDF. �

Proposition 4.3. If A is a C∗-algebra that has a composition series of closed ideals

Ij such that each subquotient Ij/Ij−1 has RDF, then A has ARDF.

Proof. If A is separable, then such a composition series can be taken to be countable,

and each closed ideal In is a finite extension by the subquotients Ij/Ij−1 (1 ≤ j ≤ n),

so that In has RDF. Since A is the C∗-closure of the union of In, A has ARDF.

If A is non-separable, we use the transfinite induction method similarly. �

Remark. Recall that a C∗-algebra of type I has a composition series of closed ideals

such that subquotients have continuous trace (see [4] or [7]). The subquotients of

type I may have IRDF or IRDI.

Proposition 4.4. If A is an extension of a closed ideal I with ARDF by a quotient

D with ARDR, then it has ARDF.

Proof. This follows by the similar way as in the case of extensions by C∗-algebras

with RDF in the section 2 above. �

Proposition 4.5. If two C∗-algebras A and B have ARDF, then their minimal and

maximal tensor products and their full free product have ARDF.

Proof. This follows from the RDF property for tensor products and free products of

C∗-algebras, obtained in the section 2 above. �

Question. A C∗-subalgebra of a C∗-algebra with ARDF has ARDF ?

Probably, it is ture, but the proof seems to be non-trivial.
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