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ABSTRACT. A condition for the supports of linearly closed convex sets to be closed is
investigated.

1. Introduction

Let $A$ be a convex subset of a real topological vector space. The frame of $A$ is
defined as the set

$A_{f}=$ { $x\in A$ : there exists $y\in A$ such that $y+t(x-y)\in A$ implies $t\leqq 1$ },

and we denote $A^{i}=A\backslash Af$ . There exists a bounded closed convex set $A$ with $ A^{j}=\emptyset$ .
For example, in the space $C[0,1]$ with supnorm, let $A$ be the set of all points $f$ in $C[0,1]$

such that $f(O)=0,$ $f(1)=1$ and O;$f(x)\leqq l $(x\in[0,1])$ then $A$ is a bounded closed convex
set with $ A^{j}=\emptyset$ . A convex set $A$ is called to be linearly closed if for any two points $x$

and $y(x\pm y)$ of $A$ , the interesction of $A$ and the line through $x$ and $y$ has two extreme
points. A set consists simply of one point is also called to be linearly closed. Bounded
closed convex subsets of a Hausdorff topological vector space are linearly closed, but the
converse is not true. For example, in the space $C[0,1]$ with supnorm, the set of all
points $f$ in $C[0,1]$ such that $f(x)=0$ on a neighbourhood of $0,$ $f(x)=1$ on a neighbour-
hood of 1 and $0_{-}\leq f(x)\leqq 1(x\in[0,1])$ is not closed but linearly closed.

A support $S$ of $A$ is a nonempty convex subset of $A$ which satisfies the condition
that if an interior point of a line segment $[x, \gamma]$ in $A$ belongs to $S$, then $[x, y]\subset S$. $A$

itself is a support of $A$ . A support of $A$ which is not equal to $A$ is called a non-trivial
support of $A$ . No point of $A^{j}$ is contained in the non-trivial support of $A$ .

2. Statement of theorem

LEMMA 1. The $f\gamma ameAf$ of a convex set $A$ has the following property: if an interior
point of a line segment $[x, y]$ in $A$ belongs to $A_{f}$, then $[x, y]\subset Af$ .

PROOF. $Itissufficienttoprovethatifx\in A^{i}$ , then for eachy in A, $[x, y$) is contained
in $A^{j}$ . Let $x$ be an element of $A^{i}$ . It is easy to see that for any two points $z$ and $w$ of $A$,
there exists $s>0$ such that $|t|<s$ implies that $x+t(z-w)$ belongs to $A$ . For each $y$ in $A$,
let $w=\lambda x+(1-\lambda)y(0\leqq\lambda\leqq 1)$ . Since
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$\lambda x+(1-\lambda)y+\lambda t(z-(\lambda x+(1-\lambda)y))$

$=\lambda(x+t(z-(\lambda x+(1-\lambda)y)))+(1-\lambda)y\in A$ ,

it follows that if $0<\lambda\leqq 1$ , then $\lambda x+(1-\lambda)y\in A^{i}$ . Therefore we obtain that $[x, y$) $\subset A^{i}$ .

LEMMA 2. Each support of a linearly closed convex set is a linearly closed set.

PROOF. Let $A$ be a linearly closed convex set and $S$ be a support of $A$ . If $S$ consists
simply of one point, then it is clear. The intersection of $A$ and the line $L$ joining two
points $x$ and $y$ of $S$ has the extreme points $x^{\prime}$ and $y^{\prime}$ . Since $S$ is a support of $A$ , the two
points $x^{\prime}$ and $y^{\prime}$ belong to $S$. Therefore we obtain that $L\cap A=L\cap S=[x^{\prime}, y^{\prime}]$ , hence $S$ is
linearly closed.

Every linearly closed convex set $A$ is the convex hull of the set $A_{f}$. For each $x$ in
$A_{f}$, let $F_{x}$ be the set of all points of $A_{f}$ such that $x$ can be expressed as the finite convex
combination, with non-zero coefficients, of its elements. From the next Lemma, we can
see that the set $F_{x}$ is a face (facette, Bourbaki [2]) of $A$ and that any face of $A$ can be
represented as $F_{x}$ using some $x\in A_{f}$.

LEMMA 3. Let $x\in Af$. For $y(y\neq x)$ in $A,$ $y\in F_{x}$ if and only if $x$ is an interior point of
the line segment which is the intersection of $A$ and the line joining $x$ and $y$ .

PROOF. $Ify\in F_{x}(J^{\prime}\# x)$ , thenx can be expressed as

$x=\sum_{i=1}^{n-1}\lambda_{i}x_{i}+\lambda_{n}y(x;\in F_{x}, \lambda;>0(i=1,2\cdots, n),\sum_{i=1}^{n}\lambda;=1)$ .

For sufficiently small $\epsilon>0,$ $(1+\epsilon)\lambda_{n}-\epsilon>0$ . Therefore for $\alpha=1+\epsilon$, we obtain that

$\alpha x+(1-a)y=(1+\epsilon)\sum_{i=1}^{n-1}\lambda_{i}x;+((1+\epsilon)\lambda_{n}-\epsilon)y\in A$ .

Conversely, from Lemma 1, $y$ which satisfies the condition belongs to $Af$ Hence,
$bythedefinitionofF_{x},$ $itisclearthaty\in F_{x}$ .

Each face $F_{x}$ of a convex set $A$ has the following properties (Bourbaki [2]):

(1) $F_{x}$ is a support of $A$ ;
(2) For each $y$ in $F_{x},$ $F_{y}$ is a face of $F_{x}$ ;
(3) Suppose that $F_{x}$ contains more than one point, then $y\in(F_{x})^{i}$ if and only if

$F_{y}=F_{x}$ .

LEMMA 4. Let $A$ be a linearly closed conve $\kappa$ set which contains more than one point.
Then for each $x$ in $A_{f},$ $F_{x}$ is a non-trivial support of $A$ .

PROOF. The set $F_{x}$ is a support of $A$ (property (1)). If $F_{x}$ consists of one point, then
it is clear. If $F_{x}$ has more than one point, then from Lemma 1 and 3, it follows that
$F_{x}\subset A_{f}$ and $x\in(F_{x})^{i}$ . Hence if $ A^{i}\neq\emptyset$ , then $F_{x}$ is not equal to $A$ , and if $ A^{i}=\emptyset$ , then $F_{x}$

is not equal to $A_{f}=A$ .
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LEMMA 5. Let $A$ be a linearly closed convex set with $ A^{i}\neq\emptyset$ and let $\ovalbox{\tt\small REJECT}$ be a nonempty
family of non-trivial supports of A which is totally ordered under inclusion. Let $S=\cup\{S_{\alpha}$ :
$S_{a}\in\ovalbox{\tt\small REJECT}\}$ . Then,

(1) $S$ is a non-trivial support of $A$ ,
(2) Suppose that the members of $\ovalbox{\tt\small REJECT}$ are faces of $A$ , and that $S$ contains more than one

point, then $S\not\in\ovalbox{\tt\small REJECT}$ if and only if $S=S_{f}$.

PROOF. (1) For any two points $x$ and $y$ in $S$, there exist $S_{a}$ and $S_{\beta}$ in $S$ such that
$x\in S_{a},$ $y\in S_{\beta}$ . $WemayassumethatS_{a}\subset S_{\beta}$ . Then we obtain that $[x, y]\subset S_{\beta}\subset S,$ hence S
is convex. If an interior point $a_{0}$ of a line segment $[a, b]$ in $A$ belongs to $S$, then there
exists $S_{\gamma}\in\ovalbox{\tt\small REJECT}$ such that $a_{0}\in S_{\gamma}$ , hence $[a, b]\subset S_{\gamma}\subset S$. Since $S\subset A_{f},$ $S$ is a non-trivial support
$ofA$ .

(2) If $S\oplus \mathcal{Z}$, then it is clear that $S^{i}=\emptyset$ . Conversely if $S=Sf$ , then for each $F_{z}$ in $\ovalbox{\tt\small REJECT}$ ,

there exists $y\in S(y\neq z)$ and $F_{z^{\prime}}\in\ovalbox{\tt\small REJECT}$ such that $y\in F_{z^{\prime}}$ and

$\alpha z+(1-\alpha)y\in S\Rightarrow\alpha\leqq 1$ .
If $F_{z^{\prime}}\subset F_{z}$ , then $y\in F_{z}$ , hence, by Lemma 3, it is contradiction. Therefore we obtain that
$F_{z}\fallingdotseq\subset F_{z^{\prime}}$ , and $\mathcal{Z}$ dose not contain the supremum. This completes the proof.

Lemma 5 implies, by Zorn’s lemma, that for each $x$ in the frame of a linearly closed
convex set $A$ , with $ A^{i}\neq\emptyset$ , there exists a maximal non-trivial support $S$ of $A$ which con-
tains $x$ . Moreover if $ S^{i}=\emptyset$ , then $S$ is not the union of infinitely countable faces contain-
ing $x$ such that $ F_{z_{1}}\subset F_{z_{2}}\subset\cdots$ .

THEOREM 6. Let $A$ be a linearly closed convex set with $ A^{i}\neq\emptyset$ and suppose that $A_{f}$ is
nonempty closed. Let $S$ be a maximal non-trivial support of A. If $ S^{i}\neq\emptyset$ , then $S$ is closed.

PROOF. Suppose that there exists a point $y$ in $\overline{S}\backslash S$, where $\overline{S}$ is the closure of $S$, then,

since $\overline{S}$ is contained by $A_{f,y}$ belongs to $A_{f}$. For each $x$ in $S^{i},$ $x$ is an extreme point of
the intersection of $A\mathfrak{B}d$ the line through $x$ and $y$ , and no interior point of $[x, y]$ belongs

to $S$. For $z$ in $(x, y)$ , we obtain $x\in(F_{z})f$. It follows that $F_{x}\subset F_{z}$ by the property (2) of
the faces, and since $S=F_{x}$ , we have $S=F_{z}$ by the maximality of $S$. Then we obtain that
$x\in(F_{z})^{i}$ , and this contradiction establishes the desired result.
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