On the Supports of Linearly Closed Convex Sets

By
Hideyuki Fujinira and Tetsuo Kaneko

(Received December 10, 1985)

Abstract

A condition for the supports of linearly closed convex sets to be closed is investigated.

1. Introduction

Let A be a convex subset of a real topological vector space. The frame of A is defined as the set
$A_{f}=\{x \in A$: there exists $y \in A$ such that $y+t(x-y) \in A$ implies $t \leqq 1\}$,
and we denote $A=A \backslash A_{f}$. There exists a bounded closed convex set A with $A=\varnothing$. For example, in the space $C[0,1]$ with supnorm, let A be the set of all points f in $C[0,1]$ such that $f(0)=0, f(1)=1$ and $0 \leqq f(x) \leqq 1(x \in[0,1])$ then A is a bounded closed convex set with $A^{i}=\varnothing$. A convex set A is called to be linearly closed if for any two points x and $y(x \neq y)$ of A, the interesction of A and the line through x and y has two extreme points. A set consists simply of one point is also called to be linearly closed. Bounded closed convex subsets of a Hausdorff topological vector space are linearly closed, but the converse is not true. For example, in the space $C[0,1]$ with supnorm, the set of all points f in $C[0,1]$ such that $f(x)=0$ on a neighbourhood of $0, f(x)=1$ on a neighbourhood of 1 and $0 \leqq f(x) \leqq 1(x \in[0,1])$ is not closed but linearly closed.

A support S of A is a nonempty convex subset of A which satisfies the condition that if an interior point of a line segment $[x, y]$ in A belongs to S, then $[x, y] \subset S$. A itself is a support of A. A support of A which is not equal to A is called a non-trivial support of A. No point of A^{i} is contained in the non-trivial support of A.

2. Statement of theorem

Lemma 1. The frame A_{f} of a convex set A has the following property: if an interior point of a line segment $[x, y]$ in A belongs to A_{f}, then $[x, y] \subset A_{f}$.

Proof. It is sufficient to prove that if $x \in A^{i}$, then for each y in $A,[x, y)$ is contained in A^{i}. Let x be an element of A^{i}. It is easy to see that for any two points z and w of A, there exists $s>0$ such that $|t|<s$ implies that $x+t(z-w)$ belongs to A. For each y in A, let $w=\lambda x+(1-\lambda) y(0 \leqq \lambda \leqq 1)$. Since

$$
\begin{aligned}
& \lambda x+(1-\lambda) y+\lambda t(z-(\lambda x+(1-\lambda) y)) \\
= & \lambda(x+t(z-(\lambda x+(1-\lambda) y)))+(1-\lambda) y \in A,
\end{aligned}
$$

it follows that if $0<\lambda \leqq 1$, then $\lambda x+(1-\lambda) y \in A^{i}$. Therefore we obtain that $[x, y) \subset A^{i}$.
Lemma 2. Each support of a linearly closed convex set is a linearly closed set.
Proof. Let A be a linearly closed convex set and S be a support of A. If S consists simply of one point, then it is clear. The intersection of A and the line L joining two points x and y of S has the extreme points x^{\prime} and y^{\prime}. Since S is a support of A, the two points x^{\prime} and y^{\prime} belong to S. Therefore we obtain that $L \cap A=L \cap S=\left[x^{\prime}, y^{\prime}\right]$, hence S is linearly closed.

Every linearly closed convex set A is the convex hull of the set A_{f}. For each x in A_{f}, let F_{x} be the set of all points of A_{f} such that x can be expressed as the finite convex combination, with non-zero coefficients, of its elements. From the next Lemma, we can see that the set F_{x} is a face (facette, Bourbaki [2]) of A and that any face of A can be represented as F_{x} using some $x \in A_{f}$.

Lemma 3. Let $x \in A_{f}$. For $y(y \neq x)$ in $A, y \in F_{x}$ if and only if x is an interior point of the line segment which is the intersection of A and the line joining x and y.

Proof. If $y \in F_{x}(y \neq x)$, then x can be expressed as

$$
x=\sum_{i=1}^{n-1} \lambda_{i} x_{i}+\lambda_{n} y\left(x_{i} \in F_{x}, \lambda_{i}>0(i=1,2 \cdots, n), \sum_{i=1}^{n} \lambda_{i}=1\right) .
$$

For sufficiently small $\varepsilon>0,(1+\varepsilon) \lambda_{n}-\varepsilon>0$. Therefore for $\alpha=1+\varepsilon$, we obtain that

$$
\alpha x+(1-\alpha) y=(1+\varepsilon) \sum_{i=1}^{n-1} \lambda_{i} x_{i}+\left((1+\varepsilon) \lambda_{n}-\varepsilon\right) y \in A .
$$

Conversely, from Lemma 1, y which satisfies the condition belongs to A_{f}. Hence, by the definition of F_{x}, it is clear that $y \in F_{x}$.

Each face F_{x} of a convex set A has the following properties (Bourbaki [2]):
(1) F_{x} is a support of A;
(2) For each y in F_{x}, F_{y} is a face of F_{x};
(3) Suppose that F_{x} contains more than one point, then $y \in\left(F_{x}\right)^{i}$ if and only if $F_{y}=F_{x}$.

Lemma 4. Let A be a linearly closed convex set which contains more than one point. Then for each x in A_{f}, F_{x} is a non-trivial support of A.

Proof. The set F_{x} is a support of A (property (1)). If F_{x} consists of one point, then it is clear. If F_{x} has more than one point, then from Lemma 1 and 3, it follows that $F_{x} \subset A_{f}$ and $x \in\left(F_{x}\right)^{i}$. Hence if $A^{i} \neq \varnothing$, then F_{x} is not equal to A, and if $A^{i}=\varnothing$, then F_{x} is not equal to $A_{f}=A$.

Lemma 5. Let A be a linearly closed convex set with $A \neq \varnothing$ and let \S be a nonempty family of non-trivial supports of A which is totally ordered under inclusion. Let $S=\cup\left\{S_{\alpha}\right.$: $\left.S_{\alpha} \in \mathscr{B}\right\}$. Then,
(1) S is a non-trivial support of A,
(2) Suppose that the members of \lessgtr are faces of A, and that S contains more than one point, then $S \notin \mathscr{\&}$ if and only if $S=S_{f}$.
Proof. (1) For any two points x and y in S, there exist S_{α} and S_{β} in \neq such that $x \in S_{\alpha}, y \in S_{\beta}$. We may assume that $S_{\alpha} \subset S_{\beta}$. Then we obtain that $[x, y] \subset S_{\beta} \subset S$, hence S is convex. If an interior point a_{0} of a line segment $[a, b]$ in A belongs to S, then there exists $S_{r} \in \mathscr{\infty}$ such that $a_{0} \in S_{r}$, hence $[a, b] \subset S_{r} \subset S$. Since $S \subset A_{f}$, S is a non-trivial support of A.
(2) If $S \notin \mathscr{A}$, then it is clear that $S^{i}=\varnothing$. Conversely if $S=S_{f}$, then for each F_{z} in $\mathscr{\&}$, there exists $y \in S \quad(y \neq z)$ and $F_{z^{\prime}} \in \mathscr{S}$ such that $y \in F_{z^{\prime}}$ and

$$
\alpha z+(1-\alpha) y \in S \Rightarrow \alpha \leqq 1
$$

If $F_{z} \subset F_{z}$, then $y \in F_{z}$, hence, by Lemma 3, it is contradiction. Therefore we obtain that $F_{z} \cong F_{z^{\prime}}$, and $\mathscr{\&}$ dose not contain the supremum. This completes the proof.

Lemma 5 implies, by Zorn's lemma, that for each x in the frame of a linearly closed convex set A, with $A^{i} \neq \varnothing$, there exists a maximal non-trivial support S of A which contains x. Moreover if $S^{i}=\varnothing$, then S is not the union of infinitely countable faces containing x such that $F_{z_{1}} \subset F_{z_{2}} \subset \cdots$.

Theorem 6. Let A be a linearly closed convex set with $A i \neq \varnothing$ and suppose that A_{f} is nonempty closed. Let S be a maximal non-trivial support of A. If $S^{i} \neq \varnothing$, then S is closed.

Proof. Suppose that there exists a point y in $\bar{S} \backslash S$, where \bar{S} is the closure of S, then, since \bar{S} is contained by A_{f}, y belongs to A_{f}. For each x in S^{i}, x is an extreme point of the intersection of A and the line through x and y, and no interior point of $[x, y]$ belongs to S. For z in (x, y), we obtain $x \in\left(F_{z}\right)_{f}$. It follows that $F_{x} \subset F_{z}$ by the property (2) of the faces, and since $S=F_{x}$, we have $S=F_{z}$ by the maximality of S. Then we obtain that $x \in\left(F_{z}\right)^{i}$, and this contradiction establishes the desired result.

References

1. J. L. Kelley, I. Namioka and co-authors, Linear topological spaces, Van Nostrand, Princeton, N. J., 1963.
2. N Bourbaki, Éléments de mathématique, Espaces vectoriels topologiques, chap. 1-2, Hermann, Paris, 1955.
3. H. Fujihira, Linear extensions of convex subsets, Proc. Amer. Math. Soc. Vol. 89, No. 1, 1983.
Hideyuki Fujinira
Depertment of Mathematics
Utsunomiya University
Utsunomiya 321, Japan

Tetsuo Kaneko
Department of Mathematics Niigata University Niigata 950-21, Japan

