# ON MINIMAL $C R$ SUBMANIFOLDS SATISFYING A CERTAIN CONDITION ON THE RICCI CURVATURE 

Masahiro Yamagata and Masahiro Kon

1. Introduction. We denote by $\bar{M}^{m}(c)$ a complex m-dimensional (real 2 m dimensional) Kaehlerian manifold of constant holomorphic sectional curvature 4 c with Kaehlerian structure $(J, g)$. Let $M$ be a real $n$-dimensional Riemannian manifold isometrically immersed in $\bar{M}^{m}(c)$ with induced metric tensor field $g$. For any vector field $X$ tangent to $M$, we put $J X=P X+F X$, where $P X$ is the tangential part of $J X$ and $F X$ the normal part of $J X$. Then $P$ is an endomorphism on the tangent bundle $T(M)$. If $F$ vanishes identically, then $M$ is called a complex submanifold of $\bar{M}^{m}(c)$, and if $P$ vanishes identically, then $M$ is callde an anti-invariant submanifold of $\bar{M}^{m}(c)$. A submanifold $M$ of a Kaehlerian manifold $\bar{M}$ is called a $C R$ submanifold of $\bar{M}$ if there exists a differentiable distribution $H: x \longrightarrow H_{x} \subset T_{x}(M)$ on $M$ satisfying the following conditions:
(1) $H$ is holomorphic, i.e., $J H_{x}=H_{x}$ for each $x \in M$, and
(2) the complementary orthogonal distribution $H^{\perp}: x \longrightarrow H_{x}^{\perp} \subset T_{x}(M)$ is anti-invariant, i.e., $J H_{x}^{\perp} \subset T_{x}(M)^{\perp}$ for each $x \in M$.

We denote by $S$ the Ricci tensor of $M$. If $M$ satisfies that $S(X, Y)=$ $a g(X, Y)+b g(P X, P Y)$, where $a$ and $b$ are constant, then $M$ is called a pseudoEinstein submanifold.

In [3] one of the present author proved that there are no Einstein real hypersurfaces of a complex projective space $C P^{m}$ and classified the pseudo-Einstein real hypersurfaces of $C P^{m}$. This result was generalized by Cecil and Ryan [2] to the case that $a$ and $b$ are functions.

Moreover, Maeda [6] studied the Ricci tensor of a real hypersurface of a complex projective space.

On the other hand, one of the author [5] studied a compact minimal $C R$ submanifold $M$ of $C P^{m}$ under the assumption that the Ricci tensor of $M$ satisfies $S(X, X) \geq(n-1) g(X, X)+2 g(P X, P X)$, and proved that $M$ is a real projective space $R P^{n}$, or a complex projective space $C P^{n}$ or a pseudo-Einstein real hypersurface $\pi\left(S^{(n+1) / 2}\left(\sqrt{\frac{1}{2}}\right) \times S^{(n+1) / 2}\left(\sqrt{\frac{1}{2}}\right)\right)$, where $\pi$ denotes the projection with respect to the fibration $S^{1} \longrightarrow S^{2 m+1} \longrightarrow C P^{m}$.

The purpose of the present paper is to consider the problem on the Ricci tensor like that above without the assumption that $M$ is compact.

Theorem 1. Let $M$ be an $n$-dimensional minimal $C R$ submanifold of $\bar{M}^{m}(c)$ $(c>0)$, which is not a complex submanifold of $\bar{M}^{m}(c)$. If the Ricci tensor $S$ of $M$ satisfies

$$
S(X, X) \geq c[(n-1) g(X, X)+2 g(P X, P X)]
$$

for any vector field $X$ tangent to $M$, then $M$ is
(a) a totally geodesic anti-invariant submanifold of $\bar{M}^{m}(c)$ with constant curvature $c$,or
(b) a pseudo-Einstein submanifold of $\bar{M}^{m}(c)$ with $\operatorname{dim} H_{x}^{\perp}=1$ and

$$
S(X, Y)=c[(n-1) g(X, Y)+2 g(P X, P Y)]
$$

2. Basic formulas. In this section we prepare the basic formaulas for an $n$-dimensional submanifold $M$ of $\bar{M}^{m}(c)$. The operator of covariant differentiation with respect to the Levi-Civita connection in $\bar{M}^{m}(c)$ (resp. $M$ ) will be denoted by $\bar{\nabla}$ (resp. $\nabla$ ). Then the gauss and Weingarten formulas are respectively given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) \quad \text { and } \quad \bar{\nabla}_{X} V=-A_{V} X+D_{X} V \tag{2.1}
\end{equation*}
$$

for any vector fields $X, Y$ tangent to $M$ and any vector field $V$ normal to $M$, where $D$ denotes the operator of covariant differentiation with respect to the linear connection induced in the normal bundle $T(M)^{\perp}$ of $M . A$ and $B$ are both called the second fundamental forms of $M$, and are related by $g(B(X, Y), V)=g\left(A_{V} X, Y\right)$. For the second fundamental form $A$ we define its covariant derivative $\nabla_{X} A$ by

$$
\begin{equation*}
\left(\nabla_{X} A\right)_{V} Y=\nabla_{X}\left(A_{V} Y\right)-A_{D_{x} V} Y-A_{V}\left(\nabla_{X} Y\right) \tag{2.2}
\end{equation*}
$$

for any vector fields $X, Y$ tangent to $M$ and any vector field $V$ normal to $M$.
If $\operatorname{Tr} A_{V}=0$ for any vector field $V$ normal to $M$, then $M$ is said to be minimal, where $\operatorname{Tr}$ denotes the trace of a operator. If the second fundamental form of $M$ vanishes, then $M$ is said to be totally geodesic. For any vector field $X$ tangent to $M$, we put

$$
J X=P X+F X
$$

where $P X$ is the tangential part of $J X$ and $F X$ the normal part of $J X$. Then $P$ is an endomorphism on the tangent bundle $T(M)$, and $F$ is a normal bundle valued 1-form on the tangent bundle $T(M)$. For any vector field $V$ normal to $M$ we put

$$
J V=t V+f V
$$

where $t V$ is the tangential part of $J V$ and $f V$ the normal part of $J V$.

Let $R$ be the Riemannian curvature tensor of $M$. Then the Gauss equation is given by

$$
\begin{align*}
R(X, Y) Z= & c[g(Y, Z) X-g(X, Z) Y+g(P Y, Z) P X \\
& -g(P X, Z) P Y+2 g(X, P Y) P Z]  \tag{2.3}\\
& +A_{B(Y, Z)} X-A_{B(X, Z)} Y
\end{align*}
$$

The Codazzi equatin of $M$ is given by

$$
\begin{align*}
& g\left(\left(\nabla_{X} A\right)_{V} Y, Z\right)-g\left(\left(\nabla_{Y} A\right)_{V} X, Z\right) \\
& \quad=c[g(P Y, Z) g(F X, V)-g(P X, Z) g(F Y, V)  \tag{2.4}\\
& \quad+2 g(X, P Y) g(F Z, V)]
\end{align*}
$$

In the $C R$ submanifold $M$, we put $\operatorname{dim} H_{x}=h, \operatorname{dim} H_{x}^{\perp}=q$ and codimension of $M=2 m-n=p$. If $q=0$ (resp. $h=0$ ) for any $x \in M$, then the $C R$ submanifold is called a complex submanifold (resp. anti-invariant submanifold) of $\bar{M}$. If $p=q$ for any $x \in M$, then the $C R$ submanifold is called a generic submanifold. It is obvious that every real hypersurface of a Kaehlerian manifold is automatically a generic submanifold.

On the $C R$ submanifold $M$ we obtain $F P X=0, f F X=0$ for any vector $X$ tangent to $M$ and $t f V=0, P t V=0$ for any vector V normal to $M$. Moreover, we have $P^{2} X=-X-t F X$ for any vector $X$ tangent to $M$ and $f^{2} V=-V-F t V$ for any vector $V$ normal to $M$. We define the covariant defferentiations of $P, F, t$ and $f$ by

$$
\left.\begin{array}{rlrl}
\left(\nabla_{X} P\right) Y & =\nabla_{X}(P Y)-P \nabla_{X} Y, & \left(\nabla_{X} F\right) Y & =D_{X}(F Y)-F \nabla_{X} Y \\
\left(\nabla_{X} t\right) V & =\nabla_{X}(t V)-t D_{X} V, & & \left(\nabla_{X} f\right) V
\end{array}\right)=D_{X}(f V)-f D_{X} V, ~ l
$$

respectively. We then have

$$
\begin{aligned}
& \left(\nabla_{X} P\right) Y=A_{F Y} X+t B(X, Y), \quad\left(\nabla_{X} F\right) Y=-B(X, P Y)+f B(X, Y), \\
& \left(\nabla_{X} t\right) V=A_{f V} X-P A_{V} X, \quad\left(\nabla_{X} f\right) V=-F A_{V} X-B(X, t V) .
\end{aligned}
$$

We also have

$$
A_{F X} Y=A_{F Y} X
$$

for any $X, Y \in H^{\perp}$.
3. Proof of the theorem. We use the convention that the range of indices are

$$
\begin{aligned}
& i=1,2, \ldots, n ; \quad \quad a=1,2, \ldots, p \\
& \lambda=1,2, \ldots, q ; \\
& u=q+1, q+2, \ldots, p
\end{aligned}
$$

From the Gauss equation the Ricci tensor $S$ of $M$ is given by

$$
\begin{equation*}
S(X, Y)=c[(n-1) g(X, Y)+3 g(P X, P Y)]-\sum_{a} g\left(A_{a} X, A_{a} Y\right), \tag{3.1}
\end{equation*}
$$

for any vector fields $X$ and $Y$ tangent to $M$, where we have put $A_{a}=A_{v_{a}}$, $\left\{v_{a}\right\}$ being an orthonormal basis of the normal space of $M$. In accordance with the assumption on the Ricci tensor, we find

$$
\begin{align*}
& S(X, X)-c[(n-1) g(X, X)+2 g(P X, P X)]  \tag{3.2}\\
& \quad=c g(P X, P X)-\sum_{a} g\left(A_{a} X, A_{a} X\right) \geq 0
\end{align*}
$$

Hence we obtain, for any vector field $V$ normal to $M, A_{a} t V=0$ for all $a$. This means that $A_{U} t V=0$ for any vector fields $U$ and $V$ normal to $M$. Moreover by (3.2), we have

$$
\begin{equation*}
\sum_{a} \operatorname{Tr} A_{a}^{2} \leq c(n-q)=c h \tag{3.3}
\end{equation*}
$$

where we have put $h=\operatorname{dim} H_{x}$ and $q=\operatorname{dim} H_{x}^{\perp}$.
Let us suppose that $h=0$. Then $M$ is an anti-invariant submanifold of $\bar{M}^{m}(c)(c>0)$. In this case, M is totally geodesic in $\bar{M}^{m}(c)$, and M is of sectional curvature c .

In the following we suppose that $h \neq 0$. From $A_{U} t V=0$ and (2.2) we have

$$
\left(\nabla_{X} A\right)_{U} t V+A_{U} A_{f V} X-A_{U} P A_{V} X=0
$$

for any vector field $X$ tangent to $M$, and hence

$$
\begin{align*}
g\left(\left(\nabla_{X} A\right)_{U} Y, t V\right) & =g\left(\left(\nabla_{X} A\right)_{U} t V, Y\right)  \tag{3.4}\\
& =g\left(A_{U} P A_{V} X, Y\right)-g\left(A_{U} A_{f V} X, Y\right)
\end{align*}
$$

for any vector fields $X$ and $Y$ tangent to $M$.
In the $C R$ submanifold we hold that

$$
g(P X, Y)+g(X, P Y)=0, \quad g(F X, V)+g(X, t V)=0
$$

for any vector fields $X, Y$ in tangent to $M$ and for any vector field $V$ in normal to $M$. From the Codazzi equation we obtain

$$
g\left(\left(\nabla_{X} A\right)_{U} Y, t V\right)-g\left(\left(\nabla_{Y} A\right)_{U} X, t V\right)=2 c g(P X, Y) g(t V, t U) .
$$

Therefore from (3.4) we have

$$
\begin{align*}
2 c g(P X, Y) g(t V, t U)= & g\left(A_{U} P A_{V} X, Y\right)+g\left(A_{V} P A_{U} X, Y\right)  \tag{3.5}\\
& -g\left(A_{U} A_{f V} X, Y\right)+g\left(A_{U} A_{f V} Y, X\right)
\end{align*}
$$

From this we have

$$
\begin{gather*}
\sum_{a, i} g\left(A_{a} P A_{a} e_{i}, P e_{i}\right)=c \sum_{a, i} g\left(P e_{i}, P e_{i}\right) g\left(t v_{a}, t v_{a}\right) \\
+\frac{1}{2} \sum_{a, i}\left[g\left(A_{a} A_{f a} e_{i}, P e_{i}\right)-g\left(A_{a} A_{f a} P e_{i}, e_{i}\right)\right]  \tag{3.6}\\
=c h q-\sum_{a} \operatorname{Tr} P A_{a} A_{f a}
\end{gather*}
$$

where we have put $A_{f a}=A_{f v_{a}},\left\{e_{a}\right\}$ being an orthonormal basis of $T(M)^{\perp}$.
Using (3.1), we obtain

$$
\begin{equation*}
\sum_{a, i} g\left(A_{a} P e_{i}, A_{a} P e_{i}\right)=\sum_{i}\left[c(n+2) g\left(P e_{i}, P e_{i}\right)-S\left(P e_{i}, P e_{i}\right)\right] \tag{3.7}
\end{equation*}
$$

This implies

$$
\begin{align*}
& \frac{1}{2} \sum_{a}\left|\left[P, A_{a}\right]\right|^{2}  \tag{3.8}\\
& \quad=c(n+2-q) h-\sum_{i} S\left(P e_{i}, P e_{i}\right)+\sum_{a} \operatorname{Tr} P A_{a} A_{f a}
\end{align*}
$$

Therefore by (3.3), we obtain

$$
\begin{aligned}
& \frac{1}{2} \sum_{a}\left|\left[P, A_{a}\right]\right|^{2}=c(n+2-q) h-c(n+2) h+\sum_{a} \operatorname{Tr} A_{a}^{2}+\sum_{a} \operatorname{Tr} P A_{a} A_{f a} \\
& \leq c h(1-q)+\sum_{a} \operatorname{Tr} P A_{a} A_{f a}
\end{aligned}
$$

On the other hand, by (3.5), we can see

$$
\sum_{\lambda} \operatorname{Tr} P A_{\lambda} A_{f \lambda}=\sum_{\lambda} \operatorname{Tr} A_{\lambda} P A_{\lambda} P
$$

where we have put $A_{f \lambda}=A_{f v_{\lambda}},\left\{v_{\lambda}\right\}$ being an orthonormal basis of the complementary orthogonal subbundle of $F T(M)$ in $T(M)^{\perp}$. Hence we have

$$
\begin{gathered}
0 \leq \frac{1}{2} \sum_{u}\left|\left[P, A_{u}\right]\right|^{2}+\sum_{\lambda} \operatorname{Tr} P A_{\lambda} P A_{\lambda}-\sum_{\lambda} \operatorname{Tr} P^{2} A_{\lambda}^{2} \\
\leq c h(1-q)+\sum_{\lambda} \operatorname{Tr} P A_{\lambda} P A_{\lambda}
\end{gathered}
$$

from which

$$
0 \leq \frac{1}{2} \sum_{u}\left|\left[P, A_{u}\right]\right|^{2}+\sum_{\lambda, i} g\left(A_{\lambda} P e_{i}, A_{\lambda} P e_{i}\right) \leq \operatorname{ch}(1-q)
$$

where we have put $A_{u}=A_{v_{u}},\left\{v_{u}\right\}$ being an orthonormal basis of $F T(M)$ in $T(M)^{\perp}$. Consequently, we have $q=1$ and $P A_{u}=A_{u} P, A_{\lambda}=0$ for all $\lambda$. We also have, by (3.5), $A_{u} P A_{u} X=c P X$. Hence we have

$$
\begin{aligned}
\sum_{a} g\left(A_{a} X, A_{a} Y\right) & =g\left(A_{u} X, A_{u} Y\right)=-g\left(A_{u} P^{2} X, A_{u} Y\right) \\
& =-g\left(A_{u} P A_{u} P X, Y\right)=c g(P X, P Y)
\end{aligned}
$$

Substituting this equation into (3.2), we find that the Ricci tensor $S$ of $M$ is given by $S(X, Y)=c[(n-1) g(X, Y)+2 g(P X, P Y)]$, and $M$ is a pseudo-Einstein submanifold of $\bar{M}^{m}(c)$. This proves the theorem 1 .

In case of a generic submanifold, we obtain the following theorem.
Theorem 2. Let $M$ be an n-dimensional minimal generic submanifold of $\bar{M}^{m}(c)(c>0)$. If the Ricci tensor $S$ of $M$ satisfies

$$
S(X, X) \geq c[(n-1) g(X, X)+2 g(P X, P X)]
$$

for any vector field $X$ tangent to $M$, then $M$ is
(a) a totally geodesic anti-invariant submanifold with constant curvature $c$, or
(b) a pseudo-Einstein real hypersurface of $\bar{M}^{m}(c)$ with $2 m-n=1$ and

$$
S(X, Y)=c[(n-1) g(X, Y)+2 g(P X, P Y)] .
$$

## References

[1] A. Bejancu, CR submanifolds of a Kaehler manifold, Proc. Amer. Math. Soc. 69 (1978), 135-142.
[2] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 482-499.
[3] M. Kon, Pseudo-Einstein real hypersurfaces in complex space forms, J. Differential Geometry 14 (1979), 339-354.
[4] M. Kon, Generic minimal submanifolds of a complex projective space, Bull. London Math. Soc. 12 (1980), 355-360.
[5] M. Kon, Minimal CR submanifolds immersed in a complex projective space, Geometriae Dedicata 31 (1989), 357-368.
[6] S. Maeda, Real hypersurface of a complex projective space II, Bull. Austral. Math. Soc. 29 (1984), 123-127.

Department of Mathematics, Faculty of Education, Hirosaki University, Hirosaki, 036 Japan

