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DUNKL–WILLIAMS INEQUALITY FOR OPERATORS
ASSOCIATED WITH p-ANGULAR DISTANCE

FARZAD DADIPOUR, MASATOSHI FUJII,

AND MOHAMMAD SAL MOSLEHIAN

Abstract. We present several operator versions of the Dunkl–Williams inequal-

ity with respect to the p-angular distance for operators. More precisely, we show

that if A,B ∈ B(H ) such that |A| and |B| are invertible, 1
r + 1

s = 1 (r > 1) and

p ∈ R, then∣∣A|A|p−1 −B|B|p−1
∣∣2 ≤ |A|p−1

(
r|A−B|2 + s

∣∣ |A|1−p|B|p − |B|
∣∣2 ) |A|p−1.

In the case that 0 < p ≤ 1, we remove the invertibility assumption and show that

if A = U |A| and B = V |B| are the polar decompositions of A and B, respectively,

t > 0, then∣∣ (U |A|p − V |B|p) |A|1−p
∣∣2 ≤

(
1 + t

)
|A−B|2 +

(
1 +

1

t

) ∣∣|B|p|A|1−p − |B|
∣∣2 .

We obtain several equivalent conditions, when the case of equalities hold.

1. Introduction

In 1964, Dunkl and Williams [3] showed that, for any two nonzero vectors x and y

in a normed space (X , ∥ · ∥),∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥ ≤ 4∥x− y∥
∥x∥+ ∥y∥

. (1.1)

In the same paper, the authors proved that the constant 4 can be replaced by 2 if

X is an inner product space. This inequality has some applications in the study of

geometry of Banach spaces. Kirk and Smiley [7] showed that inequality (1.1) with

2 instead of 4 characterizes inner product spaces. Thus, the smallest number which

can replace 4 in inequality (1.1) measures “how much” this space is close (or far) to

be a Hilbert space, cf. [6].

Now the inequality (1.1) is regarded as an estimation of the angular distance

between given vectors x and y. It has many interesting refinements which have
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obtained over the years, e.g., Maligranda [8], Mercer [9], Dragomir [2], and Pečarić

and Rajić [11].

Now we pay our attention to the following improvement of Dunkl–Williams in-

equality due to Pečarić and Rajić:∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥ ≤ (2∥x− y∥2 + 2(∥x∥ − ∥y∥)2)
1
2

max{∥x∥, ∥y∥}
. (1.2)

Also they introduced an operator version of (1.2) by estimating |A|A|−1 −B|B|−1 |,
where A and B are Hilbert space operators such that |A| and |B| are invertible (see
Corollary 2.4 below).

In [8], Maligranda considered the p-angular distance (p ∈ R), as a generalization

of the concept of angular distance (when p = 0), between nonzero elements x and y

in a normed space (X , ∥ · ∥) as αp[x, y] := ∥∥x∥p−1x− ∥y∥p−1y∥; see also [1].

In this paper, we introduce an operator version of the p-angular distance for

Hilbert space operators as a generalization of the Pečarić–Rajić inequality presented

in [12]. Thus we will obtain the following estimation of it: If |A| and |B| are

invertible, 1
r
+ 1

s
= 1 (r > 1) and p ∈ R, Then∣∣A|A|p−1 −B|B|p−1

∣∣2 ≤ |A|p−1
(
r|A−B|2 + s

∣∣ |A|1−p|B|p − |B|
∣∣2) |A|p−1.

On the other hand, Saito and Tominaga [13] recently generalized Pečarić and

Rajić inequality by deleting the invertibility condition on |A| and |B|. We also

discuss their result.

Our basic tool is the generalized parallelogram law for operators;

|A−B|2 + 1

t
|tA+B|2 =

(
1 + t

)
|A|2 +

(
1 +

1

t

)
|B|2

for any nonzero t ∈ R. We, in addition, consider several equivalent conditions when

the case of equality holds in the obtained inequality. The reader is referred to [4, 10]

for undefined notation and terminology related to Hilbert space operators.

2. Dunkl–Williams inequality for operators

In this section, we consider Dunkl-Williams inequality for operators as an application

of the generalized parallelogram law of operators (GPL):

|A−B|2 + 1

t
|tA+B|2 =

(
1 + t

)
|A|2 +

(
1 +

1

t

)
|B|2

for any nonzero t ∈ R. This equality can be easily verified by using |C|2 = C∗C

(C ∈ B(H )).

The following lemma follows from it easily, cf. [5].
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Lemma 2.1. Let A,B ∈ B(H ) be operators with the polar decompositions A = U |A|
and B = V |B|. Then for each t > 0

|A−B|2 ≤
(
1 + t

)
|A|2 +

(
1 +

1

t

)
|B|2.

The equality holds if and only if tA+B = 0.

We now state our main results, which are understood as an application of the

above lemma.

Theorem 2.2. Let A,B ∈ B(H ) be operators with the polar decompositions A =

U |A| and B = V |B| and let t > 0 and 0 < p ≤ 1 be arbitrary. Then∣∣ (U |A|p − V |B|p)|A|1−p
∣∣2 ≤ (

1 + t
)
|A−B|2 +

(
1 +

1

t

) ∣∣ |B|p|A|1−p − |B|
∣∣2 .

The equality holds if and only if t(A−B) + V (|B|p|A|1−p − |B|) = 0.

Proof. Replace A and B in the preceding lemma by A−B and V (|B|p|A|1−p − |B|)
respectively. Then we have∣∣A− V |B|p|A|1−p

∣∣2 ≤
(
1 + t

)
|A−B|2 +

(
1 +

1

t

) ∣∣V (|B|p|A|1−p − |B|)
∣∣2

=
(
1 + t

)
|A−B|2 +

(
1 +

1

t

) ∣∣ |B|p|A|1−p − |B|
∣∣2

because V ∗V is a projection onto the closure of the range of B∗. Hence we have the

required inequality. The equality holds if and only if t(A−B)+V (|B|p|A|1−p−|B|) =
0. �

Next we have an estimation of the operator p-angular distance.

Theorem 2.3. Let A,B ∈ B(H ) such that |A| and |B| are invertible, 1
r
+ 1

s
= 1

(r > 1) and p ∈ R. Then

∣∣A|A|p−1 −B|B|p−1
∣∣2 ≤ |A|p−1

(
r|A−B|2 + s

∣∣ |B|p|A|1−p − |B|
∣∣2) |A|p−1.

Moreover the equality holds if and only if

(r − 1)(A−B)|A|p−1 = B
(
|A|p−1 − |B|p−1

)
.

Proof. The proof is similar to the above, that is, put

A1 = A−B, B1 = B|B|p−1|A|1−p −B

and t = r−1 in Lemma 2.1. Since r = t+1 and so s = 1+ 1
t
, we have the conclusion

including the equality condition.

�
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A special case of Theorem 2.3, where p = 0 gives rise to the main result of Pečarić

and Rajić [12, Theorem 2.1].

Corollary 2.4. Let A,B ∈ B(H ) such that |A| and |B| are invertible and 1
r
+ 1

s
= 1

(r > 1). Then∣∣A|A|−1 −B|B|−1
∣∣2 ≤ |A|−1

(
r|A−B|2 + s (|A| − |B|)2

)
|A|−1. (2.1)

Further, the equality holds if and only if

(r − 1)(A−B)|A|−1 = B
(
|A|−1 − |B|−1

)
.

We here give some conditions equivalent to the equality condition in Theorem 2.3.

Proposition 2.5. Let p ∈ R, 1
r
+ 1

s
= 1 (r > 1) and A,B ∈ B(H ) such that |A|

and |B| are invertible for the case where p < 1. Then the following conditions are

mutually equivalent:

(i) (r − 1)(A−B)|A|p−1 = B (|A|p−1 − |B|p−1);

(ii) (s− 1)B (|A|p−1 − |B|p−1) = (A−B)|A|p−1;

(iii) r(A−B)|A|p−1 + sB (|B|p−1 − |A|p−1) = 0;

(iv) A|A|p−1 −B|B|p−1 = sB (|A|p−1 − |B|p−1) .

Proof. The equivalence (i)⇒(ii)⇒(iii) ⇒(i) is easily checked.

To complete the proof, we prove (iii)⇔(iv). Putting t = r − 1, we have s = t+1
t
,

by which (iii) and (iv) are written respectively as follows:

t(A−B)|A|p−1 +B
(
|B|p−1 − |A|p−1

)
= 0

and

t
(
A|A|p−1 −B|B|p−1

)
= (t+ 1)B

(
|A|p−1 − |B|p−1

)
.

It is obvious that they are equivalent. �

Next we give some necessary conditions for the equality condition in Theorem 2.3.

Proposition 2.6. Let A,B ∈ B(H ) such that |A| and |B| are invertible, 1
r
+ 1

s
= 1

(r > 1), p ∈ R and

(r − 1)(A−B)|A|p−1 = B
(
|A|p−1 − |B|p−1

)
. (2.2)

Then the following statements hold:

(i) (r − 1)|A−B|2 = 1
r
|A|1−p|B|2p|A|1−p + 1

s
|A|2 − |B|2;

(ii) |B| ≤
(
1
r
|A|1−p|B|2p|A|1−p + 1

s
|A|2

) 1
2 ;

(iii) r|A−B| = s | |B|p|A|1−p − |B| |.
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Proof. Put t = r − 1 and then s = t+1
t
.

(i) Since t(A−B) = B (1− |B|p−1|A|1−p) by the assumption, we have

tA− (t+ 1)B = −B|B|p−1|A|1−p.

Therefore it implies that

|tA− (t+ 1)B|2 = |A|1−p|B|2p|A|1−p = C.

On the other hand, (i) is expressed as

t(t+ 1)|A−B|2 = C + t|A|2 − (t+ 1)|B|2.

So it suffices to check that

|tA− (t+ 1)B|2 = t(t+ 1)|A−B|2 − t|A|2 + (t+ 1)|B|2.

(ii) It follows from (i) and the Löwner-Heinz inequality.

(iii) Since t(A−B) = B −B|B|p−1|A|1−p by the assumption, we have

t|A−B| =
∣∣B −B|B|p−1|A|1−p

∣∣ = ∣∣ |B| − |B|p|A|1−p
∣∣ ,

which is equivalent to (iii).

�

Remark 2.7. Assume that

(r − 1)(A−B)|A|−1 = B
(
|A|−1 − |B|−1

)
.

This is the same equation (2.2) in the special case when p = 0. From (ii) of Propo-

sition 2.6 we have

|B| ≤
(
1

r
|A|2 + 1

s
|A|2

) 1
2

= |A|

and so
r

s
|A−B| = |A| − |B|, or |A| = |B|+ r

s
|A−B|,

which has been shown by Pečarić and Rajić [12].

3. Saito-Tominaga’s generalization

Very recently, Saito-Tominaga improved Pečarić and Rajić inequality without the

assumption of the invertibility of the absolute value of operators.

Theorem 3.1. Let A,B ∈ B(H ) be operators with the polar decompositions A =

U |A| and B = V |B|, and let p, q > 1 with 1
p
+ 1

q
= 1. Then

| (U − V ) |A| |2 ≤ p|A−B|2 + q (|A| − |B|)2 .

The equality holds if and only if

p(A−B) = qV (|B| − |A|) and V ∗V = U∗U.
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We here remark that it just corresponds to the case p = 0 in Theorem 2.2. In this

section, we consider Theorem 3.1 based on the discussion in the preceding section.

For this, we rewrite it as follows:

Theorem 3.2. Let A,B ∈ B(H ) be operators with the polar decompositions A =

U |A| and B = V |B|, and t > 0. Then

| (U − V )|A| |2 ≤
(
t+ 1

)
|A−B|2 +

(
1 +

1

t

)
(|A| − |B|)2 .

The equality holds if and only if

t(A−B) = V (|B| − |A|) and V ∗V = U∗U.

Note that Theorem 3.1 is obtained by taking t = p− 1 in above inequality.

Now we prepare a lemma for the equality condition in above.

Lemma 3.3. Let A,B ∈ B(H ) be operators with the polar decompositions A = U |A|
and B = V |B| and t > 0. If t (A−B) + V (|A| − |B|) = 0 is satisfied, then

t|A−B|2 ≤ |A|2 − |B|2,

and so |A| ≥ |B| and U∗U ≥ V ∗V .

In addition, if U∗U = V ∗V , then t|A−B|2 = |A|2 − |B|2.

Proof. Since tA− (t+ 1)B = −V |A| by the assumption, we have

|tA− (t+ 1)B|2 = |A|V ∗V |A|.

Adding t|A|2 − (t+ 1)|B|2 to both sides, we get

t(t+ 1)|A−B|2 = |A|V ∗V |A|+ t|A|2 − (t+ 1)|B|2 ≤ (t+ 1)
(
|A|2 − |B|2

)
,

so that

0 ≤ t|A−B|2 ≤ |A|2 − |B|2.
Hence it follows that |A| ≥ |B| and U∗U ≥ V ∗V . Moreover, if U∗U = V ∗V is

assumed, then V ∗V |A| = |A| and so t|A−B|2 = |A|2 − |B|2. �

Proof of Theorem 3.2. We replace A and B in Lemma 2.1 by A−B and V (|A|−|B|)
respectively. Then we have the required inequality, and the condition for which the

equality holds is that

t(A−B) = V (|B| − |A|) and V ∗V = U∗U.

The latter in above is equivalent to |A|V ∗V |A| = |A|2, or V ∗V |A| = |A|, that is,

V ∗V ≥ U∗U . By the help of the preceding Lemma 3.3, |B| ≤ |A| and V ∗V ≤ U∗U ,

so that V ∗V = U∗U . �

Finally, along with the argument due to Saito and Tominaga [13], we investigate

the equality condition in Theorem 3.2.

— 16 —



Theorem 3.4. Let A,B ∈ B(H ) be operators with the polar decompositions A =

U |A| and B = V |B|, and C = W |C| the polar decomposition of C = A−B. Assume

that the equality

|(U − V ) |A||2 =
(
t+ 1

)
|A−B|2 +

(
1 +

1

t

)
(|A| − |B|)2 .

holds for some t > 0.

(i) If t ≥ 1, then A = B.

(ii) If 0 < t < 1, then

A = B

(
I − 2

1− t
W ∗W

)
and |A| = |B|

(
I +

2t

1− t
W ∗W

)
,

and the converse is true.

We here prepare the following two lemmas.

Lemma 3.5. Let A,B ∈ B(H ) be operators with the polar decompositions A = U |A|
and B = V |B|, and t > 0. Suppose that V ∗V = U∗U . Then

t(A−B) = V (|B| − |A|)

if and only if

|A| = |B|+ t|A−B| and A−B = −V (|B| − |A|) .

Proof. Since t(A−B) = −V (|A| − |B|), it follows from Lemma 3.3 that

t|A−B| = | |A| − |B| | = |A| − |B|

and moreover

A−B =
1

t
V (|B| − |A|) = −1

t
tV |A−B| = −V |A−B|.

Conversely, since |A| − |B| = t|A−B|, we have

t(A−B) + V (|A| − |B|) = −tV |A−B|+ tV |A−B| = 0.

�

Lemma 3.6. Let A,B ∈ B(H ) be operators with the polar decompositions A = U |A|
and B = V |B|, and t > 0. Suppose that V ∗V = U∗U . If t(A− B) = V (|B| − |A|),
then

|B||A−B|+ |A−B||B| = (1− t)|A−B|2.

Proof. Put C = A−B. The preceding lemma ensures that

t|C| = |B + C| − |B| and C = −V |C|.

Then it follows that

|B + C| = |B|+ t|C|,
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and that

B∗C = −B∗V |C| = − (|B|V ∗V ) |C| = −|B||C|.

Hence we have

|B + C|2 = (|B| − |C|)2 and |B + C|2 = (|B|+ t|C|)2 ,

so that

(t+ 1) (|B||C|+ |C||B|) =
(
1− t2

)
|C|2,

which is equivalent to the conclusion. �

Concluding this paper, we give a proof:

Proof of Theorem 3.4. The preceding lemma leads us the fact that if positive oper-

ators S and T satisfy ST + TS = rS2 for some r ∈ R, then (i) S = 0 if r < 0, and

(ii) S and T commute if r ≥ 0. (Since S2T = STS− tS3 is selfadjoint, S2 commutes

with T and so does S.) Thus we apply it for S = |A−B|, T = |B| and r = 1− t.

(i) Since r = 1 − t ≤ 0, we first suppose that r < 0. Then S = |A − B| = 0,

that is, A = B, as desired. Next we suppose r = 0. Then S = |C| commutes with

T = |B| and so ST = 0. Hence we have |C|V ∗V = 0. Moreover, since C = −V |C|
by Lemma 3.5, it follows that |C|2 = |C|V ∗V |C| = 0, i.e., C = 0.

(ii) We apply the second case (ii) in above. Namely we have

|B||C| = |C||B| = 1− t

2
|C|2,

so that

B|C| = V |B||C| = 1− t

2
V |C|2 = t− 1

2
C|C| = t− 1

2
A|C| − t− 1

2
B|C|.

It implies that

A|C| = 2

t− 1

(
1 +

t− 1

2

)
B|C| = t+ 1

t− 1
B|C|,

and so

AW ∗W =
t+ 1

t− 1
BW ∗W.

Therefore we have

A = AW ∗W+A (I −W ∗W ) =
t+ 1

t− 1
BW ∗W+B (I −W ∗W ) = B

(
I +

2

t− 1
W ∗W

)
.

For the second equality, it suffices to show that W ∗W commutes with |B| because∣∣∣∣ I − 2

1− t
W ∗W

∣∣∣∣ = I +
2t

1− t
W ∗W
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is easily seen. For this commutativity, we note that C = A − B = 2
t−1

BW ∗W

by the first equality, C = −V |C| by Lemma 3.5, and V ∗V ≥ W ∗W by W ∗W ≤
sup{V ∗V, U∗U} and V ∗V = U∗U . So we prove that

|B|W ∗W = V ∗BW ∗W = −1− t

2
V ∗C =

1− t

2
V ∗V |C| = 1− t

2
|C|.

Incidentally the converse implication in (ii) is as follows: We first note that the

second equality assures the commutativity of |B| and W ∗W . Next it follows that

|A| − |B| = − 2t

1− t
|B|W ∗W

and

V |A| −B = V (|A| − |B|) = − 2t

1− t
BW ∗W = −t(A−B)

by the first equality. Hence we have

(U − V )|A| = A− V |A| = A+ t(A−B)−B = (1 + t)(A−B);

|(U − V )|A||2 = (1 + t)2|A−B|2.
On the other hand, since

(|A| − |B|)2 =
(

2t

1− t

)2

B∗BW ∗W = t2|A−B|2,

we have (
1 + t

)
|A−B|2 +

(
1 +

1

t

)
(|A| − |B|)2

=

((
1 + t

)
+

(
1 +

1

t

)
t2
)
|A−B|2 = (1 + t)2|A−B|2.

�
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