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Structure of certain solvable j-algebras

HirosHI NAKAZATO

Abstract. In this paper we study the stability subgroups of certain solvable Lie
groups with respect to the coadjoint action in connection with j-algebras. For this aim we
generaﬁze Piatetskii-Shapiro’s theory on normal (split solvable) j-algebras. We prove the
connect"edness of the stabilizers for certain solvable j-algebras. In the last section we give
an example of j-simple solvable j-algebras which satisfy our assumtion (1.1) and have rank
> 1. Such phenomena do not occur for solvable j-algebras of exponential type which were
already treated by LI.Piatetskii-Shapiro and H.Fujiwara.

1. Introduction and Main Results
We find many literatures which treat the j-algebras in connection with the homogeneous
Kéhler manifolds (e.g.[2],[3],[8],[11],[14]) or the holomorphically induced unitary represen-
tations of Lie groups(e.g. [10],[1],[4],[7],[9],[13]). In this paper we study solvable j-algebras
satisfying the condition (1.1), which is given in Theorem 1. Our main motivation to study
these j-algebras is to generalize R.Penney’s theorem on exponential solvable j-algebras
[10],Theorem 2. We believe that our structure theorem is useful to achieve this aim.

Definition. Suppose that w : g — R is a linear functional on a finite dimensional

Lie algebra g over R. Denote its complexification w® : g¢ — C by the same letter w.
Suppose that b is a complex Lie subalgebra of g€. The algebra § is said to be an algebraic
polarization of g at w if the following conditions are fulfilled:
i) w([Z1, Z3]) = 0 for every Z1, Zaep. ii) If Zoeg® satisfies w([Zo,Z])‘ = 0 for every Zeh ,(
then Z; is an element of p. iii)p+p is a Lie subalgebra of g€. An algebraic polarization
b is said to be totally complez if the condition iv) p + h = g€ is satisfied. An algebraic
polarigation b at w is said to be positive if v)/—1w([Z, Z]) > 0 holds for every Zep. Denote
by G the conneéted, simply connected Lie group with Lie algebra g. Denote by G,, the
stabilizer of wie., G, = {geG : w(Ad(g)(X)) = w(X) for everyXeg} and by g, the Lie
algebra of G, ,i.e.,g0 ={Xeg : w([X,Y])=0 for every Yeg}.
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We remark that an algebraic polarization § of g at w is necessarily globally invariant
under the adjoint action of the principal connected coinponent (Gw)o of the stabilizer G,,.
In §3, we give an example of algebraic polarizations which are not glabally invariant under
the stabilizer. In the case g is an exponential solvable Lie algebra, G, is always connected
for every weg, where g is the dual space of the real vector space g. The following question

is crucial.

QUESTION. Suppose that p is a totally complex positive algebraic polarisation of g at w.
A)Whether the stabiliser G, is connected, or not?
B)Whether 1 is globally invariant under the stabiliger, or not ?

It is known that the answer to the question A) is affirmative for the case g is a
semi-simple Lie algebra(cf.[2],[8],[14]). In Theorem 1 we give an affirmative answer to the
question A) for the system {g, §,w} where g is a solvable Lie algebra and {p,w} satisfies
the condition (1.1) w([g,8]Ngw) ={0}. The most crucial idea to prove this is concentrated
on Proposition 1. Roughly speaking, after the proof of Proposition 1, for such systems we
may use the arguments analogous to those for normal or exponential solvable j-algebras
{9,j,w} with w([j X, X]) > 0 for Xeg,X # 0 (cf.[11],[4]). But some new phenomena occur
for our systems. You shall understand this quickly from Example 2 in §3.

THEOREM 1. Suppose that G is a connected, simply-connected solvable Lie group with
Lie algebra g and that p is a totally complex positive algebraic polarization at weg. If the

condition
(1.1) | w([g, 8] N o) = {0}

is satisfied, then the stabiliser G, is necessarily connected.

Proposition 1. Suppose that g is a solvable Lie algebra over R with 1 < dimg < 400

and b is a totally complex positive algebraic polarization at weg and the condition

(1.2) [0,0] N 0w = {0}
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is satisfied. Then every minimal ideal m of g is one-dimensional.

2.Decomposiotion of solvable j-algebras
In this section we prove Proposition 1 and develop a structure theory for solvable j-algebras
satisfying the condition (1.1) or (1.2), and prove Theorem 1.
First we consider the meaning of condition (1.1). We assume that g is a solvable Lie algebra
and b is a totally complex positive algebraic polarization at weg. Set g,={X : w([X,Y]) =
0 for everyYeg}. Then the mapping ai(?() : Y + gu(eg/gw) — [X,Y] + gu(eg/aw) is
complex diagonalizable for every Xeg, (cf. [1],p-279). So the space [g, o] N g, is an ideal
of g. Set n = {X¢[g, g] N gw :w(X) = 0}. Then n is also an ideal of g and satisfies
(2.1) dim([g, 0] Ngu) < dim n+1. '
Every element Ze[g,g] N g, satisfies [Z,g] C n. Set g = g/n, b = §/nC. Define a linear
fanctional @ on g by &(X + n)=w(X) for Xeg. Then the questions A) and B) in §1 for
{o,5,w} are reduced to those for {g, 6 ,w} . If the former satisfies the condition (1.1), then
the latter satisfies (1.2). On account of this we restrict our attension to solvable j-algebras
satisfying the condition (1.2). :

Second we prove Proposition 1.
Proof of Proposition 1 I).Suppose that m is a minimal ideal of g. By the assumption
b+ b = g€, for every Yeg there exists an element X for which X — /=1Yep. Define a
linear subspace a of g by a ={X : X —/~1Yeh for some Yem}.
mN[g, g] # m ,then by the minimality of m , mN[g, g] = {0} and hence [m, g] C mN[g, g] = {0},
dim m = 1. Therefore we may a.ssumé that m = [m, g]. II). Under this assumption we shall
show the following : a)The strict inequality (2.2) 0 < w([Y,X]) = —w([X,Y]) holds for
Yem,Y #0and Xea for which X —/=1Yep and B)The equation (2.3) [X;,Y3]+
[¥1, X3] = 0 holds for ¥;,Yzem and Xy, Xsea for which X; — v/=1¥;¢h, X3 — v—1Y;eb.
First we show a). By the positivity of p, we have 2w([Y, X]) = v—1w([X — V=17, X +
v/=1Y]) > 0. If the equality holds in this, then X — /—1Y is an element of g€ = hNp and
hence Yem N gy C [g, 0] N 9o = {0} which contradicts the assumption on Y. Therefore the
strict inequality (2.2) holds. Second we prove B). Since b is a Lie subalgebra of g€ and m is
abelian, [X;, X3] — v—1{[X}, Y3] + [Y1, X3]} belongs to . Since [X;, Y3] +[Y1, X3] belongs
to the minimal ideal m of g, the equation w([[X}, X,)], [X1, Ya] +[Y1, X2]]) = w(0) = 0 holds.
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Then, by virtue of the assertion ), we have the equation (2.3).
IM). By using a), 3), we show that dim m = 1. We use a reduction to absurdity. By S.Lie’s
theorem, m is abelian and dim mis 1 or 2. We assume dim m = 2. Then there exists a

basis {R;, Rz} of m for which the following equations hold for every Teg :

{ [T, Ry] = $1(T) Ry + ¥2(T)R,

(2.4)
[T, R3] = —¥a(T) Ry + ¥1(T) Ra.

In the above ;,%; are linear functionals on g. We set ¢y = ¥1|, 2 = ¥a|. First we
assume that ¢; and ¢, are linearly dependent. We choose a linear functional ¢ # 0
on a so that ¢; = AP,d3 = u¢d for some A, ueR. We choose real numbers a,b so that
(Aa — pb)R;1 + (pa + Ab)Rae(Ker w) N (RRy + RR3) and (a,d) # (0,0). Then, by (2.4)
we have the equation (2.5) w([T,aR; + bR3]) = H(T)w({Aa - pb}R1 + {pa + AB}R;) =0
for every Tea, which contradicts the inequality (2.2). Second we assume that ¢; and
@2 are lineary independent. Then there exist elements Q;,Qz of a for which [Qy, R;] =
R3,[Q1,Ra] = —R1,[Q3, R1] = R1,[Q2,R;3] = R;. Every element P of a is uniquely
written as P = mQ; + wQ; + P where m,weR and [P,R;] = [P, R3] = 0 . We choose
Py, Pyea so that P, — /—1R;eh, P; — vV/—1R3zeh. Then there exist real numbers s,¢,u,v
for which P, = sQ; +tQ; + E, P;=u4Q1+vQ2+ ?’; Then by (2.3) we have the equation
[P1, R3] + [R1,Pa) = —(s + v)R1 + (t — u)R3 = 0. Hence v = —s,f = u. Therefore
we have /=1w([P; — vV—=1Ry, P1 + v—1R;]) = —2w([P1, R1]) = —2{tw(R1) + sw(R,)}
and v=1w([P; — v=1R;,P; + vV=1R;)) = —2w([P3, R3]) = —2{vw(R;) — ww(Ry)} =
—2{—tw(R;1) — sw(R3)}. Since R; and R; are non-zero elements of m, the inequality (2.2)
implies the following two strict inequalities (2.6) 0 < —2w([Py, R1]) = —2tw(R1)—2sw(R3),
and (2.7) 0 < —2w([Py, R3]) = 2tw(R;) + 2sw(R;). Obviously (2.6) and (2.7) are not
compatible. Thus we proved the proposition.

Third, to an arbitrary solvable j-algebra g satisfying (1.2), we give its decomposition
g=g1+g like as the decomposition (9) of [11],p.55. We take a minimal (1-dimensinal)
ideal v;=RR; of g contained in [g, g] for which w(R;) > 0. Multiplying R, by a suitable
positive number, we may assume that there exists an element A; of a for which A, +

vV=1R;eh and [4;,R;] = R;. Weset u={Xeg:w([X,R1]) =w([X,A,]) =0}
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={Xeg : [X, R1] = 0, there exists Yeg for which X —-.\,/-:I_Yeb,[Y, R} = 0}.
Then as a vector space g is the direct sum of r;,u and RA;. By arguments analogous to
those in [11]p.53-55 (cf.[4]), we may prove the following :a) u is globally invariant under
ad,(4A1). b) ad,(A4;) is complex diagonalizable. c)Every eigenvalue A of (ad,(4,))€
satisfies Se (A\)=1% or e (A)=0. For every AeC, we set V(A)= {Zeu®: [4;,2] = AZ},
W(A)={Z + Z : ZeV())}. We set 3= {W(}) : 5te (A) = 1}, o= {W(}) : ;e (X) = 0},
and g3= RA4; 4 v; + 31. The following holds:d) g; and ¢’ are Lie subalgebras of g.
e) [R1;d] = {0}.£) o' 2 W(0) D gu. g) b = 5N {g' }€ is a totally complex algebraic
polarisation of ' at w' = w|gr. b) (¢')ur = gw - 1) (8')wr N[¢', o) = {0}. §) [41,6] C ¥'.
In contrast to the case g is an exponential j-algebra, the algebra g; is not necessarily an
ideal of g (cf.Example 2 in §I3).
If o' is abelian,then ¢’ = g,. We assume that ¢’ is not abelian. Then,by Proposition
1 there exist a 1-dimensional ideal 3= RRz. of ¢' and an element A3 of g’ for which
[As, R3] = R2, A2 + V—1R3eb and w(R;) > 0 . In the case g is an exponential j-algebra it
is trivial by the definition of g’ that the equation [4;, R3] = 0 holds. But this equation is
not trivial for our systems. Fourth we shall prove this equation in a generalized fashion.
Proposition 2.Let {g, h,w} be a system satisfying the condition (1.2) and let ¢’ ,a, b be
Lie subalgebras of g such that q, b are abelian and let Ay, '.R° bein g'. Assume the following
conditions: i) RRy is a 1-dimensional ideal of ¢'. ii) Ao + v/ —1Roeb. iii) [a,g'] C ¢’ . iv)
[Aq, Ro] = Ro. v) (ady(A))€ is diagonalizable and its eigenvalues are contained in +/—1IR
for every Aeca. vi) [a,6N(g')%] C HN(g')C. vii) [b,g'] = {0}. viii)For every Aca there exists
Reb for which A + /—1Reb. A
Then [Ag, a]= [Ro,a] = {0}, that is, every element of the subalgebra RAo + RRg is fized
under the action of Ad(exp[a]). |

Proo¥F: First we take an arbitrary element A of a and prove the equation [4, Ry] =
0. We consider the 1-parameter group {a; : tcR} of automorphisms of g' defined by
ag=exp{t ad (A)}. By the condition iv) we have the relation

(2.8) [a¢(Ao), Ro) — Ro as t — 0.
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We set my =a(RRy).By the condition v), af is diagonalizable and its eigenvalues are
contained in {ueC :|u| = 1}. So the conditon "a¢(Ro) = Ry for every teR” is equivalent to
"m¢ = mg for every teR”. We assume that this condition does not hold. Then, for every
positive number £; there exists a positive number ¢, 0 < ¢t < ¢;, such that.m. -;é mp. We
take such ¢. Since my, mp are different 1-dimensional ideals of g’ , we have the relations,
[ (4o, @4(Ao)l, me + mo] = {0} , [Royae(Ra)] = 0. Therefore [ [Ao, xs(o)], [Aa,xs(Ra)] -
[2¢(Ac), Ro] ] = 0. By the conditions ii) and iv), [4o + v —1Ro, a:(4o) + v—1a((Ro)] =
[4o, ae( Ao)]+v—T{[Ao, a:(Ro)]—[x¢(Ao), Ro]} is an element of h. Weset P = [Aq, ox¢(Ao)];
Q = —[Ao,@¢(Ro)] + [x¢(Ao), Ro). Since b is a positive algebraic polarization at w, the
equation w([P—v=1Q, P-+v=1q]) = 2v=Tu([P, Q]) = 0 implies P — v~TQe(gu )€ and
hence Qeg, N[g, g] = {0}. Since Ry and ay(Rop) are linearly independent, this implies

(2.9) [x¢(Ao), Ro] =0 forsomed <t <t ,

which contradicts (2.8). Thus we proved the equation [4, Rp] = 0. |
Second we prove the equation [4,4g] = 0 for Aea. By the conditions vii),viii) and the
result above, [A+v=1R, Ao +v—1R,] = [4, Ag] is an element of s NgN g, g] = {0}, which

proved the proposition.

Applying recursively Propositions 1 and 2 to a solvable j-algebra {g,h,w} satisfying
(1.2), we obtain a direct sum decomposition of g analogous to that in [11]p.55:

(210) g=g1 + 93 + -+ gp + gu, .
where (2.11) g5 = RR, +RAj + ;4 is an elementary exponential j-algebra and [Ay, Ri] =
Ry, w(Ri) > 0, w(zu) = {0}( 1 < & < p), (2.12) [Ra, 0] = {0},[4s, R,] =0 for 1<k <
8<p,(213) [gsy38] Css for1 <k<s<p,214) [g.,RR; +---+ RR, + R4; +---+
R4,] = {0}, and (2.15) [gu,3s] Csn (1< k< p). We set
(2.16) F={¢eo: $(as) = {0}(1 < k < p),d(R1) # 0,4(R2) #0, ... ,$(R,) # 0},
Fi= {¢eF :p(R1) > 0,4(R2) > 0,...,¢(R,) > 0}. Obviously the functional w is an
element of ¥,. Theorem 1 is an immediate consequence of the following proposition.

Proposition 3. Suppose that {g,b,w} is a system satisfying the condition (1.2) and
¢ is an element of . Denote by G the coﬁnected, simply connected solvable Lie group
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with Lie algebra g and by N the analytic subgroup of G correspondind to [g, g]. Then the
following stabilizers Gg, = {geG : $(Ad(g)(X)) = ¢(X) for Xe[g, o]} and Ny, = {geN :

$(Ad(9)(X)) = $(X) for Xe[g, 0]}
satisfy the relation

(2.17) ' Gg, = exp(gu )Ny,

and hence the stabilizer G4 is connected for every ¢eF.

PRoOF: First we show that the equation (2.17) implies the connectedness of the stabiliser
Gd,.. It is obvious that exp(gy ) is a subgroup of G¢ and G is a subgroup of Gy, . By (2.17)
every element g of G4 is writtenas g =g, - h where g1€exp(g,) CGg¢,heNy,NGy. Since
h is an element of the nilpotent Lie group N, the condition heG¢ implies h = exp(X) for
some Xe[g, g] satisfying ¢([X,Y]) = 0 for every Yeg. Therefore G4 is connected.

Second we prove the relation (2.17). It is obvious that the inclusion Gy, 2 exp(gy )Ny,
holds. We prove the inverse inclusion. We define a linear functional R} - on [g, g] by the
relations R;(3,) = {0} (1 < k,& < p), R3(Rs) = 1,Ri(R,) =0 (1 < k # s < p). For
every geG, we define a transformation Ad(g)* on [;,;] by the equation Ad(g)* (¢¥)(X) =
Y(Ad,,;(9)(X)) for Xe[g,g]. We suppose that g is an element of Gy, for ¢ =
a1R] + a3R} +---+ apR; where ajs are real numbers with aja3---a, # 0. Then the
element g is written as g = g1 exp(t14; + +t3A; +: -+ t,4,) g2 where gieN, gaeexp(gn ).
Hence we have the equation (2.18) Ad(g1)*(¢) = Ad(g;')* Ad(ezp{—(t141 +t24s +
oo+ t54,)})* (1R} + @3R3 +---+ apR}) =a1e”* R} + a3e™*3R} +---+ aye”'? R,

Next we prove that if neN satisfies the equation (2.19) Ad(n)*(¢) = a1c1R] + aszcaR] +

*+++ apcp R for some real numbers c’s, then all ¢, ’s are equal to 1. We decompose n as

n = exp(aR;)ezp(Z1)n; where Z1e3; C gy and nzeexp([gz + g3 +--+gp]N]g, g]). Since
R, is an central element of [g, o], Ad(ezp(Z1)n3)*(¢) = a1c1R} + azcaR} +---+ apc R;.

By (2.11),(2.12) and (2.13), Ad(exp Z,)* (§) is written as a; R} + 7 where 5(R;) =0

and Ad(n;')* (a1c1R} + aacaR} + -+ apcyR}) is written as ajc1R} + aacaR3 +

¢ where (R1) = €(Ra) = 0, §(31) = {0}, and Ad(exp Z2)*(aaB} +---+ apR}) =

a;R3 +---+ apR;. Therefore we have the equations c; = 1, and Rj(Ad(exp Z,)(Y1))



=Ri(Y1 + [Z,Yi] + }Z,[%,1] +--+) =Ri(Y1) + Ri([Z,Yi]) = Ri(Y:) for
every Yie€31, which implies w([Z1,31]) = {0} and hence Z, = 0. So the equation (2.19)
implies Ad(n;)*(a3R3 +---+ apR3) =a3caR3 +---+ apcpRy. By inductive arguments
we obtain the conclusion ¢; =¢3 =+ = ¢, = 1. Taking account of (2.18) we find that

G¢o C Ny, exp(gu)= exp(gu ) Ng, .

3.Some Examples
In this section we give some examples to understand the significance of Question B) and
the difference between exponential and non-exponential solvable j-algebras.
Example 1(communicated by H.Fujiwara[5]) An example of positive algebraic polarizations
which are not globally invariant under the stabiliser. Suppose that g is a 6-dimensional
nilpotent Lie algebra with a basis {T, X1, X3, Z, Y;,Y3} satisfying [T, X;] = X;, [T, X3] =
-X3, [T, Yh] = 413, [T, V3] = —41, [X1,Xa] = Z,[T, Z] = 11, Ya] = 0, [X;, Ya] = [X;, Z] =
[Ya, Z] = 0(1 < j,k < 2) . Denote by {T*,X?,...} the dual basis of {T, X;,...} .Set
w=2*+Y,6=CZ + CY; + CY3; + CX;. Then g,=RZ + RY; and the abelian subalgebra
b of g€ is a positive algebraic polarization at w. But Ad(ezp[3T])(h) # b for the element
ezp[3T] of G, |

Example 2.An example of solvable j-algebras of rank 2 which have no non- triv-
ial Kahler ideal. Suppose that g is a 10-dimensional solvable Lie algebra with a basis
{A, B,X,Y, Z, Ey, E,, E3, E4, Ey} satisfying the following relations : {4, E,] = 1 Ey, [A, B3] =
1Es, [A) B3] = LBy + Ey,[ABy) = =By + 3By, [A, ] = B, [A,X] = Y,[A)Y] =
—X,[4,2) = 0, [B, E1) = E;,[B,Es] = —Es,[B,Es) = B, E4] = [B, E5] = 0,[B,X] =
X,[B,Y] =Y, [B,Z] = 2Z,[A, B] = 0,[X, B3] = By, [X, Es] = —E4,[X, By] = [X,E4] =
[X,Bs] = 0, [Y,Bs] = By, [Y,B4] = By,[Y,By] = [, B3] = 0, [Y,Ey] = 0,[2,F] =
2E1,[2,E\] = [Z,E;] = [Z,E4| = [2,Es] = 0,[X,Y] = Z, [Ey, Es5] = [Ea, E4] = Es,
[X,2] = [Y, 2] = [B1, Ba] = [Br, B4] = [Ea, B3] = [Bs, By] = 0, [B1, Bs] = [Bs, Es] =
[Es, Es) = [Eq, Es] = o.
Define weg by the relations w(RE; + RE; + RE; + RE; + RX + RY) = 0, w(Es) >
0,w(Z) > 0. (w(A) and w(B) are arbitrary real numbers.)Define j : g — g by the
relations j(4) = —Fs, i(Bs) = A,§(B) = —Z,j(2) = B,j(B:) = —Fs,i(Fs) = By
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j(E2)= —Einj(Ei)_-'Ehj(X):— vj(Y)":X' ' -
Set 5={X — v/—1j(X) : Xeg}. Then § is a totally complex positive polarization at w and
bNh = {0}. The space RA + RB is orthogonal to [g, g] with respect to the inner product

<,>: < V,W >=w([jV, W]). The algebra g has no non-trivial j-invariant ideal.

10.

11.
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