COVARIANCE IN BERNSTEIN'S INEQUALITY FOR OPERATORS

Masatoshi Fujii*, Ritsuo Nakamoto** and Yuki Seo***

Abstract

Very recently, we discussed covariance in noncommutative probability based on Umegaki's idea, in which we pointed out the importance of the covariancevariance inequality. In this note, we examine Bernstein's inequality in the light of the covariance-variance inequality; we give improvements and generalizations of it.

1.Introduction. In [6], Furuta showed the following theorem which is an improvement of Bernstein's one in [1].

Theorem A. If e is a unit eigenvector corresponding to an eigenvalue λ in a dominant operator A on a Hilbert space H, then

$$
\begin{equation*}
|(g, e)|^{2} \leq \frac{\|g\|^{2}\|A g\|^{2}-|(g, A g)|^{2}}{\|(A-\lambda) g\|^{2}} \tag{1}
\end{equation*}
$$

for all g in H for which $A g \neq \lambda g$.
Here an operator A is called dominant if for each λ there is a real number $M_{\lambda} \geq 1$ such that $\left\|(A-\lambda)^{*} x\right\| \leq M_{\lambda}\|(A-\lambda) x\|$ for all x in H. We have to remark that $(A-\lambda)^{*} e=o$ under the dominance of A, that is, λ is a normal eigenvalue of A, i.e., there is a nonzero vector x in H such that $(A-\lambda) x=0$ and $(A-\lambda)^{*} x=0$. Under this consideration, we weakened the assumption of Theorem A to normality of the eigenvalue in [5]. More precisely,

Theorem B. If e is a unit eigenvector corresponding to a normal eigenvalue λ of A on a Hilbert space H, then (1) holds for all g in H for which $A g \neq \lambda g$.

We also gave another generalization of Theorem A to normal approximate eigenvalues [2], i.e., a complex number λ is called a normal approximate eigenvalue of A if there exists a sequence $\left\{x_{n}\right\}$ of unit vectors such that $\left\|(A-\lambda) x_{n}\right\| \rightarrow 0$ and $\left\|(A-\lambda)^{*} x_{n}\right\| \rightarrow 0$.

Theorem C. If $\left\{e_{n}\right\}$ is a sequence of unit vectors corresponding to a normal approximate eigenvalue λ of A, then

$$
\overline{\lim }\left|\left(g, e_{n}\right)\right|^{2} \leq \frac{\|g\|^{2}\|A g\|^{2}-|(g, A g)|^{2}}{\|(A-\lambda) g\|^{2}}
$$

for all g in H for which $A g \neq \lambda g$.
On the other hand, in [4] we recently discuss the variance and covariance of operators in the light of Umegaki's noncommutative probability [8]. Following J.I.Fujii's seminor talk, they are defined as follows: For a unit vector x and operators A, B

$$
\begin{equation*}
\operatorname{Cov}_{x}(A, B)=\left(A^{*} B x, x\right)-\left(A^{*} x, x\right)(B x, x) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}_{x}(A)=\|A x\|^{2}-|(A x, x)|^{2} . \tag{3}
\end{equation*}
$$

Since $\operatorname{Cov}(A, B)$ is a semi-inner product in the space of all operators on a Hilbert space, the Schwarz inequality implies the following covariance-variance inequality;

$$
\begin{equation*}
|\operatorname{Cov}(A, B)|^{2} \leq \operatorname{Var}(A) \operatorname{Var}(B) . \tag{4}
\end{equation*}
$$

The covariance-variance inequality has many applications, e.g. the Kantorovich inequality, the Heinz-Kato-Furuta inequality [7] and the uncertainty principle [8].

In this note, we try to approach to Bernstein's inequality from the covariancevariance inequality; we give it improvements based on the covariance-variance inequality and discuss it in some general setting. For the latter, we introduce the sine of the covariance and the variance. As a matter of fact, we show that Pythagorean type theorem holds for the sine of the covariance, which includes Bernstein's inequality.
2. Results. We begin with the following improvement of Theorem B by the covariance variance inequality.

Theorem 1. If e is a unit eigenvector corresponding to an eigenvalue $\bar{\lambda}$ of A^{*} on a Hilbert space H, then (1) holds for all g in H for which $A g \neq \lambda g$.

Proof. First of all, we note that the covariance is translation-invariant, i.e.,

$$
\operatorname{Cov}(A-a, B-b)=\operatorname{Cov}(A, B)
$$

for $a, b \in \mathbb{C}$, and so is the variance. We put $B=A-\lambda$ and may assume that $\|g\|=1$. Now (1) can be rephrased as

$$
\begin{equation*}
|(g, e)|^{2}\|B g\|^{2} \leq \operatorname{Var}_{g}(B) \tag{5}
\end{equation*}
$$

To prove (5), it suffices to take the projection E corresponding to the eigenvector e, i.e., $E x=(x, e) e$ for $x \in H$. That is, we apply the covariance-variance inequality to E and B. Then we have

$$
\begin{equation*}
\left|\operatorname{Cov}_{g}(E, B)\right|^{2} \leq \operatorname{Var}_{g}(E) \operatorname{Var}_{g}(B) \tag{6}
\end{equation*}
$$

Noting that $B^{*} e=0$ by the assumption on $\lambda,(6)$ is rewritten by

$$
|(g, e)|^{2}|(B g, g)|^{2} \leq \operatorname{Var}_{g}(B)\left(1-|(g, e)|^{2}\right)
$$

so that

$$
|(g, e)|^{2}\|B g\|^{2}=|(g, e)|^{2}\left(|(B g, g)|^{2}+\operatorname{Var}_{g}(B)\right) \leq \operatorname{Var}_{g}(B)
$$

as desired.

Remark. As seen in the proof above, we don't require that $A e=\lambda e$, that is, λ is a normal eigenvalue of A with an eigenvector e. In addition, we cannot replace the assumption $A^{*} e=\bar{\lambda} e$ to the condition $A e=\lambda e$. Actually we take, as a conterexample,

$$
A=\left(\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right), e=\binom{1}{0}, \lambda=2 ; g=\binom{1}{-1}
$$

It is easily checked that $(A-2) g \neq 0$ and $(g, e) \neq 0$, but

$$
\|g\|^{2}\|A g\|^{2}-|(A g, g)|^{2}=0
$$

Next we generalize Bernstein's inequality (1). To do this, we introduce the sine of the covariance and the variance. For a unit vector x with $\left(A^{*} B x, x\right) \neq 0$,

$$
\operatorname{sCov}_{x}(A, B)=\frac{\operatorname{Cov}_{x}(A, B)}{\left(A^{*} B x, x\right)}
$$

and, for a unit vector x with $A x \neq 0$,

$$
\operatorname{sVar}_{x}(A)=\frac{\operatorname{Var}_{x}(A)}{\|A x\|^{2}}
$$

Incidentally these definitions are available for arbitrary vectors x with suitable conditions $\left(A^{*} B x, x\right) \neq 0$ or $A x \neq 0$; we prepare the following definitions for these cases:

$$
\operatorname{sCov}_{x}(A, B)=\frac{\|x\|^{2}\left(A^{*} B x, x\right)-\left(A^{*} x, x\right)(B x, x)}{\left(A^{*} B x, x\right)}
$$

and

$$
\operatorname{sVar}_{x}(A)=\frac{\|x\|^{2}\|A x\|^{2}-|(A x, x)|^{2}}{\|A x\|^{2}}
$$

Since $|(A x, x)| /\|A x\|$ is regarded as the cosine between x and $A x, \operatorname{sVa}_{x}(A)$ is the square of the sine between x and $A x$. On the other hand, since $\operatorname{Cov}_{x}(A, B)$ is a semi-inner product, it may have Pythagorean properties. The following theorem can be understood from this viewpoint.

Theorem 2. Let E be a projection such that $A E=E A=0$ and $B E=E B=0$. Then, for each $x \in H$

$$
\begin{equation*}
\operatorname{sCov}_{x}(A, B)=\|E x\|^{2}+\operatorname{sCov}_{E^{\perp}}(A, B) \tag{7}
\end{equation*}
$$

In particular, if E is a projection such that $B E=E B=0$, then

$$
\begin{equation*}
\operatorname{sVar}_{x}(B)=\|E x\|^{2}+\operatorname{sVar}_{E^{\perp} x}(B) \tag{8}
\end{equation*}
$$

Proof. We put $y=E^{\perp} x$. Then we have

$$
\begin{aligned}
\operatorname{sCov}_{x}(A, B) & =\frac{\|x\|^{2}\left(A^{*} B x, x\right)-\left(A^{*} x, x\right)(B x, x)}{\left(A^{*} B x, x\right)} \\
& =\frac{\left(\|E x\|^{2}+\|y\|^{2}\right)\left(A^{*} B y, y\right)-\left(A^{*} y, y\right)(B y, y)}{\left(A^{*} B y, y\right)} \\
& =\|E x\|^{2}+\operatorname{sCov}_{y}(A, B)
\end{aligned}
$$

Remark. The above (8) also implies Theorem B. We keep the notations as in the proof of Theorem 1. Then we have $B E=E B=0$ by the asumption. Since $\mathrm{sVar}_{y}(B)$ is nonnegative for all y, we obtain Theorem B.

Following our previous note [5], we finally give an improvement of Theorem C:
Theorem 3. If $\left\{e_{n}\right\}$ is a sequence of unit vectors corresponding to an approximate eigenvalue $\bar{\lambda}$ of A^{*}, then

$$
\begin{equation*}
\overline{\lim }\left|\left(g, e_{n}\right)\right|^{2} \leq \frac{\|g\|^{2}\|A g\|^{2}-|(g, A g)|^{2}}{\|(A-\lambda) g\|^{2}} \tag{9}
\end{equation*}
$$

for all g in H for which $A g \neq \lambda g$.
Proof. By a similar way to [5; Theorem 3], the proof is reduced to Theorem 1 via the Berberian representation. For the sake of convenience, we sketch it below.

For the sequence $\left\{\left|\left(g, e_{n}\right)\right|\right\}$, there is a generalized limit Lim such that

$$
\operatorname{Lim}\left|\left(g, e_{n}\right)\right|^{2}=\overline{\lim }\left|\left(g, e_{n}\right)\right|^{2}
$$

The Berberian representation $A \rightarrow A^{\circ}$ is induced by Lim as follows, see [5]: The vector space V of all bounded sequences in H has a semi-inner product $\left\langle x^{\circ}, y^{\circ}\right\rangle=$ $\operatorname{Lim}\left(x_{n}, y_{n}\right)$, so that a Hilbert space H° is given by the completion of V / N, where $N=\{x \in V ;\langle x, y\rangle=0$ for all $y \in V\}$. For an operator A on H, A° is defined by

$$
A^{\circ}\left(\left\{x_{n}\right\}+N\right)=\left\{A x_{n}\right\}+N .
$$

Then it is known that it is an isometric *-isomorphism and converts the approximate eigenvalues of A to the eigenvalues of A°.

By the Berberian representation, we now obtain that

$$
A^{* \circ} e^{\circ}=\bar{\lambda} e^{\circ} \quad \text { and }\left.\quad\left|<g^{\circ}, e^{\circ}>\left.\right|^{2}=\overline{\lim }\right|\left(g, e_{n}\right)\right|^{2},
$$

where g° is the canonical embedding of g into H° and $e^{\circ}=\left\{e_{n}\right\}+N$. Hence it follows from Theorem 1 that

$$
\begin{aligned}
\overline{\lim }\left|\left(g, e_{n}\right)\right|^{2}=\left|<g^{\circ}, e^{\circ}>\right|^{2} & \leq \frac{\left\|g^{\circ}\right\|^{2}\left\|A^{\circ} g^{\circ}\right\|^{2}-\left|<A^{\circ} g^{\circ}, g^{\circ}>\right|^{2}}{\left\|\left(A^{\circ}-\lambda\right) g^{\circ}\right\|^{2}} \\
& =\frac{\|g\|^{2}\|A g\|^{2}-|(A g, g)|^{2}}{\|(A-\lambda) g\|^{2}}
\end{aligned}
$$

Acknowledgement. The authors would like to express their thanks to the referee for his careful reading, by which many careless mistakes was corrected.

References

1. H.J.Bernstein, An inequality for selfajoint operators on a Hilbert space, Proc.Amer.Math.Soc. 100 (1987), 319-321..
2. M.Enomoto,M.Fujii and K.Tamaki, On normal approximate spectrum, Proc. Japan Acad. 48 (1972), 211-215.
3. M.Enomoto and H.Umegaki, Covariance and uncertinty principle, in preparartion.
4. M.Fujii, T.Furuta, R.Nakamoto and S.-E.Takahasi, Operator inequalities and covariance in noncommutative probability,, Math. Japon., to appear.
5. M.Fujii, T.Furuta and Y.Seo, An inequality for some nonnormal operators -Extension to normal approximate eigenvalues, Proc.Amer.Math.Soc. 118 (1993), 899-902..
6. T.Furuta, An inequality for some nonnormal operators, Proc.Amer.Math.Soc. 104 (1988), 1216-1217.
7. T.Furuta, An extension of the Heinz-Kato theorem, Proc.Amer.Math.Soc. 120 (1994), 785787.
8. H. Umegaki, Conditional expectation in an operator algebra, Tohoku Math.J. 6 (1954), 177181..
*)Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582, JAPAN.
**)Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316, Japan.
***) Tennoji Senior Highschool, Osaka Kyoiku University, Tennoji, Osaka 543, Japan.
