A strong convergence theorem for an iteration of nonexpansive mappings

Tomoo Shimizu

1 Introduction

Let C be a nonempty closed convex subset of a real Banach space E. Then, a mapping T of C into itself is said to be nonexpansive if

$$||Tx - Ty|| \le ||x - y|| \qquad for all \ x, y \in C.$$

We deal with the following iterative process, first considered by Halpern[2]:

$$A_0^{\alpha}x = x$$
, $A_{n+1}^{\alpha}x = \alpha_{n+1}x + (1 - \alpha_{n+1})TA_n^{\alpha}x$ $(n = 0, 1, 2, \dots)$, (1)

where $\alpha_n \in [0,1]$. Recently, Wittmann[5] proved a strong convergence theorem of iterates $\{A_n^{\alpha}x\}$ defined by (1) in the case when E is a Hilbert space and $\{\alpha_n\}$ satisfies $0 \le \alpha_n \le 1$, $\lim_{n\to\infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = +\infty$ and $\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < +\infty$; see[3].

In this paper, we extend Wittmann's result to a uniformly convex and uniformly smooth Banach space with a weakly sequentially continuous duality mapping.

2 Preliminaries

Let E be a real Banach space, and let $S_1[0] = \{x \in E : ||x|| = 1\}$ be its unit sphere. The norm of E is said to be Gâteaux diffrentiable (and E is said to be smooth), if

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t} \tag{2}$$

exists for each $x, y \in S_1$ [0]. It is said to be Fréchet differentiable, if for each x in S_1 [0], this limit is attained uniformly for $y \in S_1$ [0]. The norm of E is said to be uniformly Gâteaux differentiable, if for each y in S_1 [0], the limit (2) is approached uniformly as x varies over S_1 [0]. Finally, it is said to be uniformly Fréchet differentiable (and E is said to be uniformly smooth), if the limit (2) is attained uniformly for x, y in S_1 [0] $\times S_1$ [0]. For a Banach space E, we denote by J the normalized duality mapping on E to 2^{E^*} given by

 $J(x) = \left\{ f \in E^* : \|f\|^2 = \|x\|^2 = \langle x, f \rangle \right\},\,$

where E^* denotes the continuous dual space of E and $\langle x, f \rangle = f(x)$. It is well known that if E^* is strictly convex, then J is single valued, and if E^* is uniformly convex, then J is uniformly continuous on bounded sets; see[6]. Suppose that J is single valued. Then J is said to be weakly sequentially continuous, if for any $\{x_n\} \subseteq E$ with $x_n \to x$, $\{J(x_n)\}$ converges to J(x) in weak-star topology, where \to will denote weak convergence. We define, for any positive t,

$$\beta(t) = \sup \left\{ \frac{\|x + ty\|^2 - \|x\|^2}{t} - 2\langle y, J(x) \rangle : \|x\| \le 1, \|y\| \le 1 \right\}.$$

Clearly, $\beta:(0,+\infty)\to [0,+\infty)$ is nondecreasing continuous and $\beta(ct)\leq c\beta(t)$ for all $c\geq 1$. We also know Reich's result[4]:

Lemma 1 (Reich) Let E be a uniformly smooth Banach space and let $\beta(t)$ be defined as above, then $\lim_{t\to +0}\beta(t)=0$ and

$$||x + y||^2 \le ||x||^2 + 2\langle y, J(x)\rangle + \max\{||x||, 1\} ||y||\beta(||y||)$$

for all $x, y \in E$.

3 Main result

We denote by N the set of positive integers. The following theorem is a generalization of Wittmann's result[5] which was proved in a Hilbert space.

Theorem 1 Let $\{\alpha_n\}_{n=1}^{\infty}$ be a sequence in (0,1) such that (i) $\lim_{n\to\infty} \alpha_n = 0$;

(ii)
$$\sum_{n=1}^{\infty} \alpha_n = +\infty$$
;

(ii)
$$\sum_{n=1}^{\infty} \alpha_n = +\infty$$
;
(iii) $\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < +\infty$.

Let E be a uniformly convex and uniformly smooth Banach space with a weakly sequentially continuous duality mapping $J: E \to E^*$, let C be a nonempty closed convex subset of E and let T be a nonexpansive mapping of C into itself such that $F(T) = \{x \in C : Tx = x\}$ is nonempty. Then for any $x \in C$, the sequence $\{A_n^{\alpha}x\}_{n=0}^{\infty}$ converges strongly to p = Px, where P is a sunny nonexpansive retraction of C onto F(T).

Proof. We may assume that C is bounded and $0 \in F(T)$ without loss of generality. Then for any $x \in C$ and $n \in N$, we have $||Tx|| \leq ||x||$ and $||A_n^{\alpha}x|| \le ||x||.$ Since

$$||A_{n+1}^{\alpha}x - A_{n}^{\alpha}x|| \leq ||\alpha_{n+1} - \alpha_{n}|||x|| + ||\alpha_{n+1} - \alpha_{n}|||TA_{n-1}^{\alpha}x|| + (1 - \alpha_{n+1})||TA_{n}^{\alpha}x - TA_{n-1}^{\alpha}x|| \leq 2||\alpha_{n+1} - \alpha_{n}|||x|| + (1 - \alpha_{n+1})||A_{n}^{\alpha}x - A_{n-1}^{\alpha}x||,$$

we get, for any integers m and n with m < n,

$$||A_{n+1}^{\alpha}x - A_n^{\alpha}x|| \le 2\sum_{i=m}^{n} |\alpha_{i+1} - \alpha_i|||x|| + 2||x|| \prod_{i=m}^{n} (1 - \alpha_{i+1}).$$

This implies

$$\lim \sup_{n \to \infty} ||A_{n+1}^{\alpha} x - A_n^{\alpha} x|| \le 2 \sum_{i=m}^{\infty} |\alpha_{i+1} - \alpha_i| ||x||,$$

because $\lim_{n\to\infty}\prod_{i=m}^n(1-\alpha_{i+1})=0$. Letting now m tend to infinity, by (iii), we have

$$\lim \sup_{n\to\infty} ||A_{n+1}^{\alpha}x - A_n^{\alpha}x|| = 0.$$

Combining this with

$$||A_{n}^{\alpha}x - TA_{n}^{\alpha}x|| \leq ||A_{n}^{\alpha}x - (1 - \alpha_{n})TA_{n-1}^{\alpha}x|| + (1 - \alpha_{n})||TA_{n-1}^{\alpha}x - TA_{n}^{\alpha}x|| + \alpha_{n}||TA_{n}^{\alpha}x|| \leq 2\alpha_{n}||x|| + ||A_{n-1}^{\alpha}x - A_{n}^{\alpha}x||,$$

by (i), we obtain

$$\lim_{n\to\infty} ||A_n^{\alpha} x - T A_n^{\alpha} x|| = 0.$$
 (3)

On the other hand, by Reich[3] or Takahashi[6, p.128], there is a sunny nonexpansive retraction P of C onto F(T). Let p = Px. Since P is a sunny nonexpansive retraction, we know from Takahashi[6, p179] that

$$\langle x - p, J(z - p) \rangle \le 0$$
 for any $z \in F(T)$. (4)

We show next that

$$\limsup_{n\to\infty} \langle x-p, J(A_n^o x-p) \rangle \le 0.$$

If not, there exists a positive real number r such that

$$0 < r < \limsup_{n \to \infty} \langle x - p, J(A_n^{\alpha} x - p) \rangle.$$

So, there is a subsequence $\{A_{n_i}^{\alpha}x\}_{i=1}^{\infty}$ of $\{A_n^{\alpha}x\}$ such that

$$r < \langle x - p, J(A_{n}^{\alpha}x - p) \rangle.$$

By possibly replacing $\{n_i\}$ by another subsequence, we may also assume that $\{A_{n_i}^{\alpha}\}$ is weakly convergent to some $z_0 \in C$. Since E is uniformly convex, by Browder[1] and (3), we obtain $z_0 \in F(T)$. Since J is weakly sequentially continuous, we have

$$r \leq \langle x - p, J(z_0 - p) \rangle$$
.

This contradicts (2). Hence we have

$$\limsup_{n\to\infty} \langle x-p, J(A_n^{\alpha}x-p)\rangle \leq 0.$$

So, for an arbitrary positive number ϵ , from (3), we can choose a nonnegative integer n_{ϵ} such that for any $n \geq n_{\epsilon}$,

$$\langle x - p, J(TA_n^{\alpha}x - p) \rangle < \epsilon$$

and

$$\max \{(1 - \alpha_{n+1}) \| T A_n^{\alpha} x - p \|, 1 \} \alpha_{n+1} \| x - p \| \beta(\alpha_{n+1} \| x - p \|) < \epsilon.$$

Then, by Lemma1, for any $n \geq n_{\epsilon}$, we have

$$||A_{n+1}^{\alpha}x - p||^{2} \leq (1 - \alpha_{n+1})^{2}||TA_{n}^{\alpha}x - p||^{2} + 2\alpha_{n+1}(1 - \alpha_{n+1})\langle x - p, J(TA_{n}^{\alpha}x - p)\rangle + \max\{(1 - \alpha_{n+1})||TA_{n}^{\alpha}x - p||, 1\}\alpha_{n+1}||x - p||\beta(\alpha_{n+1}||x - p||) \leq (1 - \alpha_{n+1})^{2}||TA_{n}^{\alpha}x - p||^{2} + 3\alpha_{n+1}\epsilon.$$

Hence, we have, for $n > n_{\epsilon}$,

$$||A_n^{\alpha}x - p||^2 \le 3\epsilon + ||A_{n_{\epsilon}}^{\alpha}x - p||^2 \prod_{i=n_{\epsilon}+1}^{n} (1 - \alpha_i).$$

So, from $\lim_{n\to\infty} \prod_{i=n_{\epsilon}+1}^n (1-\alpha_i) = 0$, we have

$$\limsup_{n\to\infty} ||A_n^{\alpha}x - p||^2 \le 3\epsilon.$$

Because $\epsilon > 0$ is arbitrary, we have

$$\lim_{n\to\infty} A_n^{\alpha} x = p.$$

References

- [1] F.E. Browder, Nonlinear operators and equations of evolution in Banach spaces, Proc. Sympos. Pure Math., 18 (1976).
- [2] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), 957-961.
- [3] S. Reich, Some problems and results in fixed point theory, Contemp. Math., 21 (1983), 179-187.
- [4] S. Reich, An iterative procedure for constructing zeros of accretive sets in Banach spaces, Nonlinear Anal., 2 (1978), 85-92.
- [5] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math., 58 (1992), 486-491.
- [6] W. Takahashi, Nonlinear Functional Analysis (Japanese), Kindaikagaku, Tokyo, 1988.

Department of Information Sciences Tokyo Institute of Technology Ohokayama, Meguro-ku, Tokyo 152, Japan E-mail address, T. Shimizu: tomoo@is.titech.ac.jp

Received November 1, 1996