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0. Introduction

The present paper is concerned with a system of quasilinear degenerate reaction-diffusion
equations of the form

Owur = B1(:, Vug)Auy — dy(t, - )urug — da(t, - )ugus

Orug = Ba(:, Vug)Auy — ds(t, - )uzus + da(t, - )usus
(RDS)
3tu3 = d3(t, ')U2U4 —_ dz(t, ')U1U3

6,u4 = - dl(t, -)u1u4 - da(t, °)U2U4.

in the product space L*(Q)%. It is often natural to treat reaction-diffusion systems in
such L* spaces over the cylindrical domain (0,7) x 2 under the boundary condition of
Robin type

Oui
ov

and the initial condition

(BC) (t,z) + ai(z)ui(z) =0 for (t,z) € (0,7) x N and ¢ = 1,2

(IC) u;(0,z) = wi(z) 20 forz €N and:i=1,2,3,4.

Here  is a bounded domain in R® with smooth boundary, [0, 7] is a fixed time-interval,
Bi(z, ) are a nonnegative continuous functions defined in Q x R™, v denotes the outward
unit normal to 9§ and a;(z) is a continuously differentiable positive function on 9. We
here direct our attention to a boundary condition of Robin type, although various types
of boundary conditions may be imposed.

This problem was formulated as a mathematical model describing the time evolution
of chemical reaction of four kinds of molecules existing in a non-Newtonian fluid. In the
semilinear case, that is 8, = 8, = 1, Mimura and Nakaoka [13] treated (RDS)-(BC)-(IC)

in the space of uniformly continuous bounded functions in R™ under the condition that
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d;, + = 1,2,3, are positive constants, and they showed the asymptotic behavior of the
solution. For the detailed arguments and other related problems, we refer to the paper
by Fife (3], Kobayasi and Oharu [11] and Matsumoto [14].

As for the quasilinear case, Serizawa [16] treated a quasilinear problem

ui(t, z) = B(uz(t, z))us(t, z)

in C[0, 1] under some nonlinear boundary condition. More generally, a class of quasilinear
equations of the form

u(t, z) = Bz, uz(t, T))uz(t, z)

u(0,z) = uo(x)

(QL)

are considered in C[0, 1] by Burch and Goldstein [1] and Goldstein and Lin [5]. Especially,
in [5], they treated (QL) under various boundary conditions in the case where B(z,¢)
may vanish on the boundary 0} and showed the existence, uniqueness of the semigroup
solutions to (QL). Dorroh and Rieder [2] then extended the results given in [5] to the
equation

w(t, ) = B(t, z,u(t, z), uz(t, ))uzz(t, ) + ¥(¢, z, u(t, z), us (¢, z))
u(0,z) = uo(x)

under time-dependent boundary conditions. For the detailed arguments and also the
treatment of multidimensional case, we refer to Goldstein and Lin [6, 7], Goldstein et al.
(8] and Lin [12].

In this paper we treat the quasilinear problem for (RDS) in the case where §;(z, £) may
vanish on the boundary 09 under the boundary and initial conditions (BC)-(IC) in the
Banach space (L=(£2))*. It should be noted here that us(-) and u4(-) are expected to be
only L*(f2)-valued functions because of the degeneracy in (RDS). We demonstrate in our
main result that there exists a weakly-star differentiable solutions to (RDS)-(BC)-(IC) if
the initial data is smooth.

This paper is organized as follows: In Section 1 the basic results are outlined so that
they may be applied to our problem. In Section 2, we introduce quasilinear diffusion op-
erator in L=°(f2) and investigate the m-dissipativity of such operators. Section 3 discusses

the abstract quasilinear problem associated with (RDS) in the product space (L*°(2))*
and contains our main result.

1. Preliminaries

In this section we introduce notation and some basic results which are applied to our
results. In what follows, Q2 is assumed to be a bounded domain in R"™ with smooth
boundary 9§). For 1 < p < co and m > 1, LP(2) and W™?(1) denote the usual Lebesgue
and Sobolev spaces, respectively. The norm of L?(Q) is denoted by |- |, for 1 < p < oo.
In order to prove our results we apply the characterization of the duality mapping of
L*>(f2) discussed by Peiris [15]. It is well-known that the dual space of L®(f) is identified
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with the space ba(f2) of finitely additive bounded measures on 2 which vanish on sets of
Lebesgue measure zero. For v € L*(Q) and g € ba(RN) the value of u at v is written
as (v, ). The normalized duality mapping of L>(f2) is a multi-valued mapping Fp from
L*>(Q) into ba(f) which assigns to each v € L>*(f) a subset of ba(Q?) defined by

Fo(v) = {n € ba(2) : (v, u) =[], [l£llsa@) = 1}-

It is seen that each value of Fy(v) is a weakly-star compact and convex subset of ba((2)
for each v € L®(€). A finitely additive measure u € ba((2) is said to be a 0-1 (or 0-(—1))
measure if g assumes only the values 0 and 1 (or 0 and (—1)). It is shown in [15] that
Fy(v) contains at least one 0-1 (or 0-(—1)) measure for v € L*(Q2).

The following two propositions play an essential role in the proof of Theorem 5.

PROPOSITION 1. ([15])  Let p be a 0-1 measure in ba(Q).

(i) There ezists a € ) such that Bio@ = Oa in the sense that p is a Hahn-Banach
extention of the point mass 8, concentrated at a.

(i) u is multiplicative in the sense that (vw, ) = (v, u)(w, p) for any v,w € L*(Q).

PROPOSITION 2. ([15]) Let u € W'P(Q) for some p > n and Au € L*(Q). Ifu has a
non-negative marimum at a point a € 0, then there exrists a 0-1 measure p, € Fo(u) such
that the essential support is concentrated at a and (Au, pg) < 0.

We next introduce a class of nonlinear operators in a Banach space (X, |- |) and the
associated nonlinear problems of the form.
(NP) dt;—(tt) =At)u(t), s<t<7 u(s)=v, 0<s<T.
In what follows, (X*,|-|) denotes the dual space of X. For z € X and f € X* the value
of f at v is written as (v, f). The duality mapping of X is denoted by F. For v,w € X
the symbol (v, w); stands for the infimum of the set {(v, f) : f € F(w)}. The symbol
Lip([0,7]; X) denotes the space of X-valued functions which are Lipschitz continuous on
[0, 7]. We also denote by BV([0, 7]; X) the set of X-valued functions of bounded variation.

We then consider a general class of nonlinear evolution operators. Let 2(t), 0 <t < 7,
be possibly nonlinear operators in X which are defined on subsets D(2(t)), 0 <t < 7,
respectively. We here assume that D = D(2(t)) for ¢ € [0,7]. This assumption is too
restricted but sufficient for the application to the quasilinear problem under consideration.
To restrict the time dependence of the family of nonlinear operators 2(t), we introduce
the following family of nonnegative functions defined on all of [0,7])?. By F is meant the
class of all 6 € C([0,7]?) such that for 0 < s <t <7

0(s,t) = 0(t,s) and 0(s,s)=0.
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A function 6 € F is said to belong to the class Fgy , if there exists a constant M > 0
such that

N
D 0tk th—1) < M
k=1
for all partitions A = {0 = ¢ < t; < ... < ty = 7} of [0,7]. Moreover, in order to
restrict the quasi-dissipativity in a local sense of 2(t), we employ a continuous functional
¢ : X — [0,00] such that D C D(p) = {v € X : ¢(v) < o0}.
For a family {6, : a > 0} of functions in F, a subset D of X and a functional ¢

as mentioned above, we introduce a class of nonlinear operators 2(t) with which we are
concerned in this paper.

DEFINITION 3. A one-parameter family {2(¢)} of nonlinear operators is said to belong

to the class {(D, ), if 2A(t) are nonlinear operators satisfying the conditions (H1) and
(H2) below:

(H1) For each a > 0, the set D, = {v € D : p(v) < a} is closed in X.

(H2) For each o > 0 and each t € [0, 7], the nonlinear operator 2(t) is locally quasi-
dissipative in the sense that

(A(s)v — A()w, v — w); S wal|v — W] + 0,(s, t)|v — w|
for v € D(?(s)) N D,, w € D(A(t)) N D,, some constant w, € R and some 4, € F.

A two-parameter family & = {U(t,s) : 0 < s <t < 7} of possibly nonlinear operators
from D into D is called an evolution operator on D, if it has the two properties below:
(E1) U(r,r)v=v and U(t,s)U(s,r)v=U(t,r)v
for0<r<s<t<randveD.

(E2) For each s € [0,7) and each v € D, U(-,s)v € C([s, 7]; X).

Because of the localized quasi-dissipativity condition (H2), the nonlinear problem (NP)
may admit only local solutions. Hence it is necessary to restrict the growth of the solutions
in order to discuss the solutions of (NP) on [s, 7]. In this paper we employ a typical growth
condition in terms of the real-valued function ¢(u(-)), namely,

(EG) p(u(t)) < et (p(v) + bt —3)),  teEs,T,

where a and b are nonnegative constants. This type of growth condition may be called
the ezponential growth condition.

In more general situation Kobayasi et al. [10] gives a sufficient condition for a one-
parameter family of nonlinear operators {21(t)} to generate an evolution operator I on
D associated with (NP) and satisfying the growth condition (EG). The next theorem is
a special case of Theorem 4.1 in [10].
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THEOREM 4. (GENERATION THEOREM) Let {(t)} be a one-parameter family of non-
linear operators belonging to the class (D, ). Let a, b > 0. Then condition (I) below
implies (II):

(I) Fors € [0,7), a > 0 there is A\(s,a) > 0 such that for v € D, and X € (0, A(s, ))
there exists vy in D(A(s + ) satisfying

(La) vy — AA(s + A)vy = v,
(Ib) e(va) < (1= aX)7 (p(v) +b)).
(I)  There exists an evolution operator U = {U(t,s) : t > 0} on D such that

(ILa) for s €[0,7), a > 0 and v > e*("=*)(a + b(T — s)), there exists a constant w, € R
satisfying
(Ut 5)o — U(t, s)ew] < expley(t — )0 — w]

forv, w € Dy and t € [s, 1],
(ILb) fors€[0,7), veE D andt € [s,7], U(-, 8)v satisfies the growth condition
o(U(t, s)v) < et~ [p(v) + b(t — s)].

Moreover, if the modulus 0 of time dependence belongs to Fgy, then for s € [0,T) and
v € D(U(s)) U(-, s)v is Lipschitz continuous over [s, 7].

2. Quasilinear diffusion operators §;(-, Vv)Av

In this section we formulate two quasilinear diffusion operators which contain terms rep-
resenting the anomalous viscosities. In what follows, the coefficients §;(-,-) and a;(-),
1 = 1,2, are assumed to satisfy the following conditions:

(C1) B: € C(Q1 x R") and there exist ¢ > n and a positive measurable function S, on
such that 1/8, € L9(Q) N L2, (N) and

Bi(z,€) = Bo(z) >0 fori=1,2,z € Q and £ € R".

(C2) ai(:) € CY(99) and ai(z) >0 fori=1,2 and z € IN.

In order to describe the nonlinear diffusion termé, we define quasilinear operators A;
in L*(Q) by

D(A;) = {v € L*(Q):ve W (Q)NW2EP(Q) for p> n,
B(-, Vv)Av € L*(Q), g_:j +ai(z)v=0 on BQ},

Av = Bi(-, Vv)Av, 1=1,2,
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where ¢ is the real number given in (C1). Since Q2 is bounded and W24(Q) is continuously
embedded in C*(Q) for ¢ > n, du;/dv belong to C(N), i = 1,2, and the boundary
conditions make sense.

For the quasilinear diffusion operators A; defined above, the following results are basic:

THEOREM 5. Fori = 1,2, the operator A; is m-dissipative in L=°(Q) in the sense that
[u — v]oo < |(I = AAi)u — (I — AA;)V|oo
and

Ran(I — AA;) = L*() for A > 0 and u,v € D(A;).

PROOF. We first show that the operators A; are dissipative. For simplicity in notation
we omit the subscript . Let u,v € D(A). Since u and v are continuously differentiable
over {1, there exists a € § such that |u(a) — v(a)| = sup, g |u(z) — v(z)|. In view of the
boundary condition (BC), we may assume that a € §2, and that without loss of generality
we may assume u(a) —v(a) > 0. For the point a we have Vu(a) = Vv(a). By Proposition
2 there exists a 0-1 measure y, € Fy(u — v) with the essential support concentrated at a
such that

(21) (A(u - ‘U), /J'a) <0.
This implies that

(Au - Ava /‘a) = (ﬂ(a Vu)Auaﬂa) - (ﬂ(a V‘U)A‘U, l‘a)
= B(a, Vu(a))(Au, pa) — B(a, Vv(a))(Av, pa)
= B(a, Vu(a)(A(u — v), a) <0,

and hence A is dissipative. We next demonstrate that Ran(I — AA) = L*(Q). A linear
operator L in LI(Q) is defined by

p(r) = {ve wH(@): 3 +atepo =],
Lv = Av,

where ¢ is a positive number given in (C1). It is well-known that L generates a compact
analytic semigroup of contractions in LI(?). Let o € (1/2+ n/(2q),1). We then define a
Banach space Y by

Y = D((—L)*), |vlly = max{|v|,|(—L)*v|,} forveY.

From a result mentioned in Henry [9, Theorem 1.6.1], Y is continuousiy embedded in
C'(92). The proof is divided into two steps.

STEP 1. We first assume that there exists § > 0 such that

(2.2) B(z,€) = Bo(z) > 6.
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It suffices to show that Ran(l — AA) = L>(Q) for some A > 0. Let f € L>(Q?) and put
C={veY:|vlly <I[flg}

As easily seen, C is a bounded closed convex subset of Y. We then define an operator I’
from C into Y by

FUE(I—\/XL)—I (v+—\/—%> for v € C.

We prove that I' has a fixed point in C' by using Schauder’s fixed point theorem. Let
v € C and let A > §~2. Then we have from (2.2)

f—v
Tvi, < N S —
3 ITvlg < v+ \/;\_,B(-,Vv) q
1 1
< (1 - W) ol + =15le < Ifl
and f
—L\T M, A~/ _J-v
2 (~L)°Tel, < v+ i
< M A2 f|,,

where M, is a constant that depends only on a. If we choose ) large enough to satisfy
A > max{6~2, M?/*}, it follows from (2.3) and (2.4) that ||Tv|ly < |fl|- This shows that
I' maps C into itself. We next show that I' is continuous. Let v, v, € C, n > 1, and
assume that v, converges to v in Y as n — oco. Since v, — v in C*(Q) as n — oo, it is
seen that I' is continuous in Y. Finally, we prove that I'C is totally bounded in L?(Q).

Since the set 5
—v
-+ e <)

is bounded in L?(Q), it suffices to show that the resolvent (I - \/XL) - maps the unit
ball B = {v € L) : |v|, < 1} into a totally bounded set of L(f2). Let v, € B and

w, = (I - \/XL) - v, for n > 1. Then we have
|Lw,|, £ MyA™Y2 v, |, < MyA~Y2,
Since the resolvent (I - \/XL) T isa compact operator, one can choose a subsequence
wy, converging in L(€2). By the moments inequality
(2.5) |(—L)*w|y < No|w|;™*|Lw|] for w € D(L),

we obtain s
|(—L)°’(w,,_k - wﬂz)lq < Nalwﬂk - wn,|q"°’|L(wnk - wﬂz)lg

< 2N, MEA= 2wy, — wa, 372
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-1
This means that {w,,} is a Cauchy sequence in Y, and hence (I - \/XL) B is totally
bounded in L%(f2). By the Schauder’s fixed point theorem, one finds v € C such that
['v = v. This implies that v € D(L) and

R el R
(2.6) (I-V2L)v=v+ VI

Since the right-hand side of (2.6) belongs to L*>°(f2), v must lie in W2?(f) for all p > n.
This together with (2.6) implies that v € D(A) and (I — AA)v = f. Therefore, it follows
that Ran(l — AA) = L>(Q) for A > 0.

STEP 2. Let f € L>°(Q2) and let A > 0. Put B,(z,£) = B(z,£) + 1/n for z € N and
¢ € R". Then by the result of Step 1 it follows that for each n there exists v, € D(A)
such that v, — AB,(-, Vv,)Lv, = f. This equality can be rewritten as

2.7 v = I-AL"l(v,.+—-jl).
(2.7) ( ) (o)
We now apply the dissipativity of A to get |vn|co < |f|oo. We also have
f—v.
Ul S lvn + 57—
| |q ﬂn(-,an) .

S Ivnloo + If - vﬂ|°°|ﬂ(;1|q

< (1+2185,) 1floos

f—vn
on F ﬂn(', vvn) q
< M7 (14 2185,) 1 £loo-

Hence {v,} is bounded in the Banach space D(L) equipped with the graph norm. Since
the resolvent (I — AL)™! is a compact operator, the sequence {v,} is relatively compact
inY and also relatively compact in C?({?). Hence one can find a subsequence {v,, } such
that v, converges to some v in C*({?) as n — oco. This implies that

f_vnk R f—w
Bri(+s Vur, ) B(-, Vv)

Replacing v, in (2.7) by v,, and letting ni go to the infinity, we obtain

v=(I—AL)™! (v + ﬂ{-,—vt;)) :

This means that v € D(A) and (I — AA)v = f. Thus the proof is complete.

|L‘Un|q S MlA—l

in L9(Q).
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COROLLARY 6. The resolvent (I — AA)~! is order-preserving for A > 0.

PROOF. Let A > 0 and u,v € D(A). Put f = (I — AA)u, ¢ = (I — AA)v and assume
that f(z) < g(z) for almost all z € Q. We wish to show that u(z) < v(z) in O by
contradiction. Suppose that this is not valid. Then there must exist a € Q such that
u(a) —v(a) = |u — v| = sup g |u(z) — v(z)| > 0. In the same way as in the proof of
Theorem 5, we may assume that a € 2 and that there exists a 0-1 measure y, € Fo(u—v)
with the essential support concentrated at a such that (Au — Av, p.) < 0. It then follows

that ,
(f =g, pa) = (I = AA)u — (I = AA)v, pa)

= |u —v| — AMAu — Av, p,) > 0.

This contradicts that f(z) < g(z) a.e. in Q. Therefore, we obtain that u(z) < v(z) in Q.
This completes the proof.

3. An evolution operators associated with (RDS)

In this section we convert the problem (RDS)-(BC)-(IC) to an abstract quasilinear prob-
lem in the product L* space

Z = (L=(@)*

which is equipped with the norm defined by ||v]| = max;<i<s |Vileo for v= (vi))L, € Z.
In what follows, the coefficients d;(-,-) are assumed to satisfy the following condition:

(C3) di(-) € C([0,7); L>(£2)) and d;(t,z) >0 fori=1,2,3,t€[0,7], and a.e. zin Q.
Under conditions (C1)-(C3) we define a quasilinear operator & from Z into 2 by

loc

D(.IZ{) = {‘U: (’v,') € Z: v; € W2’q(ﬂ) N Wz'p(ﬂ) for p > n,

Ov;

ﬂj(-,ij)Avj € LOO(Q), 5y

+ a,-(a:)vj =0ondQ, j= 1,2},

Fv= [,31(',Vvl)A’Ul,ﬁz(',VUz)sz, 0, 0] .

The following lemma for the operator & is a direct consequence of Theorem 5.

LEMMA 7. & is m-dissipative in 2.

Next we define nonlinear operators #(t), t € [0, 7], from 2 into & by

D = D(Z(t)) = C(Q) x C(Q) x L®(Q) x L=(N),
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B(t)v = (By(t)v, By(t)v, Bs(t)v, By(t)v),
[Bi1(t)v](z) = —dy(t, z)vy(z)va(z) — da(t, z)v1 (2 )v3(2)
[B(t)v](z) = —ds(t, z)va(z)va(z) + da(t, z)v1(x)v3(z)
[Ba(t)v](z) = ds(t, 2)va(z)va(z) — da(t, 2)v1(z)va(2)
[B4(2)v](z) = —dy(t, z)v1(z)v4(z) — d3(t, T)va(z)vs(z).
We also employ nonlinear operators &(t) by taking the restriction of Z(t) to the set
D = D(&(t)) = C(Q)* x C(Q)* x L=(Q)* x L=(Q)*

for t € [0, 7], where C(02)* and L*(02)* denote the positive cones of C(f) and L*(Q),
respectively. Then the reaction-diffusion system (RDS)-(BC)-(IC) is converted to an
abstract quasilinear problem in 2

%,,(t) = o o(t) + B(t)v(t), te(0,7)
v(0) = w.

(QP)

Since D is defined as the product of positive cones of C(f?) and L=(f2), our problem is to
seek the solutions to (QP) in the cylindrical domain 2 = [0,7] x D.

In order to define Lipschitz continuity in a local sense of .’é(t), we employ a continuous
functional ¢ : 2~ — [0, 00] defined by

(V) = [v1]oo + [V2]c0 + [Valoo + |3 + Valoo + |V1]00|V3 + Valoo-

Let D, = {ve D: ¢(v) < a} and D, = D, N D for & > 0. The next lemma shows that

.‘é(t)v is Lipschitz continuous on bounded sets in D with respect to v and continuous in
t in a local sense.

LEMMA 8. Let dy = max;<i<s maxeeo,] |di(t, -)|co- Then we have :
(a) Fora>0,te(0,7] and v, we D,
1 (t)v — B(t)wll < 4doc|v — wl.

(b) Fora>0,s,te0,7] and ve D,

18 (s)v — B(t)vll < 3 ldi(s) — di(t)|eo0®.

=1

PROOF. We first show that (a) is valid. Let « > 0, ¢ € [0,7] and let v = (v;), w
= (w;) € D,. In view of the fact that v;(z), wi(z) > 0 for i = 1,2,3,4 and z € Q, we
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have
[B1(t)v — Bi(t)wleo = | — di(t,-)v1vs — da(t,-)v1vs + di(t, - Jwiws + da(2, - )wiws|oo
< do((|wsloo + [waloo)[v1 — Wileo + [vileo|vs — waleo
+ |v1loo|vs — wyloo)-
Similarly, we have
| B2(2)v — Ba(t)w|oo < do(|waloo|vr — Wiloo + [Wa]oo|va — Waloo + [V1]eo|v3 — w3loo
+ |v2oo|va — waleo),
|Ba(t)v — Bs(t)w]oo < do(|wsloo|vr — wiloo + [waoo|v2 — waleo + [¥1]00|vs — waleo
+ |v2]oo [V4 — W4oo),
|Ba()v — Ba(t) oo < do(|walos|v1 — w1 oo + [waloo vz — wa]eo
+ (|viloo + [v2]oo) Vs — walso)-

Combining these estimates with the trivial relation |w3loo < |ws+ws|oo+|wa|oo, We see that

(a) is valid. Let a > 0, ¢ € [0,7] and let v = (v;) € D,. Noting that |vivs|, [v1v3], |vavs| <

o?, we have

1B (s)v — B(t)v]| < > ldi(s) — di(t)le.

This shows that (b) holds. Thus the proof is complete.

The next lemma shows that the family {&/ + %(t)} of quasilinear operators satisfies
the range conditions and growth condition:

LEMMA 9. Let s € [0,7), a > 0 and let A(s,a) = min{(8do(5 + 4a?))~,7 — s}. Then,
for f=(fi) € Dy and X € (0, (s, a)), there exists vy = (viz) € D such that
n-—MNL+B(s+A)on=F

and
e(v)) < (1 = doX) " o(f).

PROOF. Let s € [0,7), @ > 0. Let f= (f;) € D, and A € (0,A(s,)). We define an
operator F from € = {ve€ D : ||v| < 2||f]|} into D by

Fvo=1- L) (f+A\B(s+ \v) forve?.
Since ||v]| < ¢(v) < 5||v|| + 2||v||? for veE &, it follows from Lemmas 7 and 8 that

[# vl < 1Al + 4xdo(LOIAl + BIAIIl < 2[IA
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and
| Fv— Fw| < 8Ado(5a + 40?)||v— w||.

Thus, the Contraction Mapping Principle implies that % has a fixed point vy = (v;,) € %,
and v, satisfies

(3.1) v — AN + B(s+ \))vy = f.

We next show that vy € D. In view of the definitions of the operators &/ and 2(s + A),
equation (3.1) can be written as

(3.2) vy — AMvip = fi — A(di(2, vy avan + da(t, - )vr avs,0)
(3.3) vax — AAava )\ = fo — A(ds(t, - Jvzaven — da(t, -)v1,avs,)
(3.4) va = fa + A(da(t,-)vaaven — da(t, -)v1av3.0)
(3.5) Ve = fa — Mdi(2, - )viaven + da(t, -)vz,ave,0)

The identity (3.5) yields

vaa(2)(1 + A(di(t, )via(2) + da(t, 2)v20(2))) = fa(z) >0 a.e.in Q.

Since |dy(t, )vy A () + da(t, 2)v22(2)] < do(v1,2]e0 + [V2,0|00) < 2doa for almost all z €1,
we have vs5(z) > 0 a.e. in . Suppose that v, , attains its minimum at ¢ € @ and
v1a(a) < 0. As in the proof of Theorem 5, we may assume that a € . Then,by
Proposition 2, there exists a 0-1 measure u, with the essential support concentrated at a
such that (Avy ), ue) > 0. We infer from (3.2) that

'U].'A(a)(]. + A(dl(t'l ')'04,A + d2(t7 ’)'U3|A), ”a) = (fla ﬂa) + Aﬂl(aa V‘UI,A(G))(AUL,\, I"'a) Z 0.

Since (1 + A(dy(t, - )vgp + da(t,-)vsa, pa) = 1 — 2Mdpa > 0, it holds that vy y(a) > 0. This
is a contradiction, and hence vy,x(z) > 0 for z € . Adding (3.3) and (3.4), we have

(3.6) ve +v3n — AB2(-, Vv z)Avy y = fo + f.

Let b € Q be such that v,y (b)) = min, g v;,2(), and suppose that v, (b) < 0. Then
there exists a 0-1 measure u; with the essential support concentrated at b such that
(Avgx, s) > 0. Then (3.4) and (3.6) together imply

v2,2(0) + (va, us) > 0,
(v, ) (1 + Ada(t, -Jvrn, b)) = A(da(t, -)va,n, s)v2,a(b)
Combining these two inequalities, we obtain
(vax, o) (1 + A({d2(t, -Jvin, o) + (ds(t, - Jvan, ) 2 0,
and hence (vs », us) > 0. This together with (3.3)and the relation v; x(z) > 0 implies that

V2 (D)(1 — Ad3(2, -)vgn, o) = A(Agvap, o) + Avp A (8)(da(t, "), po) (va, us) > 0.
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This contradicts vy 3(b) < 0. Thus we have vy (z) > 0 for z € Q. It follows from (3.4)
that

vaa(z)(1 — Ady(t, z)via(2)) = f3(z) + Ads(t, z)vaa(z)van(z) = 0.
This yields that vsx(z) > 0 a.e. in 2. Therefore, we have proved that vy € D.
Finally, we demonstrate that ¢(vy) < (1 — doA)"te(f). Since vy a(z) = 0 for z €
and d;(t,z) > 0 for j = 1,2,3 and almost all z € 2, we have
0 < fi(z) + A[Bi(s + A ui](2) < fi()

for almost all £ € Q. This implies that |f; + AB1(s + A) V| < |fileo- Hence we have
(I — AA1)"H(fi + AB1(s + A)vr|eo < |filoo- Similarly, we can show

I(I - AAz)_l(f2 + )\Bz(s + /\)v,\)loo S Ifz'oo + /\dOIUI,Aloo|U3,A + v4,z\|oo,
|fs + fs + ABs(s + A)va + ABy(s + M) va|oo < |f3 + faloos

|fa+ AB4(s + A)valoo < | faloo-
Combining these estimates gives ¢(v,) < (1 — dpA)~'¢(v). This completes the proof.

We are now in a position to state our main result:

THEOREM 10. Suppose that (C1) through (C3) hold. Then the family of nonlinear opera-
tors {2 + %B(t)} generates a nonlinear evolution operator % = {U(t,s):0<s<t< 7}
on D such that

e(U(t,0)v) < e®ip(v), forv € D and t € |[0,T1].

If the coefficients d;(-), i = 1,2,3, belong to BV ([0, 7]; L>°(Q)), then for vE€ D(«)ND the
Z -valued function u(t) = U(t,0)v gives a weakly-star continuously differentiable solution
to (QP) in 2.

PROOF. Let D(A(t)) = D(&)N D and A(t) = & + HB(t) for t € [0,7]. By Lemmas 7,
8 and 9, it is seen that {2(t)} satisfies all the assumptions of Theorem 4 for a = dy and
b = 0. Hence it follows that there exists a nonlinear evolution operator % = {U(t,s) :
0 < s <t < 7} satisfying the growth condition

o(U(t,0)v) < e®'p(v) for ve D and t € [0,7].

Next we assume that d;(-) € BV([0,7]; L=(?)) for : = 1,2,3. Let o > 0 and put
v = e¥7q, wy, = 4dpa and 0,(s,t) = T3, |di(s) — di(t)|7®. Let v € D(&) N D,.
We then take a natural number n satisfying n > 8do(57 + 44?%), set tf = krn~! for
k=0,1,...,n, and define

v =,

-1
(3.7) H(I——Qltk) v fork=1,2,....n,

u,(t) = v, fort € (tf_,,t7] and ©,(0) = v.
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Then applying Lemma 9 and [10, Theorem 3.5], one can assert that p(u,(t)) < e?%*7aq = v
for t € [0,7], and that w,(¢) converges to u(t) = U(¢,0)vfor t € [0,7] in 2 as n tends to
the infinity. It is easily seen from (H2) that the nonlinear operator 2(t) satisfies

(1 = Awy)llv— wl| < (I — A2A(s)) v — (I — AA@)) wl| + A6, (s, 1)

for A € (0,w;1), s,t € [0,7], vE D(A(s)) N D,, and w € D(2A(t)) N D,. Replacing v and
w by v and v_,, respectively, and using the relation (I — 7/n(t%)) v = vi_1, we have

(1= Zon) 12D 0l < |2 )vhmr] + 00(tirrt)  for k=1,2,...,m.

This implies that

3
(3.8) 1o wel] < 1) el + 1 BE)vel) < €™ (nmm)vou 4 ZTV(de)vz) +4de?

=1

for k = 1,2,...,n, where TV(d;) denotes the total variation of d; for : = 1,2,3. If we
write ©,(t) = (u;.(t)), then we have

3
a0l < 185"l (&2 (IOl + STV () + tdr’) forterlandi=12
=1

5 Hence, the set {Lu; ,;n > 8do(5v+4v?)} is bounded in L>(0, 7; LI(R)) for i = 1,2. Since
L*(0, 7; L(Q)) is the dual space of L*(0, 7; L"(2)), where r is the Holder conjugate to g, it
is seen that Lu;(t) converges weakly to Lu;(t) in L7(f2) for each ¢ € [0,7]. Let 6§ € (1/2+
n/(29),1). Then the moments inequality (2.5) implies that u;,(t) converges uniformly
to u;(¢) on [0,7] in the Banach space D((—L)®) equipped with the graph norm. Since
D((—L)?%) is continuously imbedded in C1(Q), it follows that u; n(t) converges uniformly
to u;(¢) on [0,7] in C'(0). Combining these facts with the strong convergence of the
sequences u;,(t), j = 3,4, we assert that & w,(t) converges to o/ u(t) for each t € [0, 7]
in the weak-star topology of 2. It is also shown that & u(-) is weakly-star continuous
on [0,7]. Since, for each t € [0,7], B(t})us(t) converges to &(t)u(t) and B(-)u(-) is
continuous in £, it follows that A(t)w,(t) converges to A(t)u(t) for t € [0,7] in the
weak-star topology of 2 and that 2(-)u(-) is weakly-star continuous. For simplicity in
notation we define

{0 t=20
on(t) =
tx te (tp_,t}] fork=1,2,...,n.

Then by the definition of w,(t) we have

on(t)
u,(t) —v= /o ( + HB(on(3)))un(s)ds for t € [0, 7].
Letting n go to the infinity, we obtain

u(t) ~ v=w- | (o + B(s))u(s)ds  fort € 0,7],
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where the integral is taken in the sense of Riemann integral with respect to the weak-star
topology in 2. Since the integrand of the above equality is weakly-star continuous, we
conclude that u(t) is weakly-star continuously differentiable and satisfies

(3.9) w*—%u(t) = (& + AB(t))u(t), for t € (0, 7).
Thus the proof is complete.

COROLLARY 11. Let v € D(&)N D. Let u(-) = (ui(t)) be a weakly-star differentiable
solution to (QP) obtained by Theorem 10. Then u; € C*([0,7]; L=()) for j = 3,4 and
u; € Lip([0, 7]; L=(Q)) N L=(0,7; D(L)) N C¥([0,7]); C*(N)) for v € (0,1/2 — n/(2q)) and
i =1,2.

PROOF. Since %(-)u(-) is strongly continuous in 2, it follows from the definition of the
operator & and (3.9) that u; € C*([0, 7]; L>*(Q)) for j = 3,4. It is a direct consequence of
Theorem 4 that u; € Lip([0, 7]; L>°(Q?)) for ¢ = 1,2. From the proof of Theorem 10 we see
that u; € L®(0,7; D(L)) for i = 1,2. It now remains to show that u; € C*([0, 7]; C*(2)).
Let § € (1/2 +n/(29),1). Since u; € Lip([0,7]; L*=()) N L*>(0,7; D(L)), one can apply
the moments inequality to assert that
|u(t) — u(s)lerm < I(=L)°(u(t) — u(s))lq
< Nslu(t) — u(s)l;*1Lu(t) — Lu(s)ly < Clt — s'~%,

where C' is a positive constant. Thus we obtain the desired result.
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