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Abstract

In this paper we derive asymptotic expressions of the mean integrated squared
error (MISE) as a global measure for a nonparametric recursive kernel esti-
mator of a distribution function. We also investigate whether the recursive
kernel estimator has asymptotically better performance than the empirical dis-
tribution function. It is proved that the relative deficiency of the empirical
distribution function with respect to an appropriately chosen recursive kernel
estimator quickly tends to infinity as the sample size increases.

1. Introduction

Let $X_{1},$ $X_{2},$
$\ldots$ be independent and identically distributed random variables having

a common cumulative distribution function (c.d.f) $F$ . Throughout this paper, the c.d. $f$

$F$ is assumed to be absolutely continuous with respect to Lebesgue measure, and let a
probability density function (p.d.f) of $F$ be denoted by $f$ .

In this paper, we consider the problem of estimating the c.d.$fF$ . Traditionally, as an
estimator of $F$ , the empirical distribution function

$F_{n}(x)=\frac{1}{n}\sum_{j=1}^{n}I(X_{j}\leq x)$ (1. 1)

has been chosen, where $I(\cdot)$ denotes the indicator function. It is well known that the
estimator is strongly uniformly consistent. But this estimator does not take into account
the smoothness of $F$ , that is, the existence of the density.$f$ . On the other hand, taking
into account this point, alternative estimators of the c.d. $fF$ have been considered by (to
mention a few) Nadaraya [7], Yamato [17], Winter $[15, 16]$ , Hill [3], Puri and Ralescu [8],
Yukitch [18] and Sadra [11]. Especially, for kernel-type estimators, Singh et al. [13] inves-
tigated their asymptotic properties including strong uniform consistency and asymptotic
normality, and also derived rates of convergence.
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Under a certain condition on the c.d.$fF$ , Read [9] showed that the empirical distribu-
tion function is inadmissible with respect to the mean integrated squared error (MISE).
Reiss [10] and Falk [2] showed that the kernel-type estimators of a distribution function
at a single point have an asymptotically better performance on the level of deficiency
than the empirical distribution function for appropriately chosen kernels and sufficiently
smooth $F$ . Swanepoel [14] derived asymptotic expressions of the MISE as a global mea-
sure of a kernel-type estimator of $F$ . He also considered the problem of finding optimal
kernels and asserted that the kernel-type estimator is asymptotically more efficient than
the empirical distribution function. Shirahata and Chu [12] treated the integrated squared
error (ISE) of kernel-type estimator and compared the error with that of the empirical
distribution function.

The kernel-type estimators mentioned above are not recursive in nature, i.e. when the
sample size increases, the estimators must be computed from the beginning. Besides, we
are required to store extensive data in order to calculate them. With these things in mind,
Isogai and Hirose [5] proposed a class of recursive kernel estimators $\{\hat{F}_{n}\}$ and studied their
asymptotic properties, including strong uniform consistency. Rates of convergence of the
mean squared error were also investigated and asymptotic normality of the estimators was
shown. By ‘recursive’, we mean that the estimator $F_{n}$ based on the first $n$ observations
is a function of $\hat{F}_{n-1}$ and the n-th observation. Of course, the empirical distribution
function is recursive. Then, we should expect that the recursive kernel estimator $\hat{F}_{n}$ has
better performance than the empirical distribution function $F_{\mathfrak{n}}$ in (1.1) with respect to a
reasonable measure of performance. We shall derive asymptotic expressions of the MISE
for the recursive kernel estimator and prove that the relative deficiency of the empirical
distribution function with respect to the recursive kernel estimator quickly tends to infinity
as the sample size increases.

In Section 2 we shall define the class of recursive kernel estimators of the c.d.$fF$
proposed by Isogai and Hirose [5]. Section 3 gives the asymptotic expansions of the
MISE of the recursive kernel estimators and the relative efficiency and deficiency of the
empirical distribution function with respect to them. Proofs of the results in Section 3
will be postponed until the final section.

2. Recursive kernel estimators

In this section, we shall define the class of recursive kernel estimators proposed by
Isogai and Hirose [5].

Let $k$ (called a kernel) be a real-valued Borel measurable function on the real line $R$

such that
$\int|k(t)|dt<\infty$ and $\int k(t)dt=1$ ,

where all integrals are taken over $R$ , unless otherwise specified. Let $\{h_{n}\}$ (called band-
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widths) be a sequence of positive numbers converging to zero. For each $n\geq 1$ , set

$k_{n}(t)=\frac{1}{h_{n}}k(\frac{t}{h_{n}})$ , $K_{n}(x)=\int_{-\infty}^{x}k_{n}(t)dt$ , $K(x)=\int_{-\infty}^{x}k(t)dt$

and
$\hat{f}_{n}(x)=\frac{1}{n}\sum_{j=1}^{n}k_{j}(x-X_{j})$ . (2.1)

Now we define the recursive kernel estimators $\{\hat{F}_{n}\}$ of the c.d.$fF$ as

$\hat{F}_{n}(x)=\int_{-\infty}^{x}\hat{f}_{n}(y)dy=\frac{1}{n}\sum_{i=1}^{n}K_{j}(x-X_{j})$ for $n\geq 1$ . (2.2)

These estimators can be recursively computed as follows:

$\hat{F}_{n}(x)=(1-\frac{1}{n})\hat{F}_{n-1}(x)+\frac{1}{n}K_{n}(x-X_{n})$ for $n\geq 1$ ,

where $\hat{F}_{0}(x)=K(x)$ .

3. Mean integrated squared error and deficiency

In this section, under the assumption that for some integer $m\geq 1$ the $(m+1)$ th
derivative $F^{(m+1)}=f^{(m)}$ of $F$ exists, we shall give the asymptotic expansions of the
MISE of the estimator $\hat{F}_{n}$ of $F$ in (2.2). Furthermore, we shall show that the estimators
have an asymptotically better performance on the level of deficiency than the empirical
distribution function for appropriately chosen kernels and bandwidths and sufficiently
smooth $F$ .

As a global measure we use the mean integrated squared error given by

MISE $(\hat{F}_{n})=E\{\int(\hat{F}_{n}(x)-F(x))^{2}f(x)dx\}$ .

For some $m\geq 1$ , let $\mathcal{K}_{m}$ be the class of all kernels $k$ such that

$\int k(t)dt=1$ , $\int t^{i}k(t)dt=0,$ $i=1,$ $\ldots,$
$m$

and
$M_{m+1}\equiv\frac{1}{(m+1)!}\int|t^{m+1}k(t)|dt<$.

$\infty$ .

We state here assumptions on.$f$ and $\{h_{n}\}$ imposed in this section.

ASSUMPTION $A$ :
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(A1) $f^{(m)}$ is bounded and continuous almost everywhere with respect to Lebesgue
measure (a.e. continuous).

(A2) $f^{2}$ is integrable and $f^{\prime}$ is bounded.

(A3) In addition to (A2), $f^{\prime}$ is a.e. continuous.

ASSUMPTION $H$ :

(H1) $\sum_{j=1}^{n}h_{j}^{m+1}\rightarrow\infty$ as $ n\rightarrow\infty$ .

(H2) $\sum_{j=1}^{n}h_{j}\rightarrow\infty$ as $ n\rightarrow\infty$ .

(H3) $n(\frac{1}{n}\sum_{j=1}^{n}h_{j}^{2})^{2}\rightarrow 0$ as $ n\rightarrow\infty$ .

(H4) $\sum_{j=1}^{n}h_{j}^{2}\rightarrow\infty$ as $ n\rightarrow\infty$ .

The following lemmas provide the exact $as_{\wedge}ymptotic$ behavior for the integrated squared
value (ISV) of the bias and the variance of $F_{n}$ .

LEMMA 3.1. For some integer $m\geq 1$ , assume (A1), (H1) and $k\in \mathcal{K}_{m}$ . Then, as
$ n\rightarrow\infty$ ,

$\int(E[\hat{F}_{n}(x)]-F(x))^{2}f(x)dx$

$=$ $(\frac{1}{n}\sum_{j=1}^{n}h_{j}^{m+1})^{2}\mu_{m+1}^{2}\int(f^{\langle m)}(x))^{2}f(x)dx+o((\frac{1}{n}\sum_{j=1}^{\mathfrak{n}}h_{j}^{m+1})^{2})$ ,

where $\mu_{m+1}=\frac{1}{(m+1)!}\int t^{m+1}k(t)dt$ .

LEMMA 3.2. Assume (A2), (H2) and $k\in \mathcal{K}_{1}$ . Then, as $ n\rightarrow\infty$ ,

$\int Var(\hat{F}_{n}(x))f(x)dx$

$\frac{1}{6n}-\frac{1}{n^{2}}\sum_{j=1}^{n}h_{j}\int tb(t)dt\int f^{2}(x)dx+o(\frac{1}{n^{2}}\sum_{j=1}^{\mathfrak{n}}h_{j})$

where $b(t)\equiv 2k(t)K(t)$ .
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Since (H1) implies (H2) and $\mathcal{K}_{1}$ includes $\mathcal{K}_{m}$ , from Lemmas 3.1 and 3.2 we get the
asymptotic expansion of the MISE of $\hat{F}_{n}$ .

THEOREM 3.1. For some integer $m\geq 1$ , assume (A1), (A2), (H1) and $k\in \mathcal{K}_{m}$ .
Then, as $ n\rightarrow\infty$ ,

MISE $(\hat{F}_{n})$ $=$ $\frac{1}{6n}+(\frac{1}{n}\sum_{j=1}^{n}h_{j}^{m+1})^{2}\mu_{m+1}^{2}\int(f^{(m)}(x))^{2}f(x)dx$

$-\frac{1}{n^{2}}\sum_{j=1}^{n}h_{j}\int tb(t)dt\int f^{2}(x)dx+o((\frac{1}{n}\sum_{j=1}^{n}h_{j}^{m+1})^{2}+(\frac{1}{n^{2}}\sum_{j=1}^{n}h_{j}))$ .

Remark 3.1. We note that for $m\geq 2$ any fixed $k$ in $\mathcal{K}_{m}$ can be negative, thus leading
to the negative estimator $F_{n}$ for the c.d.$fF$ . But, Lemma 3.1 shows the reduction of the
ISV of the bias of $\hat{F}_{n}$ . Hence, one can improve the rates of convergence of the ISV of the
bias to zero by using the kernel $k$ in $\mathcal{K}_{m}$ . On the other hand, in case of $m=1$ we can
choose a kernel $k$ in $\mathcal{K}_{1}$ as a p.d. $f$ . Then $\hat{f}_{n}(x)$ in (2.1) and $\hat{F}_{n}(x)$ in (2.2) are a p.d. $f$ and
a c.d. $f$, respectively.

We shall introduce a criterion under which we compare $\hat{F}_{n}$ and $F_{n}$ given by

$j(n)\equiv\min\{k\geq 1$ : MISE $(F_{k})\leq MISE(\hat{F}_{n})\}$ ,

that is, $j(n)$ denotes the sample size which is needed so that the empirical distribution
function has the same or a smaller MISE as $\hat{F}_{n}$ . Now, a comparison of the two estimators
$\hat{F}_{n}$ and $F_{n}$ is made by comparing $j(n)$ with $n$ . This can be carried out by considering
the ratio $j(n)/n$ or the difference $j(n)-n$ . The ratio $j(n)/n$ is usually called relative
or first order efficiency while the difference $j(n)-n$ is known as second order efficiency
of deficiency. The limit values $\lim_{n\rightarrow\infty}j(n)/n$ and $\lim_{n\rightarrow\infty}(j(n)-n)$ are called, if they exist,
asymptotic relative efficiency and asymptotic deficiency, respectively. The concept of defi-
ciency was introduced by Hodges and Lehmann [4]. Akahira [1] discussed the asymptotic
deficiencies of various estimators.

We shall give a behavior of the ratio of the MISE of the two estimators $\hat{F}_{n}$ and $F_{n}$ .

LEMMA 3.3. Assume (A2), (H2) and $k\in \mathcal{K}_{1}$ . Then, as $ n\rightarrow\infty$ ,

MISE $(\hat{F}_{n})$

$\overline{MISE(F_{n})}$

$=$ $1-\frac{6}{n}\sum_{j=1}^{n}h_{j}\int tb(t)dt\int.f^{2}(x)dx+6n\int(E[\hat{F}_{n}(x)]-F(x))^{2}.f(x)dx+o(\frac{1}{n}\sum_{\backslash ,r=1}^{n}h_{j})$ .
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The following proposition states that the recursive kernel estimator of the $c$ .d.f $F$ with
fixed kernel does not have an asymptotically better performance on the level of efficiency
than the empirical distribution function.

PROPOSITION 3.1. Assume (A3), (H2) and $k\in \mathcal{K}_{1}$ . Then

(i) $\lim_{n\rightarrow}\sup_{\infty}\frac{j(n)}{n}\leq 1$

and

(ii) $\lim_{n\rightarrow\infty}\frac{j(n)}{n}=1$ if and only if $\lim_{n\rightarrow\infty}n\int(E[\hat{F}_{n}(x)]-F(x))^{2}f(x)dx=0$ .

From Lemma 3.1, we can always ensure that under (A1) with $m=1$ , (H3) and (H4)

$\lim_{n\rightarrow\infty}n\int(E[\hat{F}_{n}(x)]-F(x))^{2}f(x)dx=0$ .

Proposition 3.1 implies $\lim_{n\rightarrow\infty}j(n)/n=1$ for any $k\in \mathcal{K}_{1}$ . Hence, in this case, we cannot
distinguish between the asymptotic performance of the estimators with different kernels
when compared to the empirical distribution function. Therefore, we have to consider the
level of relative deficiency.

Example 3.1. Let
$h_{n}=cn^{-\alpha}$ $(\frac{1}{2}\geq\alpha>\frac{1}{4})$

where $c>0$ is a constant. Then (H3) and (H4) are satisfied.

We shall give the asymptotic expression of the relative deficiency of the empirical
distribution function with respect to the recursive kernel estimator.

THEOREM 3.2. Assume (A3), (H3), (H4) and $k\in \mathcal{K}_{1}$ . Then,

(i) $\frac{j(n)-n}{\Sigma_{j=1}^{n}h_{j}}=\theta-\frac{1}{n^{-1}\Sigma_{j=1}^{n}h_{j}}\cdot\frac{6n\int(E[\hat{F}_{n}(x)]-F(x))^{2}f(x)dx}{1+6n\int(E[\hat{F}_{n}(x)]-F(x))^{2}f(x)dx}+o(1)$

where $\theta\equiv 6\int tb(t)dt\int f^{2}(x)dx$

and

(ii) $\lim_{n\rightarrow\infty}\frac{j(n)-n}{\Sigma_{j=1}^{n}h_{j}}=\theta$

if and only if $n\int(E[\hat{F}_{n}(x)]-F(x))^{2}.f(x)dx=o(\frac{1}{n}\sum_{j=1}^{n}h_{j})$ .
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Example 3.2. Let
$h_{n}=cn^{-\alpha}$ $(\frac{1}{2}\geq a>\frac{1}{3})$

where $c>0$ is a constant, then $n\int(E[\hat{F}_{n}(x)]-F(x))^{2}f(x)dx=o(\frac{1}{n}\sum_{j=1}^{n}h_{j})$ .

From Theorem 3.2, if $\int tb(t)dt$ is negative, then the empirical distribution function is
better than the recursive kernel estimator and if it is positive, then the recursive kernel
estimator with $\{h_{n}\}$ in Example 3.2 is prefered to the empirical distribution function.
Since we can choose a p.d. $f$. $k\in \mathcal{K}_{1}$ satisfying $\int tb(t)dt>0$ , the recursive kernel estimator
has asymptotically better performance than the empirical distribution function.

4. The proofs

In this section all the proofs of the results in Section 3 are given.

PROOF OF LEMMA $3.1$ . From (2.1) and $\int k(t)dt=1$ we have

$\lim_{x\rightarrow-\infty}K(x)=0$ , $\lim_{x\rightarrow\infty}K(x)=1$ and $\int b(t)dt=1$ , (4.1)

where $b(\cdot)$ is the function given in Lemma 3.2. Thus, using integration by parts we get

$E[\hat{F}_{n}(x)]=\frac{1}{n}\sum_{j=1}^{n}\int\frac{1}{h_{j}}k(\frac{x-y}{h_{j}})F(y)dy$ . (4.2)

Set

$A_{n}=\sum_{j=1}^{n}h_{j}^{m+1}$ and $a_{j}(x)=\frac{(-1)^{m+1}}{m!}\int t^{m+1}k(t)(\int_{0}^{1}(1-y)^{m}f^{(m)}(x-th_{j}y)dy)dt$ .

It follows from (4.2), the Taylor expansion and $k\in \mathcal{K}_{m}$ , we have

$(\frac{n}{A_{n}})^{2}\int(E[\hat{F}_{n}(x)]-F(x))^{2}f(x)dx$

$(\frac{n}{A_{n}})^{2}\int\{\frac{1}{n}\sum_{j=1}^{n}\int k(t)(F(x-th_{j})-F(x))dt\}^{2}.f(x)dx$

$\int(\frac{1}{A_{n}}\sum_{j=1}^{n}h_{j}^{n\iota+1}a_{j}(x))^{2}.f(x)dx$ . (4.3)
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Since by (A1)

$\lim_{j\rightarrow\infty}\int_{0}^{1}(1-y)^{m}f^{\langle m)}(x-th_{j}y)dy=\frac{1}{m+1}f^{(m)}(x)$ for a.e. $x$ ,

using $t^{m+1}k(t)\in L_{1}$ and the dominated convergence theorem, we have

$\lim_{j\rightarrow\infty}a_{j}(x)=(-1)^{m+1}\mu_{m+1}f^{(m)}(x)$ a.e. $x$ ,

which, together with (H1) and Toeplitz’s lemma (see Lo\‘eve [6, p.250]), yields

$\lim_{n\rightarrow\infty}\frac{1}{A_{n}}\sum_{j=1}^{n}h_{j}^{m+1}a_{j}(x)=(-1)^{m+1}\mu_{m+1}f^{(m)}(x)$ for a.e. $x$ .

Hence, from (A1), (4.3) and the dominated convergence theorem, we get the result of the
lemma. Therefore the proof of Lemma 3.1 is complete.

Before proving the result of Lemma 3.2 we give two lemmas.

LEMMA 4.1. For some integer $m\geq 1$ , let $f^{(m)}$ be bounded. Assume $k\in \mathcal{K}_{m}$ and
(H2). Then, as $ n\rightarrow\infty$ ,

(i) $\frac{1}{n}\sum_{j=1}^{n}\int\{\int k(t)(F(x-th_{j})-F(x))dt\}F(x)f(x)dx=o(\frac{1}{n}\sum_{j=1}^{n}h_{j})$

and

(ii) $\frac{1}{n}\sum_{j=1}^{n}\int\{\int k(t)(F(x-th_{j})-F(x))dt\}^{2}f(x)dx=o(\frac{1}{n}\sum_{j=1}^{n}h_{j})$ .

PROOF. First we shall show (i). Set $A_{n}\equiv\sum_{j=1}^{n}h_{j}$ and

$a_{j}\equiv h_{j}^{m}\frac{(-1)^{m+1}}{m!}\int\{\int t^{m+1}k(t)(\int_{0}^{1}(1-y)^{m}f^{(m)}(x-th_{j}y)dy)dt\}F(x)f(x)dx$ .

Then by the Taylor expansion and $k\in \mathcal{K}_{m}$ , we have

$\frac{n}{A_{n}}[\frac{1}{n}\sum_{j=1}^{n}\int\{\int k(t)(F(x-th_{j})-F(x))dt\}F(x)f(x)dx]$

$\frac{1}{A_{n}}\sum_{j=1}^{n}h_{j}a_{j}$ . (4.4)
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By virtue of the fact that.$f^{(m)}$ be bounded and $t^{m+1}k(t)\in L_{1}$ , we get $a_{j}=O(h_{j}^{m})$ , which,
together with (H2) and Toepliz’s lemma, implies

$\lim_{n\rightarrow\infty}\frac{1}{A_{n}}\sum_{j=1}^{n}h_{j}a_{j}=0$ .

Thus, from (4.4) we obtain (i). By the same argument as (i) we can show (ii). This
completes the proof.

LEMMA 4.2. Assume (A2), (H2) and $k\in \mathcal{K}_{1}$ . Then, as $ n\rightarrow\infty$ ,

$\frac{1}{n}\sum_{j=1}^{n}\int\{\int b(t)(F(x-th_{j})-F(x))dt\}f(x)dx$

$-\frac{1}{n}\sum_{j=1}^{n}h_{j}\int tb(t)dt\int f^{2}(x)dx+o(\frac{1}{n}\sum_{j=1}^{n}h_{j})$ .

PROOF. By the Taylor expansion, we have

$\int\{\int b(t)(F(x-th_{j})-F(x))dt\}f(x)dx$

$-h_{j}\int tb(t)dt\int f^{2}(x)dx$

$+h_{j}^{2}\int\{\int t^{2}b(t)(\int_{0}^{1}(1-y)f^{\prime}(x-th_{j}y)dy)dt\}f(x)dx$ . (4.5)

It follows from the assumption that the second term of the right-hand side of (4.5) is
$O(h_{j}^{2})$ , which, together with (H2), Toeplitz’s lemma and (4.5), yields

$\rightarrow$

$\frac{n}{\sum_{-\int tb(t}j=1n_{h_{j}}}\cdot\frac{1}{n}\sum_{f^{2}}^{n}\int_{(x}\{\int_{))dx}b(t)(F(x-th_{j})-F(x))dt\}f(x)dxj=1$

.

This completes the proof.

We are now in a position to prove the rest of the results in Section 3.

PROOF OF LEMMA 3.2. From (4.1) and integration by parts, we get

Var $(\hat{F}_{n}(x))$

$=$ $\frac{1}{n^{2}}\sum_{j=1}^{n}\int\frac{1}{h_{j}}b(\frac{x-y}{h_{j}})F(y)dy-\frac{1}{n^{2}}\sum_{j=1}^{n}(\int\frac{1}{h_{j}}k(\frac{x-y-}{h_{i}}I^{F(y)dy})^{2}$
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$=$ $\frac{1}{n^{2}}\sum_{j=1}^{n}\int b(t)F(x-th_{j})dt-\frac{1}{n^{2}}\sum_{j=1}^{n}(\int b(t)dt)F(x)$

$-\frac{1}{n^{2}}\sum_{j=1}^{n}(\int k(t)F(x-th_{j})dt)^{2}+\frac{F(x)}{n}$

$=$ $\frac{F(x)(1-F(x))}{n}-\frac{2}{n^{2}}\sum_{j=1}^{n}\{\int k(t)(F(x-th_{j})-F(x))dt\}F(x)$

$-\frac{1}{n^{2}}\sum_{j=1}^{\mathfrak{n}}\{\int k(t)(F(x-th_{j})-F(x))dt\}^{2}$

$+\frac{1}{n^{2}}\sum_{j=1}^{n}\int b(t)(F(x-th_{j})-F(x))dt$ ,

which gives

$\int Var(\hat{F}_{n}(x))f(x)dx$

$=$ $\frac{1}{6n}-\frac{2}{n^{2}}\sum_{j=1}^{n}\int\{\int k(t)(F(x-th_{j})-F(x))dt\}F(x)f(x)dx$

$-\frac{1}{n^{2}}\sum_{j=1}^{n}\int\{\int k(t)(F(x-th_{j})-F(x))dt\}^{2}f(x)dx$

$+\frac{1}{n^{2}}\sum_{j=1}^{n}\int\{\int b(t)(F(x-th_{j})-F(x))dt\}f(x)dx$ .

Thus Lemmas 4.1 and 4.2 conclude the result of the lemma. This completes the proof.

PROOF OF LEMMA 3.3. Since MISE$(F_{n})=1/6n$ , from Lemma 3.2 we have

$\frac{MISE(\hat{F}_{n})}{MISE(F_{n})}$
$=$ $6n\int Var(\hat{F}_{n}(x))f(x)dx+6n\int(E[\hat{F}_{n}(x)]-F(x))^{2}f(x)dx$

$=$ $1-\frac{6}{n}\sum_{j=1}^{\mathfrak{n}}h_{j}\int tb(t)dt\int f^{2}(x)dx$

$+6n\int(E[\hat{F}_{n}(x)]-F(x))^{2}f(x)dx+o(\frac{1}{n}\sum_{j=1}^{n}h_{j})$ .

Therefore the proof of Lemma 3.3 is complete.

PROOF OF PROPOSITION 3.1. First, we shall show (i). Since MISE $(F_{n})=1/6n$ ,
it follows from the definition of $j(n)$ that

$\frac{j(n)-1}{n}<\frac{MISE(F_{n})}{MISE(\hat{F}_{n})}\leq\frac{j(n)}{n}$ (4.6)
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Thus, from Lemma 3.3 we have

$\lim_{n\rightarrow}\sup_{\infty}\frac{j(n)-1}{n}$
$\leq$ $\lim_{n\rightarrow}\sup_{\infty}\{1-\frac{6}{n}\sum_{j=1}^{n}h_{j}\int tb(t)dt\int.f^{2}(x)dx+o(\frac{1}{n}\sum_{j=1}^{n}h_{j})\}^{-1}$

$=$ 1.

This concludes (i). We shall next show (ii). If $\lim_{n\rightarrow\infty}n\int(E[\hat{F}_{n}(x)]-F(x))^{2}f(x)dx=0$

then from Lemma 3.3, we have

$\lim_{n\rightarrow\infty}$ MISE $(\hat{F}_{n})/MISE(F_{n})=1$ ,

which, together with (4.6), yields $\lim_{n\rightarrow}\inf_{\infty}\frac{j(n)}{n}\geq 1$ . Thus, from (i) we get $\lim_{n\rightarrow\infty}\frac{j(n)}{n}=1$ .

Conversely, if $\lim_{n\rightarrow\infty}\frac{j(n)}{n}=1$ , then from (4.6) we have

$\lim_{n\rightarrow\infty}MISE(F_{n})/MISE(\hat{F}_{n})=1$ .

Hence, it follows from Lemma 3.3 that

$\lim_{n\rightarrow\infty}\{6n\int(E[\hat{F}_{n}(x)]-F(x))^{2}f(x)dx\}$

$=$ $\lim_{n\rightarrow\infty}\{\frac{MISE(\hat{F}_{n})}{MISE(F_{n})}-1+\frac{6}{n}\sum_{j=1}^{n}h_{j}\int tb(t)dt\int f^{2}(x)dx+o(\frac{1}{n}\sum_{j=1}^{n}h_{j})\}=0$ .

Thus, we conclude (ii). Therefore the proof of Proposition 3.1 is complete.

PROOF OF THEOREM 3.2. Set

$B_{n}\equiv 6n\int(E[\hat{F}_{n}(x)]-F(x))^{2}f(x)dx$ and $H_{n}\equiv\frac{1}{n}\sum_{j=1}^{n}h_{j}$ ,

and let
$\theta_{n}\equiv\frac{n\{\theta H_{n}-B_{n}+o(H_{n})\}}{1+B_{n}-\theta H_{n}+o(H_{n})}$ .

Then, from (4.6) and Lemma 3.3 we have

$\frac{\theta_{n}}{nH_{n}}\leq\frac{j(n)-n}{nH_{n}}<\frac{\theta_{n}+1}{nH_{n}}$ (4.7)

Furthermore, by (H3) and Lemma 3.1 we get

$|\frac{\theta_{n}}{nH_{n}}-\theta+\frac{B_{n}}{(1+B_{n})H_{n}}|$

$|\frac{-2\theta B_{n}-\theta B_{n}^{2}+\theta^{2}H_{n}+\theta^{2}B_{n}H_{n}+o(1)}{\{1+B_{n}-\theta H_{n}+o(H_{n})\}(1+B_{n})}|$

$\rightarrow$ $0$ as $n\rightarrow\infty$ ,
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which, together with (4.7) and (H4), gives (i). (ii) is an immediate conclusion of (i).
Therefore the proof of Theorem 3.2 is complete.
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