DUNKL-WILLIAMS INEQUALITY FOR OPERATORS ASSOCIATED WITH p-ANGULAR DISTANCE

FARZAD DADIPOUR, MASATOSHI FUJII, AND MOHAMMAD SAL MOSLEHIAN

Abstract

We present several operator versions of the Dunkl-Williams inequality with respect to the p-angular distance for operators. More precisely, we show that if $A, B \in \mathbb{B}(\mathscr{H})$ such that $|A|$ and $|B|$ are invertible, $\frac{1}{r}+\frac{1}{s}=1(r>1)$ and $p \in \mathbb{R}$, then $$
\left.|A| A\right|^{p-1}-\left.B|B|^{p-1}\right|^{2} \leq|A|^{p-1}\left(r|A-B|^{2}+\left.s| | A\right|^{1-p}|B|^{p}-\left.|B|\right|^{2}\right)|A|^{p-1} .
$$

In the case that $0<p \leq 1$, we remove the invertibility assumption and show that if $A=U|A|$ and $B=V|B|$ are the polar decompositions of A and B, respectively, $t>0$, then

$$
\left.\left.\left|\left(U|A|^{p}-V|B|^{p}\right)\right| A\right|^{1-p}\right|^{2} \leq(1+t)|A-B|^{2}+\left.\left(1+\frac{1}{t}\right)| | B\right|^{p}|A|^{1-p}-|B|^{2} .
$$

We obtain several equivalent conditions, when the case of equalities hold.

1. Introduction

In 1964, Dunkl and Williams [3] showed that, for any two nonzero vectors x and y in a normed space $(\mathcal{X},\|\cdot\|)$,

$$
\begin{equation*}
\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\| \leq \frac{4\|x-y\|}{\|x\|+\|y\|} \tag{1.1}
\end{equation*}
$$

In the same paper, the authors proved that the constant 4 can be replaced by 2 if \mathcal{X} is an inner product space. This inequality has some applications in the study of geometry of Banach spaces. Kirk and Smiley [7] showed that inequality (1.1) with 2 instead of 4 characterizes inner product spaces. Thus, the smallest number which can replace 4 in inequality (1.1) measures "how much" this space is close (or far) to be a Hilbert space, cf. [6].

Now the inequality (1.1) is regarded as an estimation of the angular distance between given vectors x and y. It has many interesting refinements which have

[^0]obtained over the years, e.g., Maligranda [8], Mercer [9], Dragomir [2], and Pečarić and Rajić [11].

Now we pay our attention to the following improvement of Dunkl-Williams inequality due to Pečarić and Rajić:

$$
\begin{equation*}
\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\| \leq \frac{\left(2\|x-y\|^{2}+2(\|x\|-\|y\|)^{2}\right)^{\frac{1}{2}}}{\max \{\|x\|,\|y\|\}} \tag{1.2}
\end{equation*}
$$

Also they introduced an operator version of (1.2) by estimating $\left.|A| A\right|^{-1}-B|B|^{-1} \mid$, where A and B are Hilbert space operators such that $|A|$ and $|B|$ are invertible (see Corollary 2.4 below).

In [8], Maligranda considered the p-angular distance ($p \in \mathbb{R}$), as a generalization of the concept of angular distance (when $p=0$), between nonzero elements x and y in a normed space $(\mathcal{X},\|\cdot\|)$ as $\alpha_{p}[x, y]:=\| \| x\left\|^{p-1} x-\right\| y\left\|^{p-1} y\right\|$; see also [1].

In this paper, we introduce an operator version of the p-angular distance for Hilbert space operators as a generalization of the Pečarić-Rajić inequality presented in [12]. Thus we will obtain the following estimation of it: If $|A|$ and $|B|$ are invertible, $\frac{1}{r}+\frac{1}{s}=1(r>1)$ and $p \in \mathbb{R}$, Then

$$
\left.|A| A\right|^{p-1}-\left.B|B|^{p-1}\right|^{2} \leq|A|^{p-1}\left(r|A-B|^{2}+\left.s| | A\right|^{1-p}|B|^{p}-\left.|B|\right|^{2}\right)|A|^{p-1} .
$$

On the other hand, Saito and Tominaga [13] recently generalized Pečarić and Rajić inequality by deleting the invertibility condition on $|A|$ and $|B|$. We also discuss their result.

Our basic tool is the generalized parallelogram law for operators;

$$
|A-B|^{2}+\frac{1}{t}|t A+B|^{2}=(1+t)|A|^{2}+\left(1+\frac{1}{t}\right)|B|^{2}
$$

for any nonzero $t \in \mathbb{R}$. We, in addition, consider several equivalent conditions when the case of equality holds in the obtained inequality. The reader is referred to $[4,10]$ for undefined notation and terminology related to Hilbert space operators.

2. Dunkl-Williams inequality for operators

In this section, we consider Dunkl-Williams inequality for operators as an application of the generalized parallelogram law of operators (GPL):

$$
|A-B|^{2}+\frac{1}{t}|t A+B|^{2}=(1+t)|A|^{2}+\left(1+\frac{1}{t}\right)|B|^{2}
$$

for any nonzero $t \in \mathbb{R}$. This equality can be easily verified by using $|C|^{2}=C^{*} C$ $(C \in \mathbb{B}(\mathscr{H}))$.

The following lemma follows from it easily, cf. [5].

Lemma 2.1. Let $A, B \in \mathbb{B}(\mathscr{H})$ be operators with the polar decompositions $A=U|A|$ and $B=V|B|$. Then for each $t>0$

$$
|A-B|^{2} \leq(1+t)|A|^{2}+\left(1+\frac{1}{t}\right)|B|^{2}
$$

The equality holds if and only if $t A+B=0$.
We now state our main results, which are understood as an application of the above lemma.

Theorem 2.2. Let $A, B \in \mathbb{B}(\mathscr{H})$ be operators with the polar decompositions $A=$ $U|A|$ and $B=V|B|$ and let $t>0$ and $0<p \leq 1$ be arbitrary. Then

$$
\left.\left.\left|\left(U|A|^{p}-V|B|^{p}\right)\right| A\right|^{1-p}\right|^{2} \leq(1+t)|A-B|^{2}+\left.\left(1+\frac{1}{t}\right)| | B\right|^{p}|A|^{1-p}-\left.|B|\right|^{2} .
$$

The equality holds if and only if $t(A-B)+V\left(|B|^{p}|A|^{1-p}-|B|\right)=0$.
Proof. Replace A and B in the preceding lemma by $A-B$ and $V\left(|B|^{p}|A|^{1-p}-|B|\right)$ respectively. Then we have

$$
\begin{aligned}
\left.\left.|A-V| B\right|^{p}|A|^{1-p}\right|^{2} & \leq(1+t)|A-B|^{2}+\left(1+\frac{1}{t}\right)\left|V\left(|B|^{p}|A|^{1-p}-|B|\right)\right|^{2} \\
& =(1+t)|A-B|^{2}+\left.\left(1+\frac{1}{t}\right)| | B\right|^{p}|A|^{1-p}-\left.|B|\right|^{2}
\end{aligned}
$$

because $V^{*} V$ is a projection onto the closure of the range of B^{*}. Hence we have the required inequality. The equality holds if and only if $t(A-B)+V\left(|B|^{p}|A|^{1-p}-|B|\right)=$ 0.

Next we have an estimation of the operator p-angular distance.
Theorem 2.3. Let $A, B \in \mathbb{B}(\mathscr{H})$ such that $|A|$ and $|B|$ are invertible, $\frac{1}{r}+\frac{1}{s}=1$ $(r>1)$ and $p \in \mathbb{R}$. Then

$$
\left.|A| A\right|^{p-1}-\left.B|B|^{p-1}\right|^{2} \leq|A|^{p-1}\left(r|A-B|^{2}+\left.s| | B\right|^{p}|A|^{1-p}-\left.|B|\right|^{2}\right)|A|^{p-1}
$$

Moreover the equality holds if and only if

$$
(r-1)(A-B)|A|^{p-1}=B\left(|A|^{p-1}-|B|^{p-1}\right) .
$$

Proof. The proof is similar to the above, that is, put

$$
A_{1}=A-B, \quad B_{1}=B|B|^{p-1}|A|^{1-p}-B
$$

and $t=r-1$ in Lemma 2.1. Since $r=t+1$ and so $s=1+\frac{1}{t}$, we have the conclusion including the equality condition.

A special case of Theorem 2.3, where $p=0$ gives rise to the main result of Pečarić and Rajić [12, Theorem 2.1].

Corollary 2.4. Let $A, B \in \mathbb{B}(\mathscr{H})$ such that $|A|$ and $|B|$ are invertible and $\frac{1}{r}+\frac{1}{s}=1$ ($r>1$). Then

$$
\begin{equation*}
\left.|A| A\right|^{-1}-\left.B|B|^{-1}\right|^{2} \leq|A|^{-1}\left(r|A-B|^{2}+s(|A|-|B|)^{2}\right)|A|^{-1} . \tag{2.1}
\end{equation*}
$$

Further, the equality holds if and only if

$$
(r-1)(A-B)|A|^{-1}=B\left(|A|^{-1}-|B|^{-1}\right) .
$$

We here give some conditions equivalent to the equality condition in Theorem 2.3.
Proposition 2.5. Let $p \in \mathbb{R}, \frac{1}{r}+\frac{1}{s}=1(r>1)$ and $A, B \in \mathbb{B}(\mathscr{H})$ such that $|A|$ and $|B|$ are invertible for the case where $p<1$. Then the following conditions are mutually equivalent:
(i) $(r-1)(A-B)|A|^{p-1}=B\left(|A|^{p-1}-|B|^{p-1}\right)$;
(ii) $(s-1) B\left(|A|^{p-1}-|B|^{p-1}\right)=(A-B)|A|^{p-1}$;
(iii) $r(A-B)|A|^{p-1}+s B\left(|B|^{p-1}-|A|^{p-1}\right)=0$;
(iv) $A|A|^{p-1}-B|B|^{p-1}=s B\left(|A|^{p-1}-|B|^{p-1}\right)$.

Proof. The equivalence $(\mathrm{i}) \Rightarrow(\mathrm{ii}) \Rightarrow(\mathrm{iii}) \Rightarrow(\mathrm{i})$ is easily checked.
To complete the proof, we prove (iii) \Leftrightarrow (iv). Putting $t=r-1$, we have $s=\frac{t+1}{t}$, by which (iii) and (iv) are written respectively as follows:

$$
t(A-B)|A|^{p-1}+B\left(|B|^{p-1}-|A|^{p-1}\right)=0
$$

and

$$
t\left(A|A|^{p-1}-B|B|^{p-1}\right)=(t+1) B\left(|A|^{p-1}-|B|^{p-1}\right)
$$

It is obvious that they are equivalent.
Next we give some necessary conditions for the equality condition in Theorem 2.3.
Proposition 2.6. Let $A, B \in \mathbb{B}(\mathscr{H})$ such that $|A|$ and $|B|$ are invertible, $\frac{1}{r}+\frac{1}{s}=1$ $(r>1), p \in \mathbb{R}$ and

$$
\begin{equation*}
(r-1)(A-B)|A|^{p-1}=B\left(|A|^{p-1}-|B|^{p-1}\right) . \tag{2.2}
\end{equation*}
$$

Then the following statements hold:
(i) $(r-1)|A-B|^{2}=\frac{1}{r}|A|^{1-p}|B|^{2 p}|A|^{1-p}+\frac{1}{s}|A|^{2}-|B|^{2}$;
(ii) $|B| \leq\left(\frac{1}{r}|A|^{1-p}|B|^{2 p}|A|^{1-p}+\frac{1}{s}|A|^{2}\right)^{\frac{1}{2}}$;
(iii) $r|A-B|=\left.s| | B\right|^{p}|A|^{1-p}-|B| \mid$.

Proof. Put $t=r-1$ and then $s=\frac{t+1}{t}$.
(i) Since $t(A-B)=B\left(1-|B|^{p-1}|A|^{1-p}\right)$ by the assumption, we have

$$
t A-(t+1) B=-B|B|^{p-1}|A|^{1-p}
$$

Therefore it implies that

$$
|t A-(t+1) B|^{2}=|A|^{1-p}|B|^{2 p}|A|^{1-p}=C .
$$

On the other hand, (i) is expressed as

$$
t(t+1)|A-B|^{2}=C+t|A|^{2}-(t+1)|B|^{2} .
$$

So it suffices to check that

$$
|t A-(t+1) B|^{2}=t(t+1)|A-B|^{2}-t|A|^{2}+(t+1)|B|^{2}
$$

(ii) It follows from (i) and the Löwner-Heinz inequality.
(iii) Since $t(A-B)=B-B|B|^{p-1}|A|^{1-p}$ by the assumption, we have

$$
t|A-B|=\left.|B-B| B\right|^{p-1}|A|^{1-p}\left|=\left||B|-|B|^{p}\right| A\right|^{1-p} \mid
$$

which is equivalent to (iii).

Remark 2.7. Assume that

$$
(r-1)(A-B)|A|^{-1}=B\left(|A|^{-1}-|B|^{-1}\right) .
$$

This is the same equation (2.2) in the special case when $p=0$. From (ii) of Proposition 2.6 we have

$$
|B| \leq\left(\frac{1}{r}|A|^{2}+\frac{1}{s}|A|^{2}\right)^{\frac{1}{2}}=|A|
$$

and so

$$
\frac{r}{s}|A-B|=|A|-|B|, \text { or }|A|=|B|+\frac{r}{s}|A-B|,
$$

which has been shown by Pečarić and Rajić [12].

3. Saito-Tominaga's generalization

Very recently, Saito-Tominaga improved Pečarić and Rajić inequality without the assumption of the invertibility of the absolute value of operators.

Theorem 3.1. Let $A, B \in \mathbb{B}(\mathscr{H})$ be operators with the polar decompositions $A=$ $U|A|$ and $B=V|B|$, and let $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
|(U-V)| A\left|\left.\right|^{2} \leq p\right| A-\left.B\right|^{2}+q(|A|-|B|)^{2} .
$$

The equality holds if and only if

$$
p(A-B)=q V(|B|-|A|) \quad \text { and } \quad V^{*} V=U^{*} U .
$$

We here remark that it just corresponds to the case $p=0$ in Theorem 2.2. In this section, we consider Theorem 3.1 based on the discussion in the preceding section. For this, we rewrite it as follows:

Theorem 3.2. Let $A, B \in \mathbb{B}(\mathscr{H})$ be operators with the polar decompositions $A=$ $U|A|$ and $B=V|B|$, and $t>0$. Then

$$
|(U-V)| A\left|\left.\right|^{2} \leq(t+1)\right| A-\left.B\right|^{2}+\left(1+\frac{1}{t}\right)(|A|-|B|)^{2} .
$$

The equality holds if and only if

$$
t(A-B)=V(|B|-|A|) \quad \text { and } \quad V^{*} V=U^{*} U .
$$

Note that Theorem 3.1 is obtained by taking $t=p-1$ in above inequality.
Now we prepare a lemma for the equality condition in above.
Lemma 3.3. Let $A, B \in \mathbb{B}(\mathscr{H})$ be operators with the polar decompositions $A=U|A|$ and $B=V|B|$ and $t>0$. If $t(A-B)+V(|A|-|B|)=0$ is satisfied, then

$$
t|A-B|^{2} \leq|A|^{2}-|B|^{2},
$$

and so $|A| \geq|B|$ and $U^{*} U \geq V^{*} V$.
In addition, if $U^{*} U=V^{*} V$, then $t|A-B|^{2}=|A|^{2}-|B|^{2}$.
Proof. Since $t A-(t+1) B=-V|A|$ by the assumption, we have

$$
|t A-(t+1) B|^{2}=|A| V^{*} V|A| .
$$

Adding $t|A|^{2}-(t+1)|B|^{2}$ to both sides, we get

$$
t(t+1)|A-B|^{2}=|A| V^{*} V|A|+t|A|^{2}-(t+1)|B|^{2} \leq(t+1)\left(|A|^{2}-|B|^{2}\right),
$$

so that

$$
0 \leq t|A-B|^{2} \leq|A|^{2}-|B|^{2}
$$

Hence it follows that $|A| \geq|B|$ and $U^{*} U \geq V^{*} V$. Moreover, if $U^{*} U=V^{*} V$ is assumed, then $V^{*} V|A|=|A|$ and so $t|A-B|^{2}=|A|^{2}-|B|^{2}$.

Proof of Theorem 3.2. We replace A and B in Lemma 2.1 by $A-B$ and $V(|A|-|B|)$ respectively. Then we have the required inequality, and the condition for which the equality holds is that

$$
t(A-B)=V(|B|-|A|) \quad \text { and } \quad V^{*} V=U^{*} U .
$$

The latter in above is equivalent to $|A| V^{*} V|A|=|A|^{2}$, or $V^{*} V|A|=|A|$, that is, $V^{*} V \geq U^{*} U$. By the help of the preceding Lemma 3.3, $|B| \leq|A|$ and $V^{*} V \leq U^{*} U$, so that $V^{*} V=U^{*} U$.

Finally, along with the argument due to Saito and Tominaga [13], we investigate the equality condition in Theorem 3.2.

Theorem 3.4. Let $A, B \in \mathbb{B}(\mathscr{H})$ be operators with the polar decompositions $A=$ $U|A|$ and $B=V|B|$, and $C=W|C|$ the polar decomposition of $C=A-B$. Assume that the equality

$$
|(U-V)| A\left|\left.\right|^{2}=(t+1)\right| A-\left.B\right|^{2}+\left(1+\frac{1}{t}\right)(|A|-|B|)^{2} .
$$

holds for some $t>0$.
(i) If $t \geq 1$, then $A=B$.
(ii) If $0<t<1$, then

$$
A=B\left(I-\frac{2}{1-t} W^{*} W\right) \quad \text { and } \quad|A|=|B|\left(I+\frac{2 t}{1-t} W^{*} W\right)
$$

and the converse is true.
We here prepare the following two lemmas.
Lemma 3.5. Let $A, B \in \mathbb{B}(\mathscr{H})$ be operators with the polar decompositions $A=U|A|$ and $B=V|B|$, and $t>0$. Suppose that $V^{*} V=U^{*} U$. Then

$$
t(A-B)=V(|B|-|A|)
$$

if and only if

$$
|A|=|B|+t|A-B| \text { and } A-B=-V(|B|-|A|) .
$$

Proof. Since $t(A-B)=-V(|A|-|B|)$, it follows from Lemma 3.3 that

$$
t|A-B|=||A|-|B||=|A|-|B|
$$

and moreover

$$
A-B=\frac{1}{t} V(|B|-|A|)=-\frac{1}{t} t V|A-B|=-V|A-B| .
$$

Conversely, since $|A|-|B|=t|A-B|$, we have

$$
t(A-B)+V(|A|-|B|)=-t V|A-B|+t V|A-B|=0 .
$$

Lemma 3.6. Let $A, B \in \mathbb{B}(\mathscr{H})$ be operators with the polar decompositions $A=U|A|$ and $B=V|B|$, and $t>0$. Suppose that $V^{*} V=U^{*} U$. If $t(A-B)=V(|B|-|A|)$, then

$$
|B||A-B|+|A-B||B|=(1-t)|A-B|^{2} .
$$

Proof. Put $C=A-B$. The preceding lemma ensures that

$$
t|C|=|B+C|-|B| \text { and } C=-V|C| .
$$

Then it follows that

$$
|B+C|=|B|+t|C|,
$$

and that

$$
B^{*} C=-B^{*} V|C|=-\left(|B| V^{*} V\right)|C|=-|B||C| .
$$

Hence we have

$$
|B+C|^{2}=(|B|-|C|)^{2} \text { and }|B+C|^{2}=(|B|+t|C|)^{2},
$$

so that

$$
(t+1)(|B||C|+|C||B|)=\left(1-t^{2}\right)|C|^{2},
$$

which is equivalent to the conclusion.
Concluding this paper, we give a proof:
Proof of Theorem 3.4. The preceding lemma leads us the fact that if positive operators S and T satisfy $S T+T S=r S^{2}$ for some $r \in \mathbb{R}$, then (i) $S=0$ if $r<0$, and (ii) S and T commute if $r \geq 0$. (Since $S^{2} T=S T S-t S^{3}$ is selfadjoint, S^{2} commutes with T and so does S.) Thus we apply it for $S=|A-B|, T=|B|$ and $r=1-t$.
(i) Since $r=1-t \leq 0$, we first suppose that $r<0$. Then $S=|A-B|=0$, that is, $A=B$, as desired. Next we suppose $r=0$. Then $S=|C|$ commutes with $T=|B|$ and so $S T=0$. Hence we have $|C| V^{*} V=0$. Moreover, since $C=-V|C|$ by Lemma 3.5, it follows that $|C|^{2}=|C| V^{*} V|C|=0$, i.e., $C=0$.
(ii) We apply the second case (ii) in above. Namely we have

$$
|B \| C|=|C||B|=\frac{1-t}{2}|C|^{2},
$$

so that

$$
B|C|=V|B||C|=\frac{1-t}{2} V|C|^{2}=\frac{t-1}{2} C|C|=\frac{t-1}{2} A|C|-\frac{t-1}{2} B|C| .
$$

It implies that

$$
A|C|=\frac{2}{t-1}\left(1+\frac{t-1}{2}\right) B|C|=\frac{t+1}{t-1} B|C|,
$$

and so

$$
A W^{*} W=\frac{t+1}{t-1} B W^{*} W
$$

Therefore we have
$A=A W^{*} W+A\left(I-W^{*} W\right)=\frac{t+1}{t-1} B W^{*} W+B\left(I-W^{*} W\right)=B\left(I+\frac{2}{t-1} W^{*} W\right)$.
For the second equality, it suffices to show that $W^{*} W$ commutes with $|B|$ because

$$
\left|I-\frac{2}{1-t} W^{*} W\right|=I+\frac{2 t}{1-t} W^{*} W
$$

is easily seen. For this commutativity, we note that $C=A-B=\frac{2}{t-1} B W^{*} W$ by the first equality, $C=-V|C|$ by Lemma 3.5 , and $V^{*} V \geq W^{*} W$ by $W^{*} W \leq$ $\sup \left\{V^{*} V, U^{*} U\right\}$ and $V^{*} V=U^{*} U$. So we prove that

$$
|B| W^{*} W=V^{*} B W^{*} W=-\frac{1-t}{2} V^{*} C=\frac{1-t}{2} V^{*} V|C|=\frac{1-t}{2}|C| .
$$

Incidentally the converse implication in (ii) is as follows: We first note that the second equality assures the commutativity of $|B|$ and $W^{*} W$. Next it follows that

$$
|A|-|B|=-\frac{2 t}{1-t}|B| W^{*} W
$$

and

$$
V|A|-B=V(|A|-|B|)=-\frac{2 t}{1-t} B W^{*} W=-t(A-B)
$$

by the first equality. Hence we have

$$
\begin{gathered}
(U-V)|A|=A-V|A|=A+t(A-B)-B=(1+t)(A-B) \\
|(U-V)| A\left|\left.\right|^{2}=(1+t)^{2}\right| A-\left.B\right|^{2}
\end{gathered}
$$

On the other hand, since

$$
(|A|-|B|)^{2}=\left(\frac{2 t}{1-t}\right)^{2} B^{*} B W^{*} W=t^{2}|A-B|^{2}
$$

we have

$$
\begin{aligned}
&(1+t)|A-B|^{2}+\left(1+\frac{1}{t}\right)(|A|-|B|)^{2} \\
&=\left((1+t)+\left(1+\frac{1}{t}\right) t^{2}\right)|A-B|^{2}=(1+t)^{2}|A-B|^{2}
\end{aligned}
$$

Acknowledgements. This research was supported by a grant from Ferdowsi University of Mashhad (No. MP89129MOS). The authors would like to express their thanks to the referee for useful suggestion.

References

[1] S. S. Dragomir, Inequalities for the p-angular distance in normed linear spaces, Math. Inequal. Appl., 12 (2009), 391-401.
[2] S. S. Dragomir, Generalization of the Pečarić-Rajić inequality in normed linear spaces, Math. Inequal. Appl., 12 (2009), 53-65.
[3] C. F. Dunkl and K. S. Williams, A Simple Norm Inequality, Amer. Math. Monthly, 71 (1964), 53-54.
[4] T. Furuta, Invitation to linear operators. From matrices to bounded linear operators on a Hilbert space, Taylor \& Francis, Ltd., London, 2001.
[5] O. Hirzallah, Non-commutative operator Bohr inequality, J. Math. Anal. Appl., 282 (2003), 578-583.
[6] A. Jiménez-Melado, E. Llorens-Fuster and E. M. Mazcuñán-Navarro, The Dunkl-Williams constant, convexity, smoothness and normal structure, J. Math. Anal. Appl., 342 (2008), 298-310.
[7] W. A. Kirk and M. F. Smiley, Mathematical Notes: Another characterization of inner product spaces, Amer. Math. Monthly, 71 (1964), 890-891.
[8] L. Maligranda, Simple norm inequalities, Amer. Math. Monthly, 113 (2006), 256-260.
[9] P. P. Mercer, The Dunkl-Williams inequality in an inner product space, Math. Inequal. Appl., 10 (2007), 447-450.
[10] J. G. Murphy, C^{*}-Algebras and Operator Theory, Academic Press, San Diego, 1990.
[11] J. E. Pečarić and R. Rajić, The Dunkl-Williams inequality with n-elements in normed linear spaces, Math. Inequal. Appl., 10 (2007), 461-470.
[12] J. E. Pečarić and R. Rajić, Inequalities of the Dunkl-Williams type for absolute value operators, J. Math. Inequal., 4 (2010), 1-10.
[13] K.-S. Saito and M. Tominaga, The Dunkl-Williams type inequality for absolute value operators, Linear Algebra Appl., 432 (2010), 3258-3264.
(Farzad Dadipour) Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O.Box 1159, Mashhad 91775, Iran E-mail address: dadipoor@yahoo.com
(Masatoshi Fujii) Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 5828582, Japan
E-mail address: mfujii@cc.osaka-kyoiku.ac.jp
(Mohammad Sal Moslehian) Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O.Box 1159, Mashhad 91775, Iran
E-mail address: moslehian@ferdowsi.um.ac.ir and moslehian@ams.org

Received January 29, 2010
Revised March 2, 2010

[^0]: 2010 Mathematics Subject Classification. Primary 47A63; Secondary 26D15.
 Key words and phrases. Dunkl-Williams inequality, p-angular distance, operator parallelogram law.

