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0. Introduction.
Let $M$ be an m-dimensional manifold with a linear connection $\Gamma$ . A non

zero tensor field $K$ of type $(r, s)$ on $M$ is said to be recurrent if there exists a
l-form $\alpha$ such that $\nabla K=K\otimes\alpha$ , where $\nabla$ is covariant derivative with respect
to $\Gamma$ . We know the recurrent condition has a close relation to holonomy group
in the sense of the following theorem (cf. [5] and [10]).

Theorem W. oeWe denote $L(M)$ be a bundle of frames of $M$ and $T_{s}^{r}(R^{m})$

be a tensor bundle of type $(r, s)$ over $R^{m}$ . Let $f$ : $L(M)\rightarrow T_{s}^{r}(R^{m})$ be the
mapping which corresponds to a given tensor field $K$ of type $(r, s)$ . Then $K$ is
recurrent if and only if, for the holonomy bundle $P(u_{0})$ through any $u_{0}\in L(M)$ ,
there exists a differentiable function $\psi(u)$ with no zero on $P(u_{0})$ such that

$f(u)=\psi(u)f(u_{O})$ for $u\in P(u_{0})$ .

As a special case, $K$ is parallel if and only if $f(u)$ is constant on $P(u_{0})$ .
We consider a real hypersurface $M$ of real dimension $m=2n-1$ in a

complex projective space $P_{n}(C),$ $n\geqq 2$ with Ftibini-Study metric of constant
holomorphic sectional curvature 4. Then $M$ has an almost contact metric
structure $(\phi,\xi,\eta, g)$ induced from the K\"ahler structure of $P_{\mathfrak{n}}(C)$ . Many dif-
ferential geometers have studied $M$ by using the almost contact structure, for
example [1], [2], [3], [4], [6] and [8]. It is wel-known that there does not exist a
real hypersurface $M$ of $P_{\mathfrak{n}}(C)$ satisfying the condition that second fundamen-
tal tensor $A$ of $M$ is parallel. We have the following result under the weaker
condition that the second fundamental tensor $A$ is recurrent (cf. [7] and [9]).

Theorem 1. There are no real hypersurfaces with recurrent second fundamen-
tal tensor of $P_{n}(C)$ on which $\xi$ is a principal curvature vector.

On the other hand Kimura and Maeda ([4]) introduced the notion of an
$\eta$-parallel second fundamental tensor, which is defined by $g((\nabla_{X}A)Y, Z)=0$
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for any tangent vector field $X,$ $Y$ and $Z$ orthogonal to $\xi$ . In this paper we
consider the notion that the second fundamental tensor is $\eta$-recurrent i.e. there
exists a l-form $\alpha$ such that the second fundamental tensor $A$ of $M$ satisfies
$g((\nabla_{X}A)Y, Z)=\alpha(X)g(AY, Z)$ for any $X,$ $Y$ and $Z$ which are orthogonal to
$\xi$ . We get the folowing:

Theorem 2. Let $M$ be a real hypersurface of $P_{\mathfrak{n}}(C)$ . Then the second fun-
damental tensor of $M$ is $\eta$-recurrent and $\xi$ is a principal curvature vector if
and only if $M$ is locally congruent to a tube of some radius $r\dot{o}$ver one of the
following Kahler submanifolds:

$(A_{1})$ hype$\eta$lane $P_{n-1}(C)$ , where $0<r<\pi/2$ ,
$(A_{2})$ totally geodesic $P_{k}(C)(1\leqq k\leqq n-2)$ , where $0<r<\pi/2$ ,
$(B)$ complex quadric $Q_{\mathfrak{n}-1}$ , where $0<r<\pi/4$ .
The author would like to express his sincere gratitude to Professors Y. Mat-

suyama and K. Ogiue for their valuable suggestions and continuous encourage-
ment during the preparation of this paper.

1. Preliminaries.
Let $M$ be a real hypersurface of $P_{n}(C)$ . In a neighborhood of each point, we

choose a unit normal vector field $N$ in $P_{\mathfrak{n}}(C)$ . The Riemannian $connection8\tilde{\nabla}$

in $P_{\mathfrak{n}}(C)$ and $\nabla$ in $M$ are related the following formulas for arbitrary vector
fields $X$ and $Y$ on $M$ .

(1.1) $\tilde{\nabla}_{X}Y=\nabla_{X}Y+g(AX, Y)N$,

(1.2) $\tilde{\nabla}_{X}N=-AX$ ,

where $g$ denotes the Riemannian metric of $M$ induced from the lfubini-Study
metric $G$ of $P_{n}(C)$ and $A$ is the second fundamental tensor of $M$ in $P_{\mathfrak{n}}(C)$ . We
denote by $TM$ tangent vector bundle of $M$ . An eigenvector $X$ of the second
fundamental tensor $A$ is called a principal curvature vector. Also an eigenva.$\iota_{ue}$
$\lambda$ of $A$ is called a przncipal curvature. In what follows, we denote by $V_{\lambda}$ the
eigenspace of $A$ associated with eigenvalue $\lambda$ . We know that $M$ has an almost
contact metric structure induced from the K\"ahler structure $J$ on $P_{n}(C)$ , that
is, we define a $(1, 1)$-tensor field $\phi$ , a vector field $\xi$ and a l-form $\eta$ on $M$ by
$g(\phi X, Y)=G(JX, Y)$ and $g(\xi, X)=\eta(X)=G(JX, N)$ . Then we have

(1.3) $\phi^{2}X=-X+\eta(X)\xi$ , $\eta(\xi)=1$ , $\phi\xi=0$ .

It follows from (1.1) that

(1.4) $\nabla_{X}\xi=\phi AX$ ,
(1.5) $(\nabla x\phi)Y=\eta(Y)AX-g(AX, Y)\xi$ .
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Let $\tilde{R}$ and $R$ be the curvature tensors of $P_{n}(C)$ and $M$ , respectively. From the
expression of the curvature tensor $\tilde{R}$ of $P_{n}(C)$ , we have the following Gauss
and Codazzi equations:

(1.6) $R(X, Y)Z=g(Y, Z)X-g(X, Z)Y$

$+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y-2g(\phi X, Y)\phi Z$

$+g(AY, Z)AX-g(AX, Z)AY$,

(1.7) $(\nabla_{X}A)Y-(\nabla_{Y}A)X=\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X,Y)\xi$ .

Now we prepare without proof the folowing in order to prove our results.

Lemma 1.1. ([6]) If $\xi$ is a pnncipal curvature vector, then the corresponding
pnncipal curvature $a$ is locally constant.

Lemma 1.2. ([6]) Assume that $\xi$ is a principal curvature vector and the cor-
responding przncipal curvature is $a$ . If $AX=\lambda X$ for $ X\perp\xi$ , then we have
$A\phi X=((a\lambda+2)/(2\lambda-a))\phi X$ .
Lemma 1.3. ([4]) We assume that $\xi$ is a principal curvature vector. If $AX=$
$\lambda X$ for $ X\perp\xi$ , then we have $\xi\lambda=0$ , that is, $\lambda$ is locally constant along the
direction $\xi$ .
Lemma 1.4. ([4]) Let $M$ be a real hypersurface of $P_{n}(C)$ . Then the following
are equivalent:

(i) The holomorphic distribution $T^{0}M$ ($=\{X\in T.M:X\perp\xi\}$ for $x\in M$ )
is integrable.

(ii) $g((\phi A+A\phi)X, Y)=0$ for any $X,$ $Y\in T^{0}M$ .
Theorem T. ([8])Let $M$ be a homogeneous real hypersurface of $P_{\mathfrak{n}}(C)$ . Then
$M$ is a tube of some radius $r$ over one of the following Kahler submanifolds:

$(A_{1})$ hyperplane $P_{n-1}(C)$ , where $0<r<\pi/2$ ,
$(A_{2})$ totally geodesic $P_{k}(C)(1\leqq k\leqq n-2)$ , where $0<r<\pi/2$ ,
$(B)$ complex quadnc $Q_{n-1}$ , where $0<r<\pi/4$ ,
$(C)P_{1}(C)\times P_{(n-1)/2}(C)$ , where $0<r<\pi/4$ , and $n(\geqq 5)$ is odd,
$(D)$ complex Grassmann $G_{2,5}(C)$ , where $0<r<\pi/4$ and $n=9$ ,
$(E)$ Hermitian symmetrec space $SO(10)/U(5)$ , where $0<r<\pi/4$ and

$n=15$ .
Theorem C-R. ([1]) Let $M$ be a real hypersurface of $P_{\mathfrak{n}}(C)$ . Then $M$ has at
most two distinct principal curvatures and $\xi$ is a prencipal curvature vector if
and only if $M$ is locally congruent to a homogeneous real hypersurface of type
$(A_{1})$ .
Remark. They showed this theorem without the condition that $\xi$ is a principal
curvature vector in case of dimension $n\geqq 3$ .
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Theorem Kl. ([3]) Let $M$ be a real hypersurface of $P_{\mathfrak{n}}(C)$ . Then $M$ has
constant pnncipal curvatures and $\xi$ is a principal curvature vector if and only
if $M$ is locally congruent to a homogeneous real hypersuoface.

2. The recurrent real hypersurfaces of $P_{\mathfrak{n}}(C)$ .
We prepare the lemma to prove Theorem 1.

Lemma 2.1. Let $M$ be a real hypersurface of $P_{n}(C)$ with recurrent second
fundamental tensor A. If all principal curvatures of $M$ are constant then the
second fimdamental tensor of $M$ is paralld.

Proof. We choose a unit principal curvature vector $Y$ with a principal curva-
ture $\lambda$ . Then we have

$g((\nabla_{X}A)Y, Y)=g(\nabla_{X}(AY), Y)-g(A\nabla_{X}Y, Y)$

$=X\lambda$

for any $X\in TM$ . On the other hand, from the assumption we obtain

$g((\nabla_{X}A)Y, Y)=\alpha(X)g(AY, Y)$

$=\alpha(X)\lambda$ .
Since al principal curvatures of $M$ are constant we get $\alpha(X)\lambda=0$ for any
$X\in TM$ . So the second fundamental tensor $A$ of $M$ is parallel. $\square $

Proof of Theorem 1. We may assume that $ A\xi=a\xi$ , then by Lemma 1.1. the
principal curvature $a$ of $\xi$ is locally constant. From (1.4) we calculate the
following:

$(\nabla_{X}A)\xi=\nabla_{X}(A\xi)-A\nabla_{X}\xi$

$=a\nabla_{X}\xi-A\nabla_{X}\xi$

$=a\phi AX-A\phi AX$

for arbitrary tangent vector field $X$ on $M$ . On the other hand, by the $\mathfrak{B}8ump-$

tion that the second fundamental tensor $A$ of $M$ is recurrent, there exists a
l-form $\alpha$ and we have

$(\nabla_{X}A)\xi=\alpha(X)A\xi$

$=\alpha(X)a\xi$

for any $X\in TM$ . Consequently we get

$a\phi AX-A\phi AX-\alpha(X)a\xi=0$ .

We choose $X$ as a principal curvature vector of $M$ such that $AX=\lambda X$ and
$X$ is orthogonal to $\xi$ , by Lemma 1.2. we have the following:

$(a\lambda-\lambda\frac{a\lambda+2}{2\lambda-a})\phi X+\alpha(X)a\xi=0$ .
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Using (1.3), $\phi X$ is orthogonal to $\xi$ , so

$a\lambda-\lambda\frac{a\lambda+2}{2\lambda-a}=0$ .

Since $a$ is constant, we know that $M$ has at most three distinct constant
principal curvatures. By Lemma 2.1. the second fundamental tensor $A$ of $M$ is
parallel but it is well-known that there does not exists such a real hypersurface
in $P_{\mathfrak{n}}(C)$ . $\square $

3. The $\eta$-recurrent real hypersurfaces of $P_{\mathfrak{n}}(C)$ .
In [4], Kimura and Maeda introduced the notion of an $\eta$-parallel, which

is defined by $g((\nabla_{X}A)Y, Z)=0$ for any tangent vector field $X,$ $Y$ and $Z$

orthogonal to $\xi$ .
Theorem K-M1. Let $M$ be a real hypersurface of $P_{n}(C)$ . Then the second
fundamental tensor of $M$ is $\eta$-parallel and $\xi$ is a principal curwature vector if
and only if $M$ is locally congruent to a tube of some radius $r$ over one of the
following Kahler submanifolds:

$(A_{1})$ hypemplane $P_{\mathfrak{n}-1}(C)$ , where $0<r<\pi/2$ ,
$(A_{2})$ totally geodesic $P_{k}(C)(1\leqq k\leqq n-2)$ , where $0<r<\pi/2$ ,
$(B)$ complex quadnc $Q_{\mathfrak{n}-1}$ , where $0<r<\pi/4$ .
Let $M$ be a real hypersurface of $P_{\mathfrak{n}}(C)$ with $\eta$-recurrent second funda-

mental tensor, that is, there exists an l-form a such that $g((\nabla_{X}A)Y, Z)=$

$\alpha(X)g(AY, Z)$ for any tangent vector fields $X,$ $Y$ and $Z$ which are orthogonal
to $\xi$ . In what follows if $M$ has $\eta$-recurrent second fundamental tensor then we
call it $M$ is $\eta$-recurrent. It is easily seen that if the second fundamental tensor
$A$ of $M$ is $\eta$-parallel then $M$ is $\eta$-recurrent. By Theorem K-M1 we know that
the homogeneous real hypersurfaces of type $(A_{1}),$ $(A_{2})$ and $(B)$ is $\eta$-recurrent.
We show that if $\xi$ is principal curvature vector then $(A_{1}),$ $(A_{2})$ and $(B)$ are the
only $\eta$-recurrent real hypersurfaces of $P_{\mathfrak{n}}(C)$ . Now we define the holomorphic
distribution $T^{0}M$ by $T_{l}^{0}M=\{X\in T_{x}M : X\perp\xi\}$ .
Proof of Theorem 2. Let $Y$ be a unit principal curvature vector orthogonal to
$\xi$ with principal curvature $\mu$ , we calculate the following:

$g((\nabla_{X}A)Y, Y)=g(\nabla_{X}(AY)-A\nabla_{X}Y, Y)$

$=X\mu$ .

By hypothesis that the second fundamental tensor $A$ is $\eta$-recurrent we have

$g((\nabla_{X}A)Y, Y)=\alpha(X)g(AY, Y)$

$=\alpha(X)\mu$

Therefore we obtain

(3.1) $ X\mu=\alpha(X)\mu$
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for arbitrary $X\in \mathcal{I}^{0}M$ . On the other hand using (1.3) and Codazzi equation
(1.7) we note that

(3.2) $g((\nabla_{X}A)Y-(\nabla_{Y}A)X, Z)=0$

for arbitrary tangent vector fields $X,$ $Y$ and $Z\in \mathcal{I}^{0}M$ . By hypothesis there is
a l-form $\alpha$ such that

$g((\nabla_{X}A)Y-(\nabla_{Y}A)X, Z)=\alpha(X)g(AY, Z)-\alpha(Y)g(AX, Z)$

for any $X,Y$ and $Z\in \mathcal{I}^{0}M$ . Therefore by (3.2) there is a function $b$ on $M$ , we
have

$\alpha(X)AY-\alpha(Y)AX=b\xi$ .
If we choose $X\in V_{\lambda}$ and $Y\in V_{\mu},$ $\lambda\neq\mu$ , such that $X,$ $Y\perp\xi$ then we have

(3.3) $\alpha(X)\mu Y-\alpha(Y)\lambda X=0$ .

If we can’t choose these principal curvature vectors $X,$ $Y$ , i.e. in the case
$T^{0}M=V_{\lambda}$ , then by Theorem C-R we know that $M$ is a homogeneous real
hypersurface of type $(A_{1})$ . Consequently we may assume $\lambda\neq\mu$ then we have

(3.4) $\alpha(X)\mu=0$ and $\alpha(Y)\lambda=0$

for any $X\in V_{\lambda}$ and $Y\in V_{\mu}$ . Using (3.1) we obtain

(3.5) $X\mu=0$

for any $X\in T^{0}M$ orthogonal to $Y\in V_{\mu}$ .
If al principal curvatures of $M$ are nonzero, then by (3.4) we conclude that

(3.6) $Y\mu=0$

for any $Y\in V_{\mu}$ .
We remark that we are not able to choose two distinct principal curvatures

$\lambda\neq 0$ and $\mu\neq 0$ , i.e. $FM=V_{\lambda=0}\oplus V_{\mu\neq 0}$ . By Lemma 1.1 and Lemma 1.2.
we conclude that $\mu$ is constant.

Now we decompose holomorphic distribution that $ T^{0}M=V_{\lambda=0}\oplus V_{\mu_{1}\neq 0}\oplus$

. . $.\oplus V_{\mu_{k}\neq 0}$ . Then we have a choice of two distinct principal curvatures $\mu_{i}\neq 0$

and $\mu_{j}\neq 0,$ $(i\neq j)$ . By (3.4) we obtain

$\alpha(Y_{i})=0$

for any principal curvature vector $Y_{1}\in T^{0}M$ such that it has nonzero principal
curvature $\mu_{i},$ $(1\leqq i\leqq k)$ . Using (3.1) we have

(3.6) $Y_{i}\mu_{i}=0$ .
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Therefore by Lemma 1.3., (3.5), (3.6) and (3.6), we know that all principal
curvatures of $FM$ is constant. Together with Lemma 1.1. we conclude that al
principal curvatures are constant. So by Theorem Kl $M$ is locally congruent
to homogeneous real hypersurface in $P_{n}(C)$ . So the rest of proof is to show the
second fundamental tensor $A$ of $M$ , which is congruent to a homogeneous real
hypersurface of type $(C),$ $(D)$ and $(E)$ , is not $\eta$-recurrent. Suppose that the
second fundamental tensor of $M$ is $\eta$-recurrent. Here we review the following:
Our real hypersurface $M$ has five distinct constant principal curvatures (say
$\lambda_{1},$ $\lambda_{2},$ $\lambda_{3},$ $\lambda_{4}$ and $\alpha$), so that $TM=V_{\lambda_{1}}\oplus V_{\lambda_{2}}\oplus V_{\lambda_{S}}\oplus V_{\lambda_{4}}\oplus\{\xi\}_{R}$ . Let
$x=\cot\theta(0<\theta<\pi/4)$ . Then we may write ([8])

$\lambda_{1}=x,$ $\lambda_{2}=-\frac{1}{x},$ $\lambda_{3}=\frac{1+x}{1-x},$ $\lambda_{4}=\frac{x-1}{x+1}$ and $\alpha=x-\frac{1}{x}$ .

Since al principal curvatures are nonzero, using (3.4) we obtain

$\alpha(X)=0$

for any $X\in T^{0}M$ . Therefore the second fundamental tensor of $M$ is $\eta$-parallel.
By Theorem K-M1, the homogeneous real hypersurfaces of type $(C),$ $(D)$ and
$(E)$ are not $\eta$-recurrent.

We know the example of non-homogeneous real hypersurface in $P_{n}(C)$ .
Kimura and Maeda constructed a ruled real hypersurface of $P_{n}(C)$ . Let $\gamma(t)$

$(t\in I)$ be an arbitrary regular curve in $P_{n}(C)$ . Then for every $t(\in I)$ there
exists a totally geodesic submanifold $P_{n-1}(C)$ (in $P_{n}(C)$ ) which is orthogonal
to the plane $\tau_{t}$ spanned by $\{\gamma^{\prime}(t), J\gamma^{\prime}(t)\}$ . Here we denote by $P_{\mathfrak{n}-1}^{(\ell)}(C)8uch$ a
totally geodesic submanifold $P_{\mathfrak{n}-1}(C)$ . Let $M=\{x\in P_{\mathfrak{n}-1}^{(\ell)}(C):t\in I\}$ . Then
the construction of $M$ asserts that $M$ is a ruled real hypersurface in $P_{n}(C)$ .
The distribution $T^{0}M$ is integrable and its integral manifold is a totally geo-
desic submanifold $P_{\mathfrak{n}-1}(C)$ .

Let $H(X)$ be the sectional curvature of the holomorphic 2-plane spanned
by a unit tangent vector $X$ which is orthogonal to $\xi$ , that is, $H(X)=$ the
sectional curvature of $span\{X, \phi X\}$ . They showed the followings:

Theorem K2. ([2]) Let $M$ be a real hypersurface of $P_{n}(C)$ on which $H$ is
constant and $T^{0}M$ is integrable then $M$ is locally congruent to a ruled real
hypersurface $(H=4)$ .
Remark. They completely classified the real hypersurface of $P_{\mathfrak{n}}(C)$ on which
$H$ is constant.

Theorem K-M2. ([4]) Let $M$ be a real hypersurface of $P_{\mathfrak{n}}(C)$ . Then the
second fundamental tensor of $M$ is $\eta$ -parallel and $T^{0}M$ is integrable if and
only if $M$ is locally congruent to a ruled real hypersurface of $P_{\mathfrak{n}}(C)$ .

First we remark that ruled real hypersurfaces of $P_{n}(C)$ don’t admit the
recurrent second fundamental tensor.
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Proposition 3. There are no $m$led real hypersurfaces of $P_{n}(C)$ which has the
recurrent second fundamental tensor.

Proof of Prvposition 3. We know that we may write the second fundamental
tensor $A$ of a ruled real hypersurface $M$ in $P_{n}(C)$ :

$A\xi=\mu\xi+\nu U$ $(\nu\neq 0)$ ,
$ AU=\nu\xi$ ,
$AX=0$ (for any $X\perp\xi,$ $U$),

where $U$ is a unit vector orthogonal to $\xi,$
$\mu$ and $\nu$ are differential functions

on $M$ ([2] and [4]). By means of the assumption that the second fundamental
tensor $A$ of $M$ is recurrent, we have

$g((\nabla_{\zeta}A)X,Y)=\alpha(\xi)g(AX,Y)$

$=0$ .
for any nonzero tangent vector $X,$ $Y(\perp\xi, U)$ . By Codazzi equation (1.7) we
get the following:

$g((\nabla_{\xi}A)X, Y)=g((\nabla_{X}A)\xi+\phi X,Y)$

$=g(\nabla_{X}(\mu\xi+\nu U)+A\nabla_{X}\xi+\phi X,Y)$

$=g((X\mu)\xi+\mu\phi AX+(X\nu)U+\nu\nabla_{X}U+A\phi AX+\phi X,Y)$

$=\nu g(\nabla_{X}U, Y)+g(\phi X, Y)$

Consequently we have

$\nu g(\nabla_{X}U, Y)+g(\phi X,Y)=0$ .
On the other hand, we get

$g((\nabla_{X}A)\xi,Y)=\alpha(X)g(A\xi,Y)$

$=0$

and
$g((\nabla_{X}A)\xi,Y)=g(\nabla_{X}(\mu\xi+\nu U)-A\phi AX,Y)$

$=g((X\mu)\xi+\mu\nabla_{X}\xi+(X\nu)U+\nu\nabla_{X}U,Y)$

$=\mu g(\phi AX,Y)+\nu g(\nabla_{X}U,Y)$

$=\nu g(\nabla_{X}U,Y)$

for arbitrary $X,$ $Y(\perp\xi, U)\in TM$ .
So we conclude that $\nu g(\nabla_{X}U, Y)=0$ and

$g(\phi X, Y)=0$

for any $X,$ $Y(\perp\xi, U)\in TM$ . If we put $Y=\phi X$ , we have $g(X, X)=0$ . It is
contradiction, so any ruled real hypersurface does not admit a recurrent second
fundamental tensor. a

Using the idea of the proof of Theorem K-M2 we show the following theorem.
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Theorem 4. Let $M$ be a real hypersurface of $P_{\mathfrak{n}}(C)$ . Then $M$ is $\eta$ -recurrent
and the holomorphic distribution $T^{0}M$ ($=\{X\in T_{x}(M)$ : $X\perp\xi\}$ for $x\in M$)
is integrable if and only if $M$ is locally congruent to a ruled real hypersurface
of $P_{n}(C)$ .
Proof of Theorem 4. We assume that T $M$ is integrable and $M$ is $\eta$-recurrent.
We show that such a real hypersurface of $P_{n}(C)$ has a constant sectional cur-
vature of holomorphic 2-plane, i.e. $H(X)=constant$ for arbitrary $X\in \mathcal{I}^{0}M$ .

It follows from Lemma 1.4. that

(3.7) $g(AY, \phi Z)=g(\phi Y, AZ)$

for any $Y,$ $Z\in T^{0}M$ . We get

$X(g(AY, \phi Z))=X(g(\phi Y, AZ))$

for arbitrary $X,$ $Y$ and $Z\in \mathcal{I}^{0}M$ and we have

$g((\nabla_{X}A)Y+A\nabla_{X}Y, \phi Z)+g(AY, (\nabla_{X}\phi)Z+\phi\nabla_{X}Z)$

(3.8) $=g((\nabla_{X}\phi)Y+\phi\nabla_{X}Y, AZ)+g(\phi Y, (\nabla_{X}A)Z+A\nabla_{X}Z)$ .

Now by the $a8sumption$ we obtain

$g((\nabla_{X}A)Y, \phi Z)=\alpha(X)g(AY, \phi Z)$

and
$g(\phi Y, (\nabla_{X}A)Z)=\alpha(X)g(\phi Y, AZ)$ .

Using Lemma 1.4. we have

(3.9) $g((\nabla_{X}A)Y, \phi Z)=g(\phi Y, (\nabla_{X}A)Z)$ .

It follows from (1.5), (3.8) and (3.9) that

$g(A\nabla_{X}Y, \phi Z)-g(AX, Z)\eta(AY)+g(\phi\nabla_{X}Z, AY)$

(3.10)
$=-g(AX, Y)\eta(AZ)+g(\phi\nabla_{X}Y, AZ)+g(A\nabla_{X}Z, \phi Y)$

We put

(3.11) $\nabla_{X}Y=(\nabla_{X}Y)_{0}+\eta(\nabla_{X}Y)\xi$ ,

where $(*)_{0}$ denotes the $T^{0}$ M-component of $(*)$ . Then, from (3.7) we have

(3.12) $g(A(\nabla_{X}Y)_{0}, \phi Z)=g(\phi(\nabla_{X}Y)_{0}, AZ)$

for any $X,$ $Y$ and $Z\in T^{0}M$ .
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Substituting (3.11) into (3.10), by (3.12) we have
$\eta(\nabla_{X}Y)g(A\xi, \phi Z)-g(AX, Z)\eta(AY)+\eta(\nabla_{X}Z)g(\phi\xi, AZ)$

$=-g(AX, Y)\eta(AZ)+\eta(\nabla_{X}Y)g(\phi\xi, AZ)+\eta(\nabla_{X}Z)g(A\xi, \phi Y)$ .
Thus using (1.3) and (1.4) we obtain

$g(Y, \phi AX)g(A\xi, \phi Z)+g(AX, Z)\eta(AY)$

$=g(AX, Y)\eta(AZ)+g(Z, \phi AX)g(A\xi,\phi Y)$

for any $X,$ $Y$ and $Z\in \mathcal{I}^{0}M$ . We put

(3.13) $A\xi=\mu\xi+\nu U$,

where $\xi$ an$dU$ are orthonormal.
Because of the hypothesis and Lemma 1.4., we may assume that $\nu\neq 0$ . By

(1.3) we get

$g(Y, \phi AX)g(U, \phi Z)+g(AX, Z)g(U, Y)$

(3.14) $=g(AX, Y)g(U, Z)+g(Z, \phi AX)g(U, \phi Y)$

By putting $Y=\phi U$ and $Z=U$ , we see
$g(A\phi U,X)=0$

for any $X\in T^{0}M$ . On the other hand, it follows from (3.13) that
$g(A\phi U,\xi)=g(\phi U, \mu\zeta+\nu U)=0$ .

Therefore we get

(3.15) $A\phi U=0$ .
We put $Z=U$ in (3.14), from (3.15) we have

$g(AX, U)g(U, Y)=g(AX, Y)$

for arbitrary $X,$ $Y\in T^{0}M$ . By this equation and (3.13) we obtain

(3.16) $AX=0$

for any $X(\perp U)\in T^{0}M$ .
Now putting $Y=U$ and $Z=\phi U$ in (3.7), from (3.15) we get $g(AU, U)=0$ .

By (3.16) we have $g(AU,X)=0$ for any $X(\perp U)\in \mathcal{I}^{n}M$ . So it follows from
(3.13) that

(3.17) $ AU=\nu\xi$ .
Thus from (1.6), (3.16) and (3.17) we obtain

$g(R(X, \phi X)\phi X,$ $X$ ) $\equiv 4$

for arbitrary $X\in \mathcal{I}^{\mathfrak{v}}M$ .
Due to Theorem K2 we conclude that $M$ is a ruled real hypersurface of

$P_{\mathfrak{n}}(C)$ . $\square $
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