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SEMINORMAL OPERATORS AND WEYL SPECTRA

YOUNGOH YANG

ABSTRACT. In this paper we show that the Weyl spectrum of a seminormal
operator $T$ satisfies the spectral mapping theorem for any analytic function
$f$ on a neighborhood of $\sigma(T)$ and Weyl’s theorem holds for $f(T)$ . Finally
we give conditions for an operator to be of the form unitary $+compact$ and
answer an old question of Oberai.

0. Introduction. Throughout this paper let $H$ denote an infinite di-
mensional Hilbert space and $B(H)$ the set of all bounded linear operators on
$H$ . If $T\in B(H)$ , we write $\sigma(T)$ for the spectrum of $T,$ $\pi_{0}(T)$ for the set of
eigenvalues of $T,$ $\pi_{0f}(T)$ for the set of eigenvalues of finite multiplicity, and
$\pi_{00}(T)$ for the isolated points of $\sigma(T)$ that are eigenvalues of finite multiplic-
ity. If $E$ is a subset of $\mathbb{C}$ , we write iso $E$ for the set of isolated points of $E$ .
An operator $T\in B(H)$ is said to be Fredholm if its range ran $T$ is closed and
both the null spaces ker $T$ and ker $\tau*$ are finite dimensional. The index of a
Fredholm operator $T$ , denoted by $i(T)$ , is defined by

$ i(T)=\dim$ ker $T$ –dim ker $T^{*}$

The essential spectrum of $T$ , denoted by $\sigma_{e}(T)$ , is defined by

$\sigma_{e}(T)=$ { $\lambda\in \mathbb{C}$ : $T-\lambda I$ is not Fredholm}.

A Fredholm operator of index zero is called a Weyl operator. The Weyl
spectrum of $T$ , denoted by $\omega(T)$ , is defined by

$\omega(T)=$ { $\lambda\in \mathbb{C}$ : $T-\lambda I$ is not Weyl}.

It was shown ([2]) that for any operator $T,$ $\sigma_{e}(T)\subset\omega(T)\subset\sigma(T)$ , and $\omega(T)$

is a nonempty compact subset of $\mathbb{C}$ .
Recall ([9], [12]) that an operator $T\in B(H)$ is said to be seminormal if

either $T$ or $\tau*$ is hyponormal. Every hyponormal operator is seminormal,
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but the converse is not true in general. Unilateral shifts are examples of
seminormal operators.

An operator $T\in B(H)$ is said to be dominant ([4], [13]) if for every $z\in \mathbb{C}$

there exists $M_{z}>0$ such that
$(T-z)(T-z)^{*}\leq M_{z}(T-z)^{*}(T-z)$

In this case, if $\sup_{z\in \mathbb{C}}M_{z}=M<\infty,$ $T$ is said to be $M$ -hyponormal, and if
$M=1,$ $T$ is hyponormal. Evidently,

$T$ is $hyponormal\Rightarrow T$ is $M-hyponormal\Rightarrow T$ is dominant

If $T$ is both Fredholm and seminormal, then either $i(T)\leq 0$ or $i(T)\geq 0$ .
It was known that the mapping $T\rightarrow\omega(T)$ is upper semi-continuous, but not
continuous at $T$ ([7]). However if $T_{n}\rightarrow T$ with $T_{n}T=TT_{n}$ for all $n\in N$

then

(0.1) $\lim\omega(T_{n})=\omega(T)$ .

It was known that $\omega(T)$ satisfies the one-way spectral mapping theorem for
analytic funcions: if $f$ is analytic on a neighborhood of $\sigma(T)$ then

(0.2) $\omega(f(T))\subset f(\omega(T))$ .
The inclusion (0.2) may be proper(see [2, Example 3.3]). If $T$ is normal
then $\sigma_{e}(T)$ and $\omega(T)$ coincide. Thus if $T$ is normal and $f$ is analytic on a
neighborhood of $\sigma(T)$ , it follows that $\omega(f(T))=f(\omega(T))$ since $f(T)$ is also
normal.

In this paper we show that the Weyl spectrum of a seminormal operator
$T$ satisfies the spectral mapping theorem for any analytic function $f$ on a
neighborhood of $\sigma(T)$ and Weyl’s theorem holds for $f(T)$ . Finally we give
conditions for an operator to be of the form $unitary+compact$ and answer
an old question of Oberai.

1. Weyl spectral properties. It was shown ([2]) that for any operator
$T,$ $\omega(T^{*})=\omega(T)^{*}$ and

$\omega(T)=n_{K\in \mathcal{K}^{\sigma}}(T+K)$ .
The Weyl spectrum of an operator is the disjoint union of the essential spec-
trum and a particular open set ([2]): For any operator $T$ in $B(H)$ ,

(1.1) $\omega(T)=\sigma_{e}(T)\cup$ { $\lambda$ : $ T-\lambda$ is Fredholm and $i(T-\lambda)\neq 0$ }.
We have the concrete form of $\omega(T)$ provided $T$ is seminormal:
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THEOREM 1. If $T$ is a $sem$inormal $op$erator, then

$\omega(T)=\cap$ { $\sigma(T+K)$ : $TK=KT$ and $K$ is normal compact}.

Proof. Let $E=$ { $\sigma(T+K)$ : $TK=KT$ and $K$ is normal compact}.
Then by [2, Theorem 2.5], $\omega(T)\subset E$ . Since $T$ is seminormal, by [10] there
exists a normal compact operator $K$ such that $KT=TK$ and $\sigma(T+K)=$

$\omega(T)$ . Thus $E\subset\omega(T)$ . This completes the proof.

THEOREM 2. If $\pi(T)$ is $s$eminormal in $B(H)/\mathcal{K}$ and if $\omega(T)\subset\{\lambda$ : $|\lambda|=$

$1\}$ , then $T$ is of form $unitary+compact$ .

Proof. By hypothesis, $0$ is not in $\omega(T)$ and so $T=S+K$ , where $S$ is
invertible and $K$ is compact. Hence $\pi(T)=\pi(S)$ . Since $\sigma(\pi(T))\subset\omega(T)\subset$

$\{\lambda : |\lambda|=1\}$ , by [9, p. 59 Corollary], $\pi(T)$ is unitary in $B(H)/\mathcal{K}$ and so
$\pi(S^{*}S)=\pi(I)$ . But square roots of a positive element of a $C^{*}$ -algebra are
unique, so $\pi((S^{*}S)^{1/2})=\pi(I)$ . Let the polar decomposition of $S$ be given
by $S=U(S^{*}S)^{1/2}$ , where $U$ is unitary. Then

$\pi(T)=\pi(S)=\pi(U(S^{*}S)^{1/2})=\pi(U)\pi((S^{*}S)^{1/2})$

$=\pi(U)\pi(I)=\pi(U)$ ,

so that $T-U$ is compact.

COROLLARY 3. $If\pi(T)$ is normal in $B(H)/\mathcal{K}$ and $if\omega(T)\subset\{\lambda : |\lambda|=1\}$ ,
then $T$ is of form $unitary+compact$ .

For an example, consider $T=U\oplus U^{*}$ , where $U$ is the unilateral shift. In
this case, $\omega(T)=\{\lambda : |\lambda|=1\}=\sigma_{e}(T)$ . But $T$ is not a normal operator.
Since I–UU* and $UU^{*}-I$ are rank one operators, $\pi(T)$ is normal. By
Corollary 3, $T=U\oplus U^{*}$ is of the form $unitary+compact$ .

LEMMA 4([13]). If $S$ and $T$ are commuting dominant operators, then

(1.2) $S,T$ Weyl $\Leftrightarrow ST$ Weyl.

If the “dominant” condition is dropped in the above lemma, then the
backward implication may fail even though $T_{1}$ and $T_{2}$ commute: For example,
if $U$ is the unilateral shift on $l_{2}$ , consider the following operators on $l_{2}\oplus l_{2}$ :
$T_{1}=U\oplus I$ and $T_{2}=I\oplus U^{*}$ .
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THEOREM 5. If $T$ is seminormal and $f$ is analytic on a neighborhood of
$\sigma(T)$ , then $\omega(f(T))=f(\omega(T))$ .

Proof. If $T$ is hyponormal, then it follows from [13, Theorem 2.2].
Suppose that $\tau*$ is hyponormal and $p(t)$ is any polynomial. Let

$ p(T)-\lambda I=a_{0}(T-\mu_{1}I)\cdots(T-\mu_{n}I)\vee\cdot$

Since $\tau*$ is hyponormal, $T^{*}-\overline{\mu}_{i}I$ are commuting hyponormal operators for
each $i=1,2,$ $\cdots$ , $n$ . It thus follows from Lemma 4 and $\omega(T^{*})=\omega(T)^{*}$ that

$\lambda\not\in\omega(p(T))\Leftrightarrow p(T)-\lambda I=Wey1$

$\Leftrightarrow a_{0}(T-\mu_{1}I)\cdots(T-\mu_{n}I)=Wey1$

$\Leftrightarrow\overline{a}_{0}(T^{*}-\overline{\mu}_{1}I)\cdots(T^{*}-\overline{\mu}_{n}I)=Wey1$

$\Leftrightarrow T^{*}-\overline{\mu}_{i}I=Wey1$ for each $i=1,2,$ $\cdots n$

$\Leftrightarrow T-\mu_{i}I=Wey1$ for each $i=1,2,$ $\cdots$ , $n$

$\Leftrightarrow\mu_{i}\not\in\omega(T)$ for each $i=1,2,$ $\cdots$ , $n$

$\Leftrightarrow\lambda\not\in p(\omega(T))$

which says that

(1.3) $\omega(p(T))=p(\omega(T))$ .

Next suppose $r$ is any rational function with no poles in $\sigma(T)$ . Write
$r=p/q$ , where $p$ and $q$ are polynomials and $q$ has no zeros in $\sigma(T)$ . Then

$r(T)-\lambda I=(p-\lambda q)(T)(q(T))^{-1}$

By (1.3),

$(p-\lambda q)(T)Wey1\Leftrightarrow p-\lambda q$ has no zeros in $\omega(T)$ .

Thus we have

$\lambda\not\in\omega(r(T))\Leftrightarrow(p-\lambda q)(T)=Wey1$

$\Leftrightarrow p-\lambda q$ has no zeros in $\omega(T)$

$\Leftrightarrow((p-\lambda q)(x))q(x)^{-1}\neq 0$ for any $x\in\omega(T)$

$\Leftrightarrow\lambda\not\in r(\omega(T))$
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which says that $\omega(r(T))=r(\omega(T))$ . If $f$ is analytic on a neighborhood of
$\sigma(T)$ , then by Runge) $s$ theorem ([4]), there is a sequence $\{r_{n}(t)\}$ of rational
functions with no poles in $\sigma(T)$ such that $\{r_{n}\}$ converges to $f$ uniformly on
a neighborhood of $\sigma(T)$ . Since $\{r_{n}(T)\}$ converges to $f(T)$ and each $r_{n}(T)$

commutes with $f(T)$ , by [7]

$f(\omega(T))=\lim r_{n}(\omega(T))=\lim\omega(r_{n}(T))=\omega(f(T))$ .

An operator $T$ is said to be polynomially compact ([2]) if there exists a
polynomial $p$ such that $p(T)$ is compact. Thus we see that $T$ is polynomially
compact if and only if $\tau*$ is polynomially compact. From Theorem 5 and [2,
Corollary 6.6], we can obtain the following result:

THEOREM 6. If $T$ is seminormal and satisfies condition (i), then $T$ is
normal $(i=1,2,3)$ .

(1) $T$ is polynomially compact.
(2) There exists an analytic function $f$ on $\sigma(T)$ such that $f(T)$ is

compact and $fh$as finitely many zeros on $\omega(T)$ .
(3) $\omega(T)$ is finite.

We say that Weyl’s theorem holds for $T$ if

$\omega(T)=\sigma(T)-\pi_{00}(T)$ .

There are several classes of operators including normal, hyponormal, and
seminormal operators on a Hilbert space for which Weyl’s theorem holds.
Also it was shown in [8] that Weyl’s theorem holds for any spectral operator
of finite type on a Banach space. Oberai has raised the following question:
Does there exist a hyponormal operator $T$ such that Weyl’s theorem does not
hold for $T^{2}$ ? Note that $T^{2}$ may not be hyponormal even if $T$ is hyponormal
([5, Problem 209]). We will show that Weyl’s theorem holds for $p(T)$ when
$T$ is a seminormal operator and $p$ is a polynomial. Thus we answer the old
question of Oberai since every hyponormal operator is seminormal.

Recall ([8]) that $T\in\cdot B(H)$ is said to be isoloid if iso $\sigma(T)\subset\pi_{0}(T)$ .

LEMMA 7([8]). If $T\in B(H)$ is isoloid and $f$ is analytic on a neighbor-
hood of $\sigma(T)$ , then $f(\sigma(T)-\pi_{00}(T))=\sigma(f(T))-\pi_{00}(f(T))$ .
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THEOREM 8. If $T\in B(H)$ is seminormal, then for any analytic $fu$nction
$f$ on a neighborhood of $\sigma(T)$ , Weyl’s theorem holds for $f(T)$ .

Proof. By [7] and [12], every seminormal operator $T$ is isoloid and Weyl’s
theorem holds for any seminormal operator $T$ . Hence by Theorem 5 and
Lemma 7,

$\omega(f(T))=f(\omega(T))=f(\sigma(T)-\pi_{00}(T))=\sigma(f(T))-\pi_{00}(f(T))$ .

Therefore Weyl’s theorem holds for $f(T)$ .

Since every hyponormal operator is seminormal, we obtain the following
result which answers to the old question of Oberai.

COROLLARY 9. If $T\in B(H)$ is hyponormal, then for any polynomial $p(t)$

Weyl’s theorem holds for $p(T)$ .
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