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ON MINIMAL CR SUBMANIFOLDS SATISFYING A
CERTAIN CONDITION ON THE RICCI CURVATURE

MASAHIRO YAMAGATA AND MASAHIRO KON

1. Introduction. We denote by M™(c) a complex m-dimensional (real 2m-
dimensional) Kaehlerian manifold of constant holomorphic sectional curvature
4c with Kaehlerian structure (J,g). Let M be a real n-dimensional Riemannian
manifold isometrically immersed in M™(c) with induced metric tensor field g.
For any vector field X tangent to M, we put JX = PX + FX, where PX
is the tangential part of JX and FX the normal part of JX. Then P is an
endomorphism on the tangent bundle T'(M). If F vanishes identically, then
M is called a complez submanifold of M™(c), and if P vanishes identically,
then M is callde an anti-invariant submanifold of M™(c). A submanifold M
of a Kaehlerian manifold M is called a CR submanifold of M if there exists a
differentiable distribution H :  — H, C T,(M) on M satisfying the following
conditions:

(1) H is holomorphic, i.e., JH, = H, for each z € M, and

(2) the complementary orthogonal distribution H+ : z — HF C T.(M) is
anti-invariant, i.e., JHY C T,(M)* for each z € M.

We denote by S the Ricci tensor of M. If M satisfies that S(X,Y) =
ag(X,Y)+bg(PX, PY), where a and b are constant, then M is called a pseudo-
Einstein submanifold.

In [3] one of the present author proved that there are no Einstein real hyper-
surfaces of a complex projective space CP™ and classified the pseudo-Einstein
real hypersurfaces of CP™. This result was generalized by Cecil and Ryan [2]
to the case that a and b are functions.

Moreover, Maeda [6] studied the Ricci tensor of a real hypersurface of a
complex projective space.

On the other hand, one of the author [5] studied a compact minimal CR
submanifold M of CP™ under the assumption that the Ricci tensor of M
satisfles S(X,X) > (n—1)g9(X, X)+2g(PX, PX), and proved that M is a real
projective space RP™, or a complex projective space CP™ or a pseudo-Einstein

real hypersurface 7r(5'("‘*‘1)/2 (ﬁ) x §(n+1)/2 (\/g)), where 7 denotes the

projection with respect to the fibration S' — S?™+! — CP™.
The purpose of the present paper is to consider the problem on the Ricci
tensor like that above without the assumption that M is compact.
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Theorem 1. Let M be an n-dimensional minimal CR submanifold of M™(c)
(¢ > 0), whick is not a complez submanifold of M™(c). If the Ricci tensor S
of M satisfies

S(X,X) > c[(n — 1)g(X, X) + 29(PX, PX)]

for any vector field X tangent to M, then M is B
(a) a totally geodesic anti-invariant submanifold of M™(c) with constant cur-
vature ¢ ,or

(b) a pseudo-Einstein submanifold of M™(c) with dim H! =1 and

S(X,Y)=c[(n—-1)9(X,Y) + 2¢9(PX, PY)].

2. Basic formulas. In this section we prepare the basic formaulas for an
n-dimensional submanifold M of M™(c). The operator of covariant differen-
tiation with respect to the Levi-Civita connection in M™(c) (resp. M) will
be denoted by V (resp. V). Then the gauss and Weingarten formulas are
respectively given by

(21) VxY=VxY+B(X,Y) and VxV =—AyX +DxV

for any vector fields X,Y tangent to M and any vector field V normal to
M, where D denotes the operator of covariant differentiation with respect to
the linear connection induced in the normal bundle T(M)L of M. A and
B are both called the second fundamental forms of M, and are related by
9(B(X,Y),V) =g(AvX,Y). For the second fundamental form A we define its

covariant derivative Vx A by
(2.2) (VxA)Y = Vx(AvY)— ApyvY — Av(VxY),

for any vector fields X,Y tangent to M and any vector field V normal to M.

If TrAy = 0 for any vector field V normal to M, then M is said to be
minimal, where Tr denotes the trace of a operator. If the second fundamental
form of M vanishes, then M is said to be totally geodesic. For any vector field
X tangent to M, we put

JX =PX + FX,

where PX is the tangential part of JX and FX the normal part of JX. Then
P is an endomorphism on the tangent bundle T'(M), and F is a normal bundle
valued 1-form on the tangent bundle T(M). For any vector field V normal to
M we put

JV =tV + fV,

where tV is the tangential part of JV and fV the normal part of JV.
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Let R be the Riemannian curvature tensor of M. Then the Gauss equation
is given by

R(X,Y)Z = c[g(Y, 2)X — ¢(X, Z)Y + g(PY, Z)PX
(2.3) — ¢(PX,Z)PY +2¢(X, PY)PZ]
+ Apy,2)X — AB(x,2)Y.

The Codazzi equatin of M is given by

I(VxAWY,Z) - g((VyA)v X, Z)

(24) :C[g(PY’Z)g(FX7V)—g(PX’Z)g(FYaV)
+2¢(X,PY)g(FZ,V))].

In the C R submanifold M, we put dimH, = h, dimH} = ¢ and codimension
of M =2m —n = p. If ¢ = 0 (resp.h = 0) for any z € M, then the CR
submanifold is called a complez submanifold (resp. anti-invariant submanifold)
of M. If p = q for any = € M, then the CR submanifold is called a generic
submanifold. It is obvious that every real hypersurface of a Kaehlerian manifold
is automatically a generic submanifold.

On the CR submanifold M we obtain FPX = 0, fFX = 0 for any vector
X tangent to M and tfV = 0,PtV = 0 for any vector V normal to M.
Moreover, we have P2X = —X — tFX for any vector X tangent to M and
f2V = =V — FtV for any vector V normal to M. We define the covariant
defferentiations of P, F,t and f by

(VxP)Y = Vx(PY)— PVxY, (VxF)Y = Dx(FY)—- FVxY,
(Vxt)V =Vx(tV)-tDxV, (Vxf)V =Dx(fV)— fDxV,

respectively. We then have

(VxP)Y = ApyX +tB(X,Y), (VxF)Y = -B(X,PY)+ fB(X,Y),
(th)V = AsvX — PAvX, (Vxf)V =—-FAyX — B(X,tV).
We also have
ArxY = Apy X
for any X, Y € HL.

3. Proof of the theorem. We use the convention that the range of indices
are

1=1,2,...,n; a=12,...,p;

A=12,...,q u=q+1,9+2,...,p.
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From the Gauss equation the Ricci tensor S of M is given by

(31)  S(X,Y)=c[(n—1)g(X,Y) +3¢(PX,PY)] - ) _ g(AaX, AsY),

for any vector fields X and Y tangent to M, where we have put 4, = 4,,,
{v.} being an orthonormal basis of the normal space of M. In accordance with
the assumption on the Ricci tensor, we find

(3.2) S(X,X) - c[(n — 1)g(X, X) + 29(PX, PX)]
= cg(PX,PX) - Y g(A.X,A.X) > 0.

Hence we obtain, for any vector field V normal to M, A,tV = 0 for all a. This
means that AytV = 0 for any vector fields U and V normal to M. Moreover
by (3.2), we have

(3.3) D TrAl <c(n—q) =ch,

where we have put h =dimH, and ¢ =dimH;.

Let us suppose that » = 0. Then M is an anti-invariant submanifold of
M™(c)(c > 0). In this case, M is totally geodesic in Mm™(c), and M is of
sectional curvature c.

In the following we suppose that k # 0. From AytV = 0 and (2.2) we have

(VxA)UtV + AuAfvx —AyPAyX =0
for any vector field X tangent to M, and hence

(3.4) 9(VxA)Y,tV) = g((Vx A)utV,Y)
=g(AuPAvX,Y) - g(AvAsvX,Y)

for any vector fields X and Y tangent to M.
In the CR submanifold we hold that

o(PX,Y)+g(X,PY)=0, g(FX,V)+g¢(X,tV)=0

for any vector fields X, Y in tangent to M and for any vector field V in normal
to M. From the Codazzi equation we obtain

9I(VxA)Y,tV) — g((Vy A)u X, tV) = 2cg(PX,Y)g(tV,tU).
Therefore from (3.4) we have

(3.5)
2cg(PX,Y)g(tV,tU) = g(AuPAyX,Y) + g(Ay PAyX,Y)

— g(AuAfvx, Y) + g(AuAvK,X).
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From this we have

Z g(A,PA,e;, Pe;) = cZg(Pe,-, Pe;)g(tvg,tv,)

a,i aai

(3.6) +% > [9(AcAfaei, Pe;) — g(AaAfaPeisei)]

a,t

=chg— Y TrPA,Af,,

where we have put Af, = Ay,,,{e.} being an orthonormal basis of T(M)*L.
Using (3.1), we obtain

(3.7) > 9(AaPei, AuPe;) = Y [e(n + 2)g(Pei, Pei) — S(Pei, Pey)).

a,i . 1

This implies
68 YR
=c(n+2—qh—Y S(Pe;,Pe;)+ Yy TrPA,As,.
Therefore by (3.3), we obtain
% S P AdP=c(n+2—qh—c(n+2)h+ > TrA2+ ) TrPA,As,
<ch(l—q)+ Y TrPA,Af,.
On the other hand, by (3.5), we can see

> TrPAxAga =D TrA\PA)P,
A A

where we have put Ay = Ay,,, {va} being an orthonormal basis of the com-
plementary orthogonal subbundle of FT(M) in T(M)1. Hence we have

0< 3 Y IR AP + Y TePAPA, - 3 TeP2 43
u A A
< ch(1—gq)+ Y TrPA\PA,,
A

from which

1 2 |
0< 52 IP A +2_9(ArPeis ArPes) < ch(l - 9)



where we have put A, = A,,, {v.} being an orthonormal basis of FT(M) in
T(M)1. Consequently, we have ¢ = 1 and PA, = A, P, Ay = 0 for all A. We
also have, by (3.5), A,PA,X = cPX. Hence we have

D 9(AuX,AY) = g(AuX,AY) = —g(A, P2 X, A,Y)
= —g(AyPA,PX,Y) = cg(PX, PY).

Substituting this equation into (3.2),we find that the Ricci tensor S of M is
given by S(X,Y) = ¢[(n—1)g(X,Y )+29(PX, PY)], and M is a pseudo-Einstein
submanifold of M™(c). This proves the theorem 1.

In case of a generic submanifold, we obtain the following theorem.

Theorem 2. Let M be an n-dimensional minimal generic submanifold of
M™(c)(c > 0). If the Ricci tensor S of M satisfies

S(X,X) 2 c[(n — 1)g(X, X) + 2¢(PX, PX)]

for any vector field X tangent to M, then M is

(2) a totally geodesic anti-invariant submanifold with constant curvature c,
or

(b) a pseudo-Einstein real hypersurface of M™(c) with 2m —n =1 and

S(X,Y)=c[(n-1)9(X,Y) + 29(PX, PY)].
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