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Abstract. Sufficient conditions are established for the oscillations of
partial differential equation with functional arguments of the form

2 () oaz, ) = ahAu(z, 0 + 3 ox(DA(z, 51(1) = alz, (. )
k=1

m
=Y " gj(z, tyu(z,0;(1)), (z,8) ER x[0,00) = G,
j=1
where  is a bounded domain in R® with a piecewise smooth boundary
80 and A is the Laplacian in Euclidean n-space R".
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1 Introduction

Recently, the oscillation problem for the partial functional differential equation
has been studied by many authors. We refer the reader to [1,2,3] for parabolic
equations and to [4,5,6,7] for hyperbolic equations.

In this paper, we study the oscillation of solutions of partial differential equations

with functional arguments of the form

1) 2D 2ue,0) = aHAss, )+ 3 a®AUE, A4) - 1@ Dulz, 1)
k=1
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- f:q:'(”» t)u(z,04(t)), (2,8) € x [0,00) = G,
j=1

where (] is a bounded domain in R® with a piecewise smooth boundary 89, and
Au(az,t) =37 8’;45:%&‘

Suppose that the following conditions hold:

(A1) p € CY{([0, 0); (0, 00)), limy.e0 Ji, ;b;do = 400,89 > 0;

(A2) ¢,9; € C(G;[0,00)),(2) = inf,g59(2,t),and ¢j(t) = inf, gq(z,t),j €
Im ={1,2,...,m}; '

(A3) a,ar € C([0,00);[0,00)),k € I, = {1,2,...,s};

(A4) oj,;m € C([0,00); R),0;i(t) < t,m(t) < t,0j,p4 are nondecreasing func-
tions and lim¢_, o0 0(t) = limy_00 p3(t) = 00,5 € Inn, k € I,.

We consider two kinds of boundary conditions:

@) %‘l + 9z, )8(z, £) = 0, (z,£) € 89 x [0, 00),

where NV is the unit exterior normal vector to 90 and g(z,¢) is a nonnegative con-

tinuous function on 80 x [0, 00), and
(3) u(z,t)=0,(z,t) € 30 x [0, 00).

Definition 1.1. The solution 8 € C>(G; R) of the problem (1),(2) (or (1),(3))
i2 said to be oscillatory in the domain G = § x [0, 00) if for any positive number u
there ezists a point (z9,49) € 2 X [, 00) such that u(zo,t0) = O holds.

In the following two sections sufficient conditions are obtained for the oscillation
of the solutions of the problem (1),(2) and (1),(3) in the domain G. We note that
conditions for the oscillation of the solutions for p(¢) = 1 has been obtained in the
works of Lalli, Yu and Cui [4], and for p(t) = 1,0;(t) = t — Bj, sj = const. > 0 has
been obtained in the works of Cui, Yu and Lin [5].

2 Oescillation of the problem (1),(2)

Theorem 2.1. If there erists some jo € I, such that a;-.(t) >0, gj,(t)>0,t >
to > 0, and
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@ [ g bt = oo

te

Then every solution u(z,t) of problem (1), (2) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(z,t) of
the problem (1),(2) which has no zero in 2 x [tp, 00) for some $p > 0. Without loss
of generality we may assume that u(z,t) > 0, s(z, () > O, and u(z,0;(¢)) > Oin
0 x[t,00),8 2%,k €I,j € In.

Integrating (1) with respect to z over the domain {1, we have

® oI [ we0dn) = a0) [ Aate, 0o + 3 o) [ Aste, (1o

k=1
_./nq(z,t)“(z‘,t)dz—;qu(z,t)u(z,aj(t))dg, t> .

From Green’s formula and boundary condition (2), it follows that

au(.e t)

(6) / Au(z, t)dz = / w8 s = - / o(z,4)u(z, £)dS < 0,

and
([ Az, prteas = [ 2204

= - /m o(z, or($))8(z, (£))dS < 0,8 > 1,k € I,

where dS is the surface element on 8K2.

Noting that condition (A2), combining (5)—(7), we get
(8) g;(p(t)-;; /n u(z,1)dz) < - /;) q(t)u(z,t)dz — ’}; fn g;()u(z, 0j(t))dz,t 2 4.
Set V(¢) = [qu(z,t)dz,t > ¢, from (8) we have
(@ POV O] +aOVE) + ) 4V (e;(1)) S0, > 1.
Jj=1

The inequality (9) shows that [p(¢)V'(#)] < 0 for ¢ > ;. Hence p(t)V'(t) is a
decreasing function in the interval [t;,00). We can claim that V(1) >0 fort > t;.
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In fact, if V'(¢) < O for ¢ > #;, then there exists a 7' > ¢; such that oTHV'(T) <o.
This implies that

' o(TWV'(T)

Hence
, ¢
VO -V oAD' [ p%, t>T.

Therefore,

tl—lglo V()= -o,

which contradicts the fact that V() = [, u(z,¢)dz > 0.
From (9) we obtain that there exists some jy € I, such that

(10) [PV ()] + 2 ())V (0 (3)) < 0,8 > 4.

Integrating the inequality (10), we have

(1) KOV = sV 60+ [ GV oa)Ms 0,62 11

Then we obtain

azn [ GV (@i (8))ds < ~p(OV'(8) + POV (), £ 2 .

Hence

p(8)V' (1)

VienG)' =t

(13) [ () < Gt pOV' () + BV (10)] <

which contradicts the condition (4).

If u(z,t) < 0 for (2,t) € @ x [t1,00), then —u(z,t) > 0 is a positive solution of
the problem (1), (2). This completes the proof of the Theorem 2.1.

Theorem 2.2. If q(t) > 0 and

19 [7 i)t = o,

then every solution u(z,t) of the problem (1), (2) oscillates in G.
Proof. Asin the proof of Theorem 2.1, we obtain (9). Therefore,

(15) [p(e)V' ()] + a(t)V(t) < 0,8 > 1.
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The remainder of the proof is similar to that of Theorem 2.1 and we omit it.
Corollary 2.1. If the snequality (9) has no eventually positive solution, then
every solution u(z,t) of the problem (1),(2) is oscillatory in G.

3 Oscillation of the problem (1),(3)

In the domain 2 we consider the following Dirichlet problem

Aw(z) + aw(z) = 0in 0,
w(z) = 0 on 89,

(*)

where « is a constant. It is well known that the least eigenvalue ap of the problem
(*) is positive and the corresponding eigenfunction ¢(z) is positive in Q.
Theorem 3.1. If there exists some ko € I, such that p;.(t) > 0, az(t) > 0,

and

(16) [ ™ ak, (1)dt = oo,

then every solution u(z,t) of the problem (1),(3) oscillates in G.

. Proof. Suppose to the contrary that there is a nonoscillatory solution u(z,t) of
the problem (1),(3) which has no zero in 2 x [tp, 00) for some tg > 0. Without loss
of generality we may assume that u(z,t) > 0, u(z, pr(t)) > 0, and u(z,0;(¢)) > Oin
1 x [t1,00),81 2 t0,k €1,,j € Iny.

Multiplying both sides of (1) by ¢(z) > O and integrating with respect to z over

the domain {2, we have

an Ze0% [ 3G 0e@ds)

3 ax(t) /0 Au(z, pr(8))p(z)de

k=1

- [ ate 000z, Dp(edde ~ 3~ [ ai(e, Dute, 0yl 12 b

J=1

= a(t)‘/r‘} Au(z,t)p(z)dz +

Green’s formula and boundary (3) yield

(18) /n Au(z, p(z)dz = /0 #(z, )Ap(z)dz = —ao /ﬂ a(z, o(z)dz, t > b,
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and
(19) /0 Au(z, pa(t))e(z)dz = /0 u(z, pa(t))Ap(2)dz = —ay /ﬂ u(z, pa(2))p(z)dz,

t>t,kel,.

Then, we have
@) 2005 [ v, 00(=)2)
< —aoa(t) [ sz, O0p(@)z - a0 3 aa(t) [ (z, (D))o

k=1
~a) [ w(z, o(e)d -2 a® [ s(e.0iee)z, t2 81
Set V(#) = [ u(z,t)p(z)dz, ¢t > t;, from (20) we have
(21) [V (O] + [aoal(t) + gV ()
+a0 Y &tV (1) + Y gi(HV(a;(1)) < 0,2 > 1.

k=1 j=1
It follows that there exists some ko € {1,2,..., s} such that

(22) [PV ()] + crodry (8)V (o1 () < 0,2 > 8.

It is easy to see that
V() > 0,[p(t)V' (1) <0,V'(t)>0,t> t,.
Integrating the inequality (22) we obtain

POV (1) = p(t1)V' (1) + a0V (pry(11)) [ ay,(s)ds <0,

which contradicts the condition (16). This completes the proof of Theorem 3.1.

Corollary 3.1. If the differential inequality (21) has no eventually positive
solution, then every solution u(z,t) of the problem (1),(3) oscillates in G.

It is not difficult to prove the following theorems.

Theorem 3.2. If all conditions of Theorem 2.1 hold, then every solution of the
problem (1),(3) is oscillatory in G.

Theorem 3.3. If the condition of Theorem 2.2 hold, then every solution of the
problem (1),(3) is oscillatory in G.
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4 Examples

Example 4.1. Consider the partial differential equation

(23) 54(2,8) = Uze(2,8) + 822(2,t — 7) — 20(2, 1) — u(z, t — 37),
(2,%) € (0,7) x [0, 00),

with boundary condition

(24) 5(0,8) = ug(x,8) = 0,2 > 0.

Here s = 1,m = 1,p(¢t) = l,a(t) = 1L,a1(t) = 1,;m($) = t ~ 7,q(2,t) =
2,q1(z,t) = 1,01(8) = t — 3x. It is easy to check that the condition of Theorem
2.2 is satisfied. Therefore, every solution of the problem (23), (24) is oscillatory in
(0,7) x [0, 00). In fact, u(z,t) = cosz sint is such a solution.

Example 4.2. Consider the partial differential equation
(25) %[t%u(a, t)] = e vez(2,8)+2u3:(2, ¢ %)—tu(a,t)—:iu(z, - %)—e‘u(m,t—w),
(2,¢) € (0,7) x [0, 00),

with boundary condition
(26) 4(0,¢t) = u(x,t)=0,t>0.

Here s = 1,m = 2,p(t) = t,a(t) = e',a1(t) = 2,m(t) = t — ¥, q(z,t) =
t,qn(z,t) = 3,01(t) = t = §,q2(x,t) = €',03(t) = t — 7. It is easy to see that the
condition of Theorem 3.3 is verified. Thus every solution of the problem (25), (26)

oscillates in (0, 7) x [0, 00). In fact, u(z,t) = sinz cost is such a solution.
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