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ON MINIMAL $CR$ SUBMANIFOLDS SATISFYING A

CERTAIN CONDITION ON THE RICCI CURVATURE

MASAHIRO YAMAGATA AND MASAHIRO KON

1. Introduction. We denote by $\overline{M}^{m}(c)$ a complex m-dimensional (real 2m-
dimensional) Kaehlerian manifold of constant holomorphic sectional curvature
$4c$ with Kaehlerian structure $(J,g)$ . Let $M$ be a real n-dimensional Riemannian
manifold isometrically immersed in $\overline{M}^{m}(c)$ with induced metric tensor field $g$ .
For any vector field $X$ tangent to $M$ , we put $JX=PX+FX$ , where $PX$

is the tangential part of $JX$ and $FX$ the normal part of $JX$ . Then $P$ is an
endomorphism on the tangent bundle $T(M)$ . If $F$ vanishes identically, then
$M$ is called a complex submanifold of $\overline{M}^{m}(c)$ , and if $P$ vanishes identically,
then $M$ is callde an anti-invariant submanifold of $\overline{M}^{m}(c)$ . A submanifold $M$

of a Kaehlerian manifold $\overline{M}$ is called a $CR$ submanifold of $\overline{M}$ if there exists a
differentiable distribution $H$ : $x\rightarrow H_{x}\subset T_{x}(M)$ on $M$ satisfying the following
conditions:
(1) $H$ is holomorphic, i.e., $JH_{x}=H_{x}$ for each $x\in M$ , and
(2) the complementary orthogonal distribution $H^{\perp}:$ $x\rightarrow H_{x}^{\perp}\subset T_{x}(M)$ is
anti-invariant, i.e., $JH_{x}^{\perp}\subset T_{x}(M)^{\perp}$ for each $x\in M$ .

We denote by $S$ the Ricci tensor of $M$ . If $M$ satisfies that $S(X, Y)=$
$ag(X, Y)+bg(PX, PY)$ , where $a$ and $b$ are constant, then $M$ is called a pseudo-
Einstein submanifold.

In $\backslash [3]$ one of the present author proved that there are no Einstein real hyper-
surfaces of a complex projective space $CP^{m}$ and classified the pseudo-Einstein
real hypersurfaces of $CP^{m}$ . This result was generalized by Cecil and Ryan [2]
to the case that $a$ and $b$ are functions.

Moreover, Maeda [6] studied the Ricci tensor of a real hypersurface of a
complex projective space.

On the other hand, one of the author [5] studied a compact minimal $CR$

submanifold $M$ of $CP^{m}$ under the assumption that the Ricci tensor of $M$

satisfies $S(X, X)\geq(n-1)g(X, X)+2g(PX, PX)$ , and proved that $M$ is a real
projective space $RP^{n}$ , or a complex projective space $CP^{n}$ or a pseudo-Einstein
real hypersurface $\pi(S^{(n+1)/2}(\sqrt{\frac{1}{2}})\times S^{(n+1)/2}(\sqrt{\frac{1}{2}}))$ , where $\pi$ denotes the
projection with respect to the fibration $S^{1}\rightarrow S^{2m+1}\rightarrow CP^{m}$ .

The purpose of the present paper is to consider the problem on the Ricci
tensor like that above without the assumption that $M$ is compact.
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Theorem 1. Let $M$ be an n-dimensional minimal $CR$ submanifold of $\overline{M}^{m}(c)$

$(c>0)$ , which is not a complex submanifold of $\overline{M}^{m}(c)$ . If the Ricci tensor $S$

of $M$ satisfies

$S(X,X)\geq c[(n-1)g(X, X)+2g(PX, PX)]$

for any vector field $X$ tangent to $M$, then $M$ is
(a) a totally geodesic anti-invariant submanifold of $\overline{M}^{m}(c)$ with constant cur-
vature $c$ , $or$

(b) a pseudo-Einstein submanifold of $\overline{M}^{m}(c)$ with dim $H_{x}^{\perp}=1$ and

$S(X, Y)=c[(n-1)g(X, Y)+2g(PX, PY)]$ .

2. Basic formulas. In this section we prepare the basic formaulas for an
n-dimensional submanifold $M$ of $\overline{M}^{m}(c)$ . The operator of covariant differen-
tiation with respect to the Levi-Civita connection in $\overline{M}^{m}(c)$ (resp. $M$ ) wil
be denoted by V (resp. $\nabla$). Then the gauss and Weingarten formulas are
respectively given by

(2.1) $\overline{\nabla}_{X}Y=\nabla_{X}Y+B(X, Y)$ and $\overline{\nabla}_{X}V=-A_{V}X+D_{X}V$

for any vector fields $X,$ $Y$ tangent to $M$ and any vector field $V$ normal to
$M$ , where $D$ denotes the operator of covariant differentiation with respect to
the linear connection induced in the normal bundle $T(M)^{\perp}$ of M. $A$ and
$B$ are both called the second fundamental forms of $M$ , and are related by
$g(B(X, Y),$ $V$ ) $=g(A_{V}X, Y)$ . For the second fundamental form $A$ we define its
covariant derivative $\nabla_{X}A$ by

(2.2) $(\nabla_{X}A)_{V}Y=\nabla_{X}(A_{V}Y)-A_{D_{X}V}Y-A_{V}(\nabla_{X}Y)$ ,

for any vector fields $X,$ $Y$ tangent to $M$ and any vector field $V$ normal to $M$ .
If $TrA_{V}=0$ for any vector field $V$ normal to $M$ , then $M$ is said to be

minimal, where Tr denotes the trace of a operator. If the second fundamental
form of $M$ vanishes, then $M$ is said to be totally geodesic. For any vector field
$X$ tangent to $M$ , we put

$JX=PX+FX$ ,

where $PX$ is the tangential part of $JX$ and $FX$ the normal part of $JX$ . Then
$P$ is an endomorphism on the tangent bundle $T(M)$ , and $F$ is a normal bundle
valued l-form on the tangent bundle $T(M)$ . For any vector field $V$ normal to
$M$ we put

$JV=tV+fV$,

where $tV$ is the tangential part of $JV$ and $fV$ the normal part of $JV$ .
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Let $R$ be the Riemannian curvature tensor of $M$ . Then the Gauss equation
is given by

$R(X, Y)Z=c[g(Y, Z)X-g(X, Z)Y+g(PY, Z)PX$

(2.3) $-g(PX, Z)PY+2g(X, PY)PZ$ ]

$+A_{B(Y,Z)}X-A_{B(X,Z)}$ Y.

The Codazzi equatin of $M$ is given by

$g((\nabla_{X}A)_{V}Y, Z)-g((\nabla_{Y}A)_{V}X, Z)$

(2.4) $=c[g(PY)Z)g(FX, V)-g(PX, Z)g(FY, V)$

$+2g(X, PY)g(FZ, V)]$ .

In the $CR$ submanifold $M$ , we put $\dim H_{x}=h,$ $\dim H_{x}^{\perp}=q$ and codimension
of $M=2m-n=p$ . If $q=0$ (resp.$h=0$ ) for any $x\in M$ , then the $CR$

submanifold is called a complex submanifold (resp. anti-invariant submanifold)
of $\overline{M}$ . If $p=q$ for any $x\in M$ , then the $CR$ submanifold is called a generic
submanifold. It is obvious that every real hypersurface of a Kaehlerian manifold
is automatically a generic submanifold.

On the $CR$ submanifold $M$ we obtain $FPX=0,$ $fFX=0$ for any vector
$X$ tangent to $M$ and $tfV=0$ , $PtV=0$ for any vector V normal to $M$ .
Moreover, we have $P^{2}X=-X$ –tFX for any vector $X$ tangent to $M$ and
$f^{2}V=-V$ –FtV for any vector $V$ normal to $M$ . We define the covariant
defferentiations of $P,$ $F,$ $t$ and $f$ by

$(\nabla xP)Y=\nabla_{X}(PY)-P\nabla_{X}Y$, $(\nabla_{X}F)Y=D_{X}(FY)-F\nabla_{X}Y$,
$(\nabla_{X}t)V=\nabla_{X}(tV)-tD_{X}V$, $(\nabla_{X}f)V=D_{X}(fV)-fD_{X}V$,

respectively. We then have

$(\nabla_{X}P)Y=A_{FY}X+tB(X, Y)$ , $(\nabla_{X}F)Y=-B(X, PY)+fB(X, Y)$ ,
$(\nabla xt)V=A_{fV}X-PA_{V}X$ , $(\nabla_{X}f)V=-FA_{V}X-B(X, tV)$ .

We also have
$A_{FX}Y=A_{FY}X$

for any $X,$ $Y\in H^{\perp}$ .
3. Proof of the theorem. We use the convention that the range of indices
are

$i=1,2,$ $\ldots n$ ; $a=1,2,$ $\ldots p$ ;
$\lambda=1,2,$ $\ldots q$ ; $u=q+1,$ $q+2,$ $\ldots p$ .
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From the Gauss equation the Ricci tensor $S$ of $M$ is given by

(3.1) $S(X, Y)=c[(n-1)g(X, Y)+3g(PX, PY)]-\sum_{a}g(A_{a}X, A_{a}Y)$ ,

for any vector fields $X$ and $Y$ tangent to $M$ , where we have put $A_{a}=A_{v_{a}}$ ,
$\{v_{a}\}$ being an orthonormal basis of the normal space of $M$ . In accordance with
the assumption on the Ricci tensor, we find

(3.2) $S(X,X)-c[(n-1)g(X, X)+2g(PX, PX)]$

$=cg(PX, PX)-\sum_{a}g(A_{a}X, A_{a}X)\geq 0$ .

Hence we obtain, for any vector field $V$ normal to $M,$ $A_{a}tV=0$ for all $a$ . This
means that $A_{U}tV=0$ for any vector fields $U$ and $V$ normal to $M$ . Moreover
by (3.2), we have

(3.3)
$\sum_{a}TrA_{a}^{2}\leq c(n-q)=ch$ ,

where we have put $h=\dim H_{x}$ and $q=\dim H_{x}^{\perp}$ .
Let us suppose that $h=0$ . Then $M$ is an anti-invariant submanifold of

$\overline{M}^{m}(c)(c>0)$ . In this case, $M$ is totally geodesic in $\overline{M}^{m}(c)$ , and $M$ is of
sectional curvature $c$ .

In the folowing we suppose that $h\neq 0$ . From $A_{U}tV=0$ and (2.2) we have

$(\nabla_{X}A)_{U}tV+A_{U}A_{fV}X-A_{U}PA_{V}X=0$

for any vector field $X$ tangent to $M$ , and hence

(3.4) $g((\nabla_{X}A)_{U}Y,tV)=g((\nabla_{X}A)_{U}tV, Y)$

$=g(A{}_{U}PA_{V}X, Y)-g(A_{U}A_{fV}X, Y)$

for any vector fields $X$ and $Y$ tangent to $M$ .
In the $CR$ submanifold we hold that

$g(PX, Y)+g(X, PY)=0$ , $g(FX, V)+g(X,tV)=0$

for any vector fields $X,$ $Y$ in tangent to $M$ and for any vector field $V$ in normal
to $M$ . IFlrom the Codazzi equation we obtain

$g((\nabla xA)UY, tV)-g((\nabla YA)UX,tV)=2cg(PX, Y)g(tV,tU)$ .

Therefore from (3.4) we have

(3.5)
$2cg(PX, Y)g(tV,tU)=g(A{}_{U}PA_{V}X, Y)+g(A_{V}PA_{U}X, Y)$

$-g(A_{U}A_{fV}X, Y)+g(A_{U}A_{fV}Y,X)$ .
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From this we have

$\sum_{a,i}g(A_{a}PA_{a}e_{i}, Pe_{t})=c\sum_{a,i}g(Pe_{i}, Pe_{i})g(tv_{a}, tv_{a})$

(3.6) $+\frac{1}{2}\sum_{a,i}[g(AAePe)-g(A_{afai,i}APee)]$

$=chq-\sum_{a}TrPA_{a}A_{fa}$ ,

where we have put $A_{fa}=A_{fv_{a}},\{e_{a}\}$ being an orthonormal basis of $T(M)^{\perp}$ .
Using (3.1), we obtain

(3.7) $\sum_{a,i}g(A_{a}Pe_{i}, A_{a}Pe_{i})=\sum_{i}[c(n+2)g(Pe_{i}, Pe_{i})-S(Pe_{i}, Pe_{i})]$
.

This implies

(3.8) $\frac{1}{2}\sum_{a}|[P, A_{a}]|^{2}$

$=c(n+2-q)h-\sum_{i}S(Pe_{i}, Pe_{i})+\sum_{a}TrPA_{a}A_{fa}$ .

Therefore by (3.3), we obtain

$\frac{1}{2}\sum_{a}|[P, A_{a}]|^{2}=c(n+2-q)h-c(n+2)h+\sum_{a}$ ‘lh $A_{a}^{2}+\sum_{a}TrPA_{afa}A$

$\leq ch(1-q)+\sum_{a}TrPA_{a}A_{fa}$ .

On the other hand, by (3.5), we can see

$\sum_{\lambda}TrPA_{\lambda}A_{f\lambda}=\sum_{\lambda}TrA_{\lambda}PA{}_{\lambda}P$
,

where we have put $A_{f\lambda}=A_{fv_{\lambda}},$ $\{v_{\lambda}\}$ being an orthonormal basis of the com-
plementary orthogonal subbundle of $FT(M)$ in $T(M)^{\perp}$ . Hence we have

$0\leq\frac{1}{2}\sum_{u}|[P, A_{u}]|^{2}+\sum_{\lambda}TrPA_{\lambda}PA_{\lambda}-\sum_{\lambda}$ TrP2 $A_{\lambda}^{2}$

$\leq ch(1-q)+\sum_{\lambda}TrPA_{\lambda}PA_{\lambda}$
,

from which

$0\leq\frac{1}{2}\sum_{u}|[P, A_{u}]|^{2}+\sum_{\lambda,i}g(A_{\lambda}Pe_{i}, A_{\lambda}Pe_{i})\leq ch(1-q)-75-$



where we have put $A_{u}=A_{v_{u}},$ $\{v_{u}\}$ being an orthonormal basis of $FT(M)$ in
$T(M)^{\perp}$ . Consequently, we have $q=1$ and $PA_{u}=A_{u}P,$ $A_{\lambda}=0$ for all $\lambda$ . We
also have, by (3.5), $A_{u}PA_{u}X=cPX$ . Hence we have

$\sum_{a}g(A_{a}X, A_{a}Y)=g(A_{u}X, A_{u}Y)=-g(A_{u}P^{2}X, A_{u}Y)$

$=-g(A_{u}PA_{u}PX, Y)=cg(PX, PY)$ .

Substituting this equation into $(3.2),we$ find that the Ricci tensor $S$ of $M$ is
given by $S(X, Y)=c[(n-1)g(X, Y)+2g(PX, PY)]$ , and $M$ is a pseudo-Einstein
submanifold of $\overline{M}^{m}(c)$ . This proves the theorem 1.

In case of a generic submanifold, we obtain the following theorem.

Theorem 2. Let $M$ be an n-dimensional minimal generic submanifold of
$\overline{M}^{m}(c)(c>0)$ . If the Ricci tensor $S$ of $M$ satisfies

$S(X,X)\geq c[(n-1)g(X,X)+2g(PX, PX)]$

for any vector field $X$ tangent to $M$, then $M$ is
(a) a totally geodesic anti-invariant submanifold with constant curvature $c$,

$or$

(b) a pseudo-Einstein real hypersurface of $\overline{M}^{m}(c)$ with $2m-n=1$ and

$S(X, Y)=c[(n-1)g(X, Y)+2g(PX, PY)]$ .
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