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On some uniqueness and existence results
for initial value problems of ordinary
differential equations
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Introduction
Consider the initial value problem

(1) ‘ y’ = .f(x,y), y(To) = Yo

where the function f(z,y) is at least continuous in Sy : zo < z < 2o +
a, |y —yo| < b. In such a case by a solution of (1) in the interval [zo, zo + a],
we mean a function y(z) satisfying:

y(zo0) = yo, _
for all z € [zg, 2o + a], the points (z,y(z)) in Sy,
y'(x) exists and continuous in [zg,zo + a] ; and

y'(z) = f(z,y(z)).

J.M.Bownds [1}], J.M.Bownds and F.T.Metcalf [2] used a certain factor-
ization of the function f(z,y), further T.C.Gard [3] imposed a condition on
the f(z,y) with a certain function ¢(z) defined in [zo,x¢ + a) to obtain the
uniqueness of the classical solutions't of the initial value problem (1). The
results we shall prove are based on both these works.
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11f f(z,y) is only defined in Sy, by a classical solution of (1) in [z, zo + a] we mean
a y(z) satisfying y(zo) = yo, (2,y(z)) € S; and y(z) is continuous in [z, zo + a), ¥'(z)
exists in (2o, zo + a) and y'(z) = f(z,y(z)).
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In the next section we will show a generalization of O.Kooi [4]’s unique-
ness theorem. Also H.Uryu, M.Murakami and Y.Todo [5] proved that his
uniqueness result remains true without continuily of f(z,y) in some sense.
IFurther It will be shown by Corollary 3 that the conditions O.Kooi imposed
in his existence and uniqueness theorem are special cases of our results.

We could fined these studies [1]~[4] in the book written by R.P.Agarwal
and V.Lakshmikantham [6].

The uniqueness results

Theorem 1. Suppose that it is possible to find three functions fi, fs, f3, in
_'?, such that [ = f,f, — f5 in Sy, where f}, f,, f3 are continuous in S, and
2 . ex1sts, is nonnegative, and is continuous in S, . Further, suppose that
f1, f2 and f; have the following properties

i) the function f; is strictly positive along the solution curves,

ii) for each fixed z € (zp,z0 +a)and yo ~b<y <y <yo+ b
falz, 9) f1(z,y) = fa(z,y) fi(z,¥) ; and

iii) let ¢(z) be a differentiable function defined in (zo, zo + a) such that
¢(z) > 0 in (zg,zo + a) and for all (z,y),(z,7) in S; : zo < z <
To+a, ly —yo| < bwithy <y f, satisfies

(2) J2(z,9) = folz,y) < ¢(( ))(y— y)-

Further let A(x) be a nonnegative function in (zo,zo + a) such that
Joo A(t)dt exists and for all (z,9),(z,y) in Sy with y <7 f, satisfies

(3) Ja(z,9) — fa(z,y) < Mz)g(y — )

where g(z) > 0 is the continuous and nondecreasing function for z > 0 and
it satisfies

0= [y SO0

< 00,

o g(2) Bt M (z)
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where M = maxg, |fi(z,y)].
Then, the initial value problem (1) has at most one solution in [z, Zo + aJ.

Proof. Suppose there are two solutions y(z) and g(zx) of (1) in the in-
terval [zo,To + a]. Then, there exists a point T € (zo,zo + a) such that
7(Z) — y(2) > 0. Let & = sup{z : 30 < < Z and §(z) = y(z)}. Then,
7(é0) = y(&) and y(z) > y(z) in (&, 7). Now f1(&0,y(é0)) > 0 and since f,
is continuous there exists a &; such that for & < z < ¢; and y(z) <y < j(x)
it is true that fi(z,y) is bounded away from zero by a positive number, say,
m. Define a function H : [, &1] — R as follows

@[ dt = [ f3(¢,5(t))  f3(t,y(t))
@ H@= [ [ﬁ(m)] +/eo{fl(t,;(t))_fl(t,;(t))}dt'

Clearly, H (&) = 0 and in view of the condition i) and ii) it follows that

(5) H(z) >0 in (§,&1)-

Also, by the hypotheses on f;, H(x) may be differentiated in (o, &), to
obtain

vy @O 1 ], g'(z)  _ y(=)
©)  H=) = /y(x) Oz [fl(%ﬂ] lt+f1($v37($)) fi(z,y(z))

+f3(£11, g(w)) _ fS(xay(w))
N(z,9(2)  filz,y(z))
§'(z) + fo(z,5(2))  y'(z) + fa(z, y(2))

S T i@a@) f1(@4(2))
_ [@0(@) + fo(@,5() (@) + (@)
Fi(@7(2)) foy@)

In the inequality (6), on using the factorization of f and the condition
(2), we obtain

(7) H'(z) < fulz,5(z)) = fo(z,y(2))

d)'(:r) y —ylx T
¢(.’E) (y(ﬂ)) J( ))’ € (€0a€1)'

IA
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Irom ii) and (4) it follows that

Thus a combination of (7) and (8) leads to the differential inequality

H'(z) — (Z(( ))MH( ) <0, z € (€o,&1)-

Hence for 0 < € < &; — &, we have

H(z)
¢M(z)

d(—lx [In 11(z) — In ¢™(z)] = ;:E (ln ) <0, z€[lote )

Therefore, it follows that

H(z). <In H({o + €)

MMy = M, 1 o)

which may be written as

H(z) _ H(o+e)
®) VS S Pt e)

If zo < &o, then (9), in view of lim,_, o+ ;Hg(f—é’;}% = 0, implies that

H(x) =0 in (&,¢1). But this contradicts (5).

TE [60 +6’€1)’

I o = & then (9) is

H(z) _ H(zo+e)
M(x) = ¢M(z0 +€)’

From (3) and the hypothesis oﬁ g, it follows that

'(z) < M=)g(4() — y(z)) < Mz)g(MH(z))

which implies that

(10) 0<

T € [zo+€,&).

To+&
G(MH(zo+€)) < M / A(2)dt.
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On using the monotoneity of G, we find
zo+e

(11) MH(zo+¢) < G (M/ )\(t)dl,) .
Zo

From a combination of (11) and (10), we get

H(z) < II(zg + €)

0<
— M(x) T M(xo+e)
1 G (M [zt A(t)dt)
< — .
= M ¢M(z0 + 6) 5 € [mO + 5,61)
This leads to the desired contradiction. ' ]

Corollary 1. In Theorem 1 condition iii) can be replaced by

iii)’ the function f; satisfies for all (z,y),(z,9) € S, withy <7

fale,3)  faloy) < FLY),

fa(2,5) — falz,y) < #—_ff%

where the constants k, ¢, a and S, satisfy the inequalities k > 0, ¢ >
0,0<a<l, <1, Mk< }—:g, and M = maxz, |fi(z,y)l-

Proof. It suffices to note that the function ¢(z) = (z — zo)*, A(z) = oee)?
and g(z) = z* are admissible in Theorem 1. [

If we take f; =1, f, = f and f3 = 0 in Corollary 1 then we obtain the
generalization of Kooi’s uniqueness theorem (see the proof of corollary 3).

Also even if we consider (1) as an n-dimensional system, i.e., f = (f1,-+, fa)
and y = (y1, -, Yn), the idea of the proof in Theorem 1 can be used.
For z,y € R™ we shall use the following notations.

lyl = ?:1 |yi|a Hy” =V Z?:l yz‘27 Tr-y= Z?:l TiYi
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Theorem 2. Let ¢(z) > 0 be a differentiable function defined in (zo, 20+ a).
Further, let the function f(z,y) be continuous in 54 ; z¢ <z < zo +a, |y —
Yol < b and for all (z,y),(z,7) € Sy ; To <z < To+ a, |y — yo| < b with
y # ¢ the following inequalities hold

1) (f(z,9) = f(,9) - (v —9) < &y — 91l ; and
i) (f(z,9) — f(=,9) - (y = §) < M=)g(lly — 9ll)lly — gl

where M(z) > 0 is defined in (zo, zo + a) such that [7 A(t)dt exists, g(z) > 0
is continuous for z > 0 and these satisfy

y G~ ([ A(t)dt
W) =/0 g((lz) <oco,  lim ({b(z)( ) 0

Then, the initial value problem (1) has at most one n-solution? in [z¢, o +a).

Proof. Let y(z) and g(z) be two n-solutions of (1). Then we define a
function H(z) = ||y(z) — y(z)||. As in Theorem 1 we obtain

H(z) _H(é +¢)
'=%@) = St o)

which leads the contradiction. : =

in [60 + €, 61)

The successive approximations

It is well known that a uniqueness theorem doesn’t imply the convergence
of sequences of functions obtained by Picard’s method of successive approxi-
mations. Therefore it may be of some interest to investigate the convergence
in our case.

f f(z,y) is continuous in S, by a n-solution of (1) in [zo, o + @) we mean a y(z) =
(v1(2), - -+, Yn(z)) satisfying y(zo) = wo, (z,y(z)) € S} in [zo,20 + a), ¥ (z) exists and
continuous in [xo,zo + a); and y{(z) = fi(z,y(z)),i=1,---,n.
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Theorem 3. Let ¢(x) be a continuous non-decreasing function in z, <
r < z¢ + a and continuously differentiable in zo < = < z¢ + @ such that
¢(z0) =0, ¢(x) > 0 for z > zo. Further, let the function f(z,y) be contin-
uous in S+ and for all (z,9), (z,y) € S, it satisfies

(12) f(z,5) — f@yn_¢fﬁ

i,il:>1170

(13) 1£(2,9) — f(z,9)] < Me)g(Ig — ), = > 2o

where A(z) > 0 is a continuous function in o < z < z¢ 4 a and g(z) > 0
is the continuous and nondecreasing function for z > 0. Further suppose for
any constant L > 0 there exist two constants § > 1,C > 0 and natural num-
ber n such that 7"(L(z — z0)) < Cé’(z) in zo < = < zo + @ where T™ is an
operator given as T"(v(z)) = T'(T" Y(v(z))), T (v(z)) = [ A(t)g(v(t))dt.

Then, the initial value problem (1) has a unique solution in o < £ < z¢ + h

where A = min (a, —MIZ—) and M = maxs, |f(z,y)l.

Proof. I) The existence
We choose a function yo(x) = yo. The sequence of functions {y.(x)},
defined for natural n by the relation

(14) Yn(z) = yo + /x: F(t, yn_1(t))dt

is the well known sequences of the successive approximations. From induction
it can be proved that y,(z) is continuous and |y, (z)—yo| < bin zo < z < zo+
h for every n > 1. Now we shall prove the uniform convergence in zo < = <

Tg + h of a sequence {y,(z)}. Because y,(z) = yo + Y1 (yi(x) —y;—1(x)), it
suflices to prove that a sequence {Z]_l(JJ(:v) —Yj— l(x))} uniformly converges
mazo <z <zgog+h.

By (13) and definition of T™, we have the following inequalities

9(2) = v @) < [ XOG(W-1(2) = va-a(ODdt = T (lyn-1(2) = gn-a(2))

< T*(|gn-2(2) — Yn-s(z)])
S_ .........
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17 (fya () — wo(@)) = T (| [ 1t vo)ee])
< T Y (M(z — w0))-

From the hypothesis of the operator T™, there exists a natural N such that
TN-Y(M(z — z0)) < c¢® in xo < x < 29 + h. Hence

(15) lyn(z) — yn-1(z)| < cf’(z) inzo <z <m0+ b

Using condition (12) and inequality (15), it follows

(@)~ i@l < [ SO — vl
< [ogwe Wt
C
= g¢6($)-

Repcating this process  times, we get

C .
lyn+i(z) — ynv+ic1(z)] < 374’8(-"3) in g0 < ¢ < 2o + h.
Therefore we arrive at the desired result.
Let y(z) be the limit function of a sequence {y.(z)}. As f(=, y) is contin-
uous in the closed rectangle S, , this function is even uniformly continuous

in S,. Hence f(z,yn(z)) tends uniformly in z to f(z,y(x)). Therefore if n
tends to infinity in (14), we have

y@)=vo+ [ [(Lyt)dt inzo<z<zoth
Zo

which implies the existence of the solution of (1) in the interval zo < z <
To + h.

I1) The uniqueness
Let y(z) and 7(z) be two solutions of (1) in xo < = < xo + h. Then,

y(@) — 5@ < [ 174 y(0) = £ 7))t < 2M(z — zo)
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As in the proof of the existence, it follows

ly(z) —g(z)] < T™(Jy(z) — y(z)|)
< T"(2M(z — zo))
< C¢5(x) inzy<zc<zo+h.

Thus

. z A C .
(=) =962 < [T L0 - 50l <S¢ mrzose<aoth

By iteration of this process, we get
_ C :
ly(z) — g(z)| < -(57¢ — 0 as 1 — oo.

So |y(z) — g(z)| = 0 and hence y(z) = §(z) in 2o < z < 7o + h. |

Remark. In Theorem 3 if we require only the existence result, the as-
sumption on the operator T™ can be replaced by the following;
there exist § > 1, C > 0 and a natural number n such that

" (; [ 16, yo)dtl) < CH(x) in 20 <z < ao+a

Corollary 3. 0.Kooi’s statement is the particular case of our Theorem
3.

Proof. Kooi [4] showed the existence and uniqueness theorem under the
assumptions that functions ¢(z) = (z — zo)*, A(z) = m and g(z) = 2“

withk>0,¢>0,0<a<, B <aand k< ; _g . We can casily see that
his conditions satisfy all the hypotheses of lheorem 3. Really it holds

T"(L(z — x0)) = C,, (1:—:1:0)(“ —A) 41

where C,, is nonnegative and independent of z. In view of

lim((a—ﬂll—;a )=l-——'g>k

n—o0o l—ao
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There exists a natural N such that (o — ,B)ll;f'aﬁ +1 > k. Hence we can
fined § > 1 and N such that TN(L(z — o)) = Cn(z — xo)* = C¢°(z) in
[zo, o + h]. ]
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