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NONLINEAR SCALARIZATIONS AND SOME
APPLICATIONS IN VECTOR OPTIMIZATION

YOUSUKE ARAYA

Abstract. We first give a little improvement of nonlinear scalarizing func-
tion for vector optimization problem organized by Luc and Tammer-Weidner.
As applications, we present Gordan’s type alternative theorems for vector-
valued function, optimality conditions for vector optimization problem and
an existence theorem for vector saddle-points.

1. Introduction

This paper is concerned with nonlinear scalarization technique for vector optimiza-
tion problems and some applications. The idea of the sublinear scalarizing function
was dealt by Krasnosel’skij [7] in 1962 and by Rubinov [11] in 1977, and then it
was applied to vector optimization with its concrete definition by Tammer (Ger-
stewitz) [1] in 1983, and to separation theorems for not necessary convex sets by
Tammer (Gerstewitz) and Iwanow [2] in 1985. Afterwards Luc [8] and Tammer
(Gerth) and Weidner [3] organized sublinear scalarizing functions for vectors. These
functions, which appear in slightly different forms, have wide applications in vector
optimization.

In this paper, we mixed their idea on those functions, that is, we introduce
unified approach on such scalarization for vectors and investigate some properties
of nonlinear scalarizing functions. Some applications for them are also given.

The organization of this paper is as follows. We first give a little improvement of
nonlinear scalarizing function for vector optimization problem organized by Luc and
Tammer-Weidner. Next we give some applications of the scalarizing functions. At
first, we present Gordan’s type alternative theorems for vector-valued function. A
generalized Gordan’s type alternative theorem was given for vector-valued function
by Jeyakumar [5] in 1986. It relies on a certain convexity assumption like cone-
subconvexlikeness and separation theorems; we relax the convexity assumption. As
a corollary, we give optimality conditions for vector optimization problem and more
simple proofs than that of Gerth and Weidner in [3]. Finally we give an existence
theorem for vector saddle points.
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In this section, let Y be a topological vector space and 0Y the origin of Y . For a
set A ⊂ Y , intA, corA and clA denote the topological interior, the algebraic interior
and the topological closure of A, respectively. Let C ⊂ Y be a closed convex cone,
that is, clC = C, C + C ⊂ C and [0,∞) · C ⊂ C. A cone C is called pointed if
C ∩ (−C) = {0Y }, and solid if intC ̸= ∅.

It is well known that, given a pointed convex cone C ⊂ Y , we can induce a
partial ordering ≤C in Y defined by x ≤C y when y− x ∈ C. We denote x ≤intC y
when y − x ∈ intC, x �C y when y − x /∈ C and x �intC y when y − x /∈ intC.
This ordering is compatible with the vector structure of Y , that is, for every x ∈ Y
and y ∈ Y ,

(i) x ≤C y implies that x+ z ≤C y + z for all z ∈ Y

(ii) x ≤C y implies that αx ≤C αy for all α ≥ 0.

We say that a ∈ A is a minimal [resp. weak minimal] point of A if

A ∩ (a− C) = {a} [resp. A ∩ (a− intC) = ∅],

or equivalently, there is no â ∈ A such that â ≤C a (resp. â ≤intC a). Similarly, we
say that a ∈ A is a maximal [resp. weak maximal] point of A if

A ∩ (a+ C) = {a} [resp. A ∩ (a+ intC) = ∅],

or equivalently, there is no â ∈ A such that a ≤C â (resp. a ≤intC â). We denote
by Min(A;C) [resp. wMin(A; intC)] and Max(A;C) [resp. wMax(A; intC)] the set
of minimal [resp. weak minimal] and maximal [resp. weak maximal] points of A with
respect to C [resp. intC]. We can easily see that

Min(A;C) ⊂ wMin(A; intC) ⊂ A,

Max(A;C) ⊂ wMax(A; intC) ⊂ A.

2. Nonlinear scalarizing functions

2.1. Infimum type

We introduce the following two-variable infimum type of nonlinear scalarizing func-
tion for vector optimization problems; we define hinf(y; a) := φC,k0(y−a) for a, y ∈ Y
where φC,k0(z) = inf{t ∈ R |z ≤C tk0} (z ∈ Y ) used in Theorem 2.3.1 in [4] and [8].

Theorem 2.1. Let Y be a topological vector space and C ⊂ Y a closed convex cone.
We take k0 ∈ C \ (−C) and define hinf : Y × Y → [−∞,∞] by

hinf(y; a) = inf{t ∈ R
∣∣y ≤C tk0 + a} = inf{t ∈ R

∣∣y ∈ tk0 + a− C }.

Then the function hinf has the following properties:
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(i) hinf is proper;

(ii) {y ∈ Y |hinf(y; a) ≤ t} = tk0 + a− C;

(iii) {a ∈ Y |hinf(y; a) ≤ t} = −tk0 + y + C;

(iv) hinf(·; a) is lower semicontinuous;

(v) hinf(y; ·) is lower semicontinuous;

(vi) hinf(·; a) is C-increasing (i.e., y1 ≤C y2 implies hinf(y1; a) ≤ hinf(y2; a));

(vii) hinf(y; ·) is C-decreasing (i.e., a1 ≤C a2 implies hinf(y; a1) ≥ hinf(y; a2));

(viii) hinf(y + λk0; a) = hinf(y; a) + λ for every y ∈ Y and λ ∈ R;

(ix) hinf(y; a+ λk0) = hinf(y; a)− λ for every y ∈ Y and λ ∈ R.

(x) hinf(·; 0Y ) and hinf(0Y ; ·) are sublinear.

Moreover, if k0 ∈ intC then hinf has the following properties:

(xi) hinf achieves a real value;

(xii) {y ∈ Y |hinf(y; a) < t} = tk0 + a− intC;

(xiii) {a ∈ Y |hinf(y; a) < t} = −tk0 + y + intC;

(xiv) hinf(·; a) is continuous;

(xv) hinf(y; ·) is continuous;

(xvi) hinf(·; a) is strictly intC-increasing (i.e., y1 ≤intC y2 implies hinf(y1; a) <
hinf(y2; a));

(xvii) hinf(y; ·) is strictly intC-decreasing (i.e., a1 ≤intC a2 implies hinf(y; a1) >
hinf(y; a2)).

Proof. The proof is similar to that of Theorem 2.3.1 in [4]. We prove statements
(i), (vii), and (xi).

For (i), we have hinf(y; a) > −∞. Indeed, if hinf(y; a) is not bounded from below,
then we have y ∈ −nk0 + a − C for all n ∈ N. Then −k0 + a−y

n
∈ C for all n ∈ N.

Taking n → ∞, we have −k0 ∈ C, which is a contradiction. Since hinf(0Y ; 0Y ) ≤ 1,
hinf is proper.

Next, we prove (vii). Let a1, a2 ∈ Y be such that a1 ≤C a2. For any y ∈ Y ,
hinf(y; a1) > −∞ by (i), and hence we consider the case of hinf(y; a1) ∈ R. We have
y ∈ hinf(y; a1)k

0 + a1 − C. Then we obtain

y ∈ hinf(y; a1)k
0 + (a2 − C)− C ⊂ hinf(y; a1)k

0 + a2 − C
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and hence by (ii), we obtain hinf(y; a1) ≥ hinf(y; a2).
Finally, we prove (xi). We first prove Y = Rk0 − C and Y = Rk0 + C when

k0 ∈ corC(= intC). If k0 ∈ corC, we have 0 ∈ cor(k0 −C). By the definition of the
core, for any y ∈ Y there exists λ̄ > 0 such that for all λ ∈ (0, λ̄]

0 + λy ∈ k0 − C

and hence

y ∈ 1

λ
k0 − 1

λ
C ⊂ Rk0 − C.

In a similar way, we can show Y = Rk0 + C. We can also show dom(hinf) ⊃
(Rk0 − C)× (Rk0 + C) = Y × Y . Hence, hinf(y; a) ∈ R for any y, a ∈ Y .

As a corollary of the above lemma, we present a simple proof for Luc’s nonconvex
separation theorem.

Theorem 2.2 (Luc [8]). Let Y be a topological vector space, C ⊂ Y a solid closed
convex cone and k0 ∈ intC. We assume B ⊂ Y a nonempty set and a ∈ Y such that
B ∩ (a− intC) = ∅ [resp. B ∩ (a−C) = ∅]. Then hinf is a finite-valued continuous
function such that

hinf(y; a) < 0 ≤ hinf(x; a) ∀x ∈ B, y ∈ a− intC

[resp. hinf(y; a) ≤ 0 < hinf(x; a) ∀x ∈ B, y ∈ a− C].

Proof. By (xii) [resp. (ii)] of Theorem 2.1, we have

{y ∈ Y |hinf(y; a) < 0} = a− intC [resp. {y ∈ Y |hinf(y; a) ≤ 0} = a− C].

Moreover, we also have

B ⊂ (a− intC)c = {y ∈ Y |hinf(y; a) ≥ 0}

[resp. B ⊂ (a− C)c = {y ∈ Y |hinf(y; a) > 0}].

2.2. Supremum type

We introduce the following two-variable supremum type of nonlinear scalarizing
function for vector optimization problems. We can easily prove the following prop-
erties by remarking hsup(y; a) = −hinf(−y;−a); see also [10].

Theorem 2.3. Let Y be a topological vector space and C ⊂ Y be a closed convex
cone. We take k0 ∈ C \ (−C) and define hinf : Y × Y → [−∞,∞] by

hsup(y; a) = sup{t ∈ R
∣∣tk0 + a ≤C y} = sup{t ∈ R

∣∣y ∈ tk0 + a+ C }.

Then the function hsup has the following properties:
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(i) hsup is proper;

(ii) {y ∈ Y |hsup(y; a) ≥ t} = tk0 + a+ C;

(iii) {a ∈ Y |hsup(y; a) ≥ t} = −tk0 + y − C;

(iv) hsup(·; a) is upper semicontinuous;

(v) hsup(y; ·) is upper semicontinuous;

(vi) hsup(·; a) is C-increasing (i.e., y1 ≤C y2 implies hsup(y1; a) ≤ hsup(y2; a));

(vii) hsup(y; ·) is C-decreasing (i.e., a1 ≤C a2 implies hsup(y; a1) ≥ hsup(y; a2));

(viii) hsup(y + λk0; a) = hsup(y; a) + λ for every y ∈ Y and λ ∈ R.

(ix) hsup(y; a+ λk0) = hsup(y; a)− λ for every y ∈ Y and λ ∈ R.

(x) hsup(·; 0Y ) and hsup(0Y ; ·) is positively homogeneous and superadditive.

Moreover, if k0 ∈ intC then hsup has the following properties:

(xi) hsup achieves a real value;

(xii) {y ∈ Y |hsup(y; a) > t} = tk0 + a+ intC;

(xiii) {a ∈ Y |hsup(y; a) > t} = −tk0 + y − intC;

(xiv) hsup(·; a) is continuous;

(xv) hsup(y; ·) is continuous;

(xvi) hsup(·; a) is strictly intC-increasing (i.e., y1 ≤intC y2 implies hsup(y1; a) <
hsup(y2; a)).

(xvii) hsup(y; ·) is strictly intC-decreasing (i.e., a1 ≤intC a2 implies hsup(y; a1) >
hsup(y; a2));

As a corollary of the above lemma, we obtain the following nonconvex separation
theorem in a similar way as Theorem 2.2.

Theorem 2.4. Let Y be a topological vector space, C ⊂ Y a solid closed convex
cone and k0 ∈ intC. We assume B ⊂ Y a nonempty set and a ∈ Y such that
B ∩ (a+ intC) = ∅ [resp. B ∩ (a+C) = ∅]. Then hsup is a finite-valued continuous
function such that

hsup(x; a) ≤ 0 < hsup(y; a) ∀x ∈ B, y ∈ a+ intC

[resp. hsup(x; a) < 0 ≤ hsup(y; a) ∀x ∈ B, y ∈ a+ C].
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3. Applications

Firstly, we consider the following vector optimization problem:

(VP)

{
C−minimize f(x)
subject to x ∈ X

where f : X → Y and C is a solid closed convex cone.
In this section, we show Gordan’s type alternative theorems for vector-valued

function, optimality conditions for the above vector optimization problem, and exis-
tence results for vector-valued saddle-point problems as an application of scalarizing
functions defined in the previous section.

3.1. Alternative theorems

We first present Gordan’s type alternative theorems for vector-valued function.
Jeyakumar [5] in 1986 assumed a certain convexity assumption like cone subcon-
vexlikeness and used separation theorems. We use nonlinear scalarizing functions
defined in Section 2 and relax the convexity assumption.

Theorem 3.1 (inf type). Let Y be a topological vector space, C ⊂ Y a solid closed
convex cone, B ⊂ Y a nonempty set and a ∈ Y . Then exactly one of the following
systems hold:

(i) B ⊂ a− intC [resp. B ⊂ a− C],

(ii) there exists k0 ∈ intC such that hinf(x; a) ≥ 0 [resp. hinf(x; a) > 0] for all
x ∈ B.

Proof. First, we assume that (i) holds. System (i) states that B ≤intC a [resp.
B ≤C a]. Using (xvi) [resp. (vi)] of Theorem 2.1, we have

hinf(B; a) < hinf(a; a) = 0 [resp. hinf(B; a) ≤ hinf(a; a) = 0]

for every k0 ∈ intC, which shows that system (ii) does not hold. Next, we assume
that system (i) does not hold. Then we have B ̸⊂ a− intC [resp. B ̸⊂ a−C], which
is equivalent to

B ∩ (a− intC) = ∅ [resp. B ∩ (a− C) = ∅].

Using Theorem 2.2, there exists k0 ∈ intC such that

hinf(x; a) ≥ 0 [resp. hinf(x; a) > 0]

for all x ∈ B, which shows that system (ii) holds.

Theorem 3.2 (sup type). Let Y be a topological vector space, C ⊂ Y a solid closed
convex cone, B ⊂ Y a nonempty set and a ∈ Y . Then exactly one of the following
systems hold:
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(i) B ⊂ a+ intC [resp. B ⊂ a+ C],

(ii) there exists k0 ∈ intC such that hsup(x; a) ≤ 0 [resp. hsup(x; a) < 0] for all
x ∈ B.

Proof. The proof is similar to that of Theorem 3.1, by using Theorems 2.3 and 2.4
instead of Theorems 2.1 and 2.2.

Combinig Theorem 3.1 to Theorem 3.2, we obtain the following alternative the-
orems for vector-valued function.

Theorem 3.3 (inf-sup type). Let Y be a topological vector space, C ⊂ Y a solid
closed convex cone, B ⊂ Y a nonempty set and a ∈ Y . Then exactly one of the
following systems hold:

(i) B ⊂ a− intC or B ⊂ a+ intC [resp. B ⊂ a− C or B ⊂ a+ C],

(ii) there exists k0 ∈ intC such that hinf(x; a) ≥ 0 and hsup(x; a) ≤ 0
[resp. hinf(x; a) > 0 and hsup(x; a) < 0] for all x ∈ B.

Remark 1. There are some alternative theorems for set-valued functions ([9] and
its references therein). When we take a = 0Y in the above theorems, they are gen-
eralized for set-valued functions in Nishizawa-Onodsuka-Tanaka [9]. Theorem 3.1
is generalized to Theorems 3.1 and 3.2 [resp. Theorems 3.6 and 3.7] in [9], Theo-
rem 3.2 is generalized to Theorems 3.3 and 3.4 [resp. Theorems 3.8 and 3.9] in [9]
and Theorem 3.3 is generalized to Theorem 3.5 [resp. Theorem 3.10] in [9].

3.2. Optimality conditions

As an application of the above theorems, we present optimality conditions for vector
optimization problem.

Theorem 3.4 (Infimum type). Let X be a vector space, Y a topological vector
space, C ⊂ Y a solid closed convex cone, f : X → Y a vector-valued function and
x̄ ∈ X. Then f(x̄) ∈ wMin(f(X); intC) if and only if there exists k0 ∈ intC such
that hinf(f(X); f(x̄)) ≥ 0.

Proof. This is straightforward from the fact that f(x̄) being a weakly minimal point
imples f(x) ̸∈ f(x̄) − intC for all x ∈ X, that is, system (i) of Theorem 3.1 is not
satisfied.

Theorem 3.5 (Infimum type). Let X be a vector space, Y a topological vector
space, C ⊂ Y a solid closed convex cone, f : X → Y a vector-valued function and
x̄ ∈ X. Then f(x̄) ∈ Min(f(X);C) if and only if there exists k0 ∈ intC such that
hinf(f(X); f(x̄)) > 0.
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Theorem 3.6 (Supremum type). Let X be a vector space, Y a topological vector
space, C ⊂ Y a solid closed convex cone, f : X → Y a vector-valued function and
x̄ ∈ X. Then f(x̄) ∈ wMax(f(X); intC) if and only if there exists k0 ∈ intC such
that hsup(f(X); f(x̄)) ≤ 0.

Theorem 3.7 (Supremum type). Let X be a vector space, Y a topological vector
space, C ⊂ Y a solid closed convex cone, f : X → Y a vector-valued function and
x̄ ∈ X. Then f(x̄) ∈ Max(f(X);C) if and only if there exists k0 ∈ intC such that
hsup(f(X); f(x̄)) < 0.

3.3. Vector-valued saddle-point problem

In this subsection, we consider the vector-valued saddle-point problem, and we show
an existence of weak C-saddle-points as an application of the scalarizations. Let
f : X×Y → Z be a vector-valued function. The vector-valued saddle-point problem
is to find a pair x ∈ X and y ∈ Y such that

(P)

{
f(x, y)− f(u, y) /∈ intC for all u ∈ X,
f(x, v)− f(x, y) /∈ intC for all v ∈ Y.

A point (x, y) ∈ X ×Y is said to be a weak C-saddle point of function f on X ×Y ,
if it is a solution of the problem.

Kimura and Tanaka [6] consider applying the inf-type scalarization to existence
of cone-saddle point. We consider the sup-type scalarization technique in a similar
way as [6].

Definition 3.8. LetX be a topological space and Z a normed space with the partial
ordering by a solid pointed convex cone C ⊂ Z. A vector-valued function f : X → Z
is said to be C-continuous at X if the set {x ∈ X|f(x) ≤C z} is closed for all z ∈ Z.

Definition 3.9. Let K be a convex set in a real vector space X, Z a normed space
with the partial ordering by a solid pointed convex cone C ⊂ Z. A vector-valued
function f : X → Z is said to be C-quasiconvex on K if for each x1, x2 ∈ K,
λ ∈ [0, 1] and z ∈ Z, we have that

f(x1), f(x2) ∈ z − C implies f(λx1 + (1− λ)x2) ∈ z − C.

Definition 3.10. Let K be a convex set in a real vector space X, Z a normed space
with the partial ordering by a solid pointed convex cone C ⊂ Z. A vector-valued
function f : X → Z is said to be C-properly quasiconvex on K if either

f(λx1 + (1− λ)x2) ∈ f(x1)− C,

or
f(λx1 + (1− λ)x2) ∈ f(x2)− C,

for every x1, x2 ∈ K and λ ∈ [0, 1].
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Lemma 3.11. Let X be a topological space, Z a normed space with the partial
ordering by a solid pointed convex cone C ⊂ Z and k0 ∈ intC. Let hsup(·; 0Y ) be the
scalarizing function on Z and f : X → Z a vector-valued function.

(i) If f is C-continuous at x ∈ X, then (hsup(·; 0Y ) ◦ f) is lower semicoutinuous
at x ∈ X.

(ii) If f is (−C)-continuous at x ∈ X, then (hsup(·; 0Y )◦f) is upper semicoutinuous
at x ∈ X.

Proof. It is clear from the monotonicity of the scalarizing function hsup(·; 0Y ).

Lemma 3.12. Let K be a convex set in a real vector space X, Z a normed space
with the partial ordering by a solid pointed convex cone C ⊂ Z and k0 ∈ intC. Let
hsup(·; 0Y ) be the scalarizing function on Z and f : X → Z a vector-valued function.
If f is (−C)-quasiconvex on K, then (hsup(·; 0Y ) ◦ f) is quasiconcave on K.

Proof. The proof is similar to that of Theorem 2 in [6].

Lemma 3.13. Let K be a convex set in a real vector space X, Z a normed space
with the partial ordering by a solid pointed convex cone C ⊂ Z and k0 ∈ intC. Let
hsup(·; 0Y ) be the scalarizing function on Z and f : X → Z a vector-valued function.
If f is C-properly quasiconvex on K, then (hsup(·; 0Y ) ◦ f) is quasiconvex on K.

Proof. Let

Lev((hsup(·; 0Y ) ◦ f);α) := {x ∈ K|(hsup(·; 0Y ) ◦ f)(x) ≤ α}.

Let λ ∈ [0, 1] and x1, x2 ∈ Lev((hsup(·; 0Y )◦f);α). By (xii) of Theorem 2.3, we have

f(x1), f(x2) /∈ αk0 + intC

and hence

(f(x1)− C) ∩ (αk0 + intC) = ∅ and (f(x2)− C) ∩ (αk0 + intC) = ∅.

By the C-properly quasiconvexty of f , we have

f(λx1 + (1− λ)x2) /∈ (αk0 + intC),

which implies that λx1 + (1− λ)x2 ∈ Lev((hsup(·; 0Y ) ◦ f);α).

Kimura and Tanaka presented an existence theorem of cone saddle-point by using
scalarizing function hinf(·; 0Y ).

Theorem 3.14 (Kimura and Tanaka [6]). Let X and Y be nonempty compact convex
sets in two normed spaces, respectively, and Z a normed space with a partial ordering
induced by a solid pointed convex cone C ⊂ Z. If a vector-valued function f :
X × Y → Z satisfies that
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(i) x 7→ f(x, y) is C-continuous and C-quasiconvex on X for every y ∈ Y ,

(ii) y 7→ f(x, y) is (−C)-continuous and (−C)-properly quasiconvex on Y for every
x ∈ X,

then f has at least one weak C-saddle point.

We obtain another type of existence theorem of cone saddle-point by using scalar-
izing function hsup(·; 0Y ).

Theorem 3.15. Let X and Y be nonempty compact convex sets in two normed
spaces, respectively, and Z a normed space with a partial ordering induced by a solid
pointed convex cone C ⊂ Z. If a vector-valued function f : X × Y → Z satisfies
that

(i) x 7→ f(x, y) is C-continuous and C-properly quasiconvex on X for every y ∈
Y ,

(ii) y 7→ f(x, y) is (−C)-continuous and (−C) quasiconvex on Y for every x ∈ X,

then f has at least one weak C-saddle point.

Proof. We see that, by Lemmas 3.11 and 3.13, the map x 7→ (hsup(·; 0Y ) ◦ f)(x, y)
is lower semicontinuous and quasiconvex on X. Moreover, we see that, by Lem-
mas 3.11 and 3.12, the map y 7→ (hsup(·; 0Y ) ◦ f)(x, y) is upper semicontinuous and
quasiconcave on Y . By Sions’s minimax theorem [12], hsup(·; 0Y ) ◦ f has a saddle
point and by Theorem 3.2, f has at least one weak C-saddle point.
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