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$0$ . Introduction

We denote by $M_{n}(c)$ a complete and simply connected complex n-
dimensional K\"ahlerian manifold of constant holomorphic sectional cur-
vature $4c$ , which is called a complex space form. Such an $M_{n}(c)$ is bi-
holomorphically isometric to a complex projective space $P_{\mathfrak{n}}\mathbb{C}$ , a complex
Euclidean space $\mathbb{C}^{n}$ or a complex hyperbolic space $H_{\mathfrak{n}}\mathbb{C}$ , according as
$c>0,$ $c=0$ or $c<0$ .

In this paper, we consider a real hypersurface $M$ in $M_{n}(c)$ . Typical
examples of $M$ in $P_{n}\mathbb{C}$ are the six model spaces of type $A_{1},$ $A_{2},$ $B,$ $C,$ $D$

and $E$ (cf. Theorem A in \S 1), and the ones of $M$ in $H_{n}\mathbb{C}$ are the four
model spaces of type $A_{0},$ $A_{1},$ $A_{2}$ and $B$ (cf. Theorem $B$ in \S 1), which are
all given as orbits under certain Lie subgroups of the. group consisting of
all isometries of $P_{n}\mathbb{C}$ or $H_{n}\mathbb{C}$ . Denote by $(\phi, \xi, \eta, g)$ the almost contact
metric structure of $M$ induced from the almost complex structure of
$M_{n}(c)$ , by $A$ the shape operator and by $S$ the Ricci tensor of $M$ . Many
differential geometers have studied $M$ from various points of view. For
example, Berndt [1] and Takagi [13] investigated the homogeneity of
$M$ . Kimura [6] proved that if all principal curvatures of $M$ in $P_{\mathfrak{n}}\mathbb{C}$ are
constant and $\xi$ is principal vector of $A$ , then $M$ is congruent to one of
model spaces. Moreover, Yano and Kon [15] studied $M$ in $P_{n}\mathbb{C}$ satisfying
the condition $ A\phi+\phi A=k\phi$ for a constant $k\neq 0$ and Ki and Suh [3]
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investigated $M$ in $P_{n}\mathbb{C}$ satisfying the condition $ S\phi+\phi S=k\phi$ for a
constant $k$ . Recently, Takagi and the author of the present paper [5]
studied $\Lambda/I$ in $\Lambda f_{\mathfrak{n}}(c),$ $c\neq 0$ satisfying the condition that $A^{2}\phi+\phi A^{2}$ ,
$A\phi A$ or $A^{2}\phi+aA\phi A+\phi A^{2}$ is equal to $ k\phi$ for constants $a$ and $k$ .

In the present paper, we shall classify a real hypersurface $M$ in $M_{n}(c)$

satisfying the condition that $S\phi+\phi S$ or $S\phi S$ is equal to $ k\phi$ for a constant
$k$ .

1. Prelilninaries

We begin with recalling the basic properties of real hypersurfaces
of a complex space form. Let $N$ be a unit normal vector field on a
neighborhood of a point $p$ in $M$ and $J$ the almost complex structure of
$M_{n}(c)$ . For a local vector field $X$ on a neighborhood of $p$ , the images of
$X$ and $N$ under the transformation $J$ can be represented as

$JX=\phi X+\eta(X)N$ , $ JN=-\xi$ ,

where $\phi$ defines a skew-symmetric transformation on the tangent bundle
$TM$ of $M$ , while $\eta$ and $\xi$ denote a l-fonn and a vector field on the
neighborhood of $p$ , respectively. Moreover, it is seen that $g(\xi, X)=$

$\eta(X)$ , where $g$ denotes the induced Riemannian metric on $M$ . By the
properties of the almost coniplex structure $J$ , the set $(\phi, \zeta, \eta,g)$ of tensors
satisfies

(1.1) $\phi^{2}=-I+\eta\otimes\xi$ , $\phi\xi=0$ , $\eta(\phi X)=0$ $\eta(\xi)=1$ ,

where $I$ denotes the identity transformation. Accordingly, this set $(\phi$ ,
$\xi,$

$\eta,$ $g$ ) defines the almost contact metric stru $c$ture on $M$ . Furthermore,
the covariant derivatives of the structure tensors are given by

(1.2) $(\nabla_{X}\phi)Y=\eta(Y)AX-g(AX, Y)\xi$ ,

(1.3) $\nabla_{X}\xi=\phi AX$ ,

where $\nabla$ is the Riemannian connection of $g$ . Since the ambient space is
of constant holomorphic sectional curvature $4c$ , the equations of Gauss
and Codazzi are respectively given as follows:
(1.4) $R(X, Y)Z=c\{g(Y, Z)X-g(X, Z)Y+g(\phi Y, Z)\phi X$

$-g(\phi X, Z)\phi Y-2g(\phi X, Y)\phi Z\}$

$+g(AY, Z)AX-g(AX, Z)AY$,
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(1.5) $(\nabla_{X}A)Y-(\nabla_{Y}A)X=c\{\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi\}$ ,

where $R$ denotes the Riemannian curvature tensor of $M$ . The Ricci
tensor $S^{\prime}$ of $M$ is the tensor of type $(0,2)$ given by $ S^{\prime}(X, Y)=tr\{Z\rightarrow$

$R(Z, X)Y\}$ . But it may be also regarded as a tensor of type $(1, 1)$ and
denoted by $S:T\Lambda/I\rightarrow TM$ ; it satisfies $S^{\prime}(X, Y)=g(SX, Y)$ . From the
Gauss equation and (1.1), the Ricci tensor $S$ is given by

(1.6) $S=c\{(2n+1)I-3\eta\otimes\xi\}+hA-A^{2}$ ,

where $h$ is the trace of $A$ . A real hypersurface $M$ of $M_{n}(c)$ is said to be
pseudo-Einstein if the Ricci tensor $S$ satisfies

$ SX=aX+b\eta(X)\xi$

for some smooth functions $a$ and $b$ on $M$ .

Now we quote the following in order to prove our results.

Theorem A ([13]). Let $M$ be a homogeneous real hypersurface of $P_{n}\mathbb{C}$ .
Then $M$ is a tube of radius $r$ over one of the following K\"ahler submani-
folds:

(A) a hyperplane $P_{n-1}\mathbb{C}$ , where $0<r<\frac{\pi}{2}$

(A) a totally geodesic $P_{k}\mathbb{C}(1\leq k\leq n-2)$ , where $0<r<\frac{\pi}{2}$

(B) a complex quadratic $Q_{\mathfrak{n}-1r}$ where $0<r<\frac{\pi}{4}$

(C) $P_{1}\mathbb{C}\times P_{(n-1)/2}\mathbb{C}$, where $0<r<\frac{\pi}{4}$ and $n(\geq 5)$ is odd,

(D) a complex Grassmann $G_{2,5}\mathbb{C}$ , where $0<r<\frac{\pi}{4}$ and $n=9$ ,

(E) a Hermitian symmetric space $SO(10)/U(5)$ ,

where $0<r<\frac{\pi}{4}$ and $n=15$ .
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Theorem $B$ ([1]). Let $M$ be a real hypersurface of $H_{\mathfrak{n}}\mathbb{C}$ . Then $M$ has
constant principal curvatures and $\xi$ is principal if and only if $M$ is locally
congruent to one of the following:

(A) a horosphere in $H_{\mathfrak{n}}\mathbb{C}$ ,

(A) a geodesic hypersphere $H_{0}\mathbb{C}$ or a tube over a hyperplane $H_{\mathfrak{n}-1}\mathbb{C}$ ,
(A) a tube over a totally geodesic $H_{k}\mathbb{C}(1\leq k\leq n-2)$ ,
(B) a tube over a totally real hyperbolic space $H_{n}\mathbb{R}$ .

Theorem $C$ ([10], [11]). Let $M$ be a real hypersurface of $M_{n}(c)$ . Then
$M$ satisfies $A\phi=\phi A$ if and only if $M$ is locally congruent to one of type
$A_{1}$ and $A_{2}$ when $c>0$ , and of type $A_{0},$ $A_{1}$ and $A_{2}$ when $c<0$ .
Theorem $D$ ([2], [7], [10]). Let $M$ be a real hypersurface of $M_{\mathfrak{n}}(c)$

whose Ricci tensor is pseudo-Einstein. Then $M$ is locally congruent to
one of type $A_{1},$ $A_{2}$ and $B$ when $c>0$ , and of type $A_{0}$ and $A_{1}$ when
$c<0$ .

Proposition A ([3], [9]). Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0$ .
If $\xi$ is principal, then the corresponding principal curvature $a$ is locally
constant.

Here we consider the case where the structure vector (is principal,
namely, $ A\xi=\alpha\xi$ . It follows from (1.5) that

(1.7) $2A\phi A=2c\phi+\alpha(A\phi+\phi A)$

and hence, if $AX=\lambda X$ for any vector field $X$ orthogonal to $\xi$ , then we
get

(1.8) $(2\lambda-\alpha)A\phi X=(\alpha\lambda+2c)\phi X$ .

Accordingly, it turns out that in the case where $a^{2}+c\neq 0,$ $\phi X$ is also
principal vector with principal ctirvature $\mu=(a\lambda+2c)/(2\lambda-a\cdot)$ , that
is, we obtain

(1.9) $A\phi X=\mu\phi X$ ,
$2\lambda-a\neq 0$ , $\mu=(a\lambda+2c)/(2\lambda-a)$ .
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2. Real liypersurfaces $ satis\Phi ingS\phi+\phi S=k\phi$

We denote by $M_{n}(c)$ a complex space form with the metric of con-
stant holomorphic sectional curvature $4c$ and $M$ a real hypersurface in
$M_{n}(c),$ $c\neq 0$ . In this section, we are concerned with $M$ satisfying the
following condition:

(2.1) $S\phi+\phi S=k_{1}\phi(k_{1}=constant)$ .

From (1.6) we obtain the condition (2.1) is equivalent to

(2.2) $ A^{2}\phi+\phi A^{2}-h(A\phi+\phi A)=k\phi$ , $k=2c(2n+1)-k_{1}$ .

Then we first prove the following.

Lemma 2.1. Let $M$ be a real hypersurface in $M_{n}(c),$ $c\neq 0$ . If it
satiesfies $ S\phi+\phi S=k\phi$ for a function $k$ and $ A\xi$ is principal such that
$\eta(A^{3}\xi)\neq trA$ , then $\xi$ is principal.

Proof. The condition (2.2) yields $\phi A^{2}\xi-h\phi A\xi=0$ . From our assump-
tion there is the function $\lambda=\eta(A^{3}\xi)$ on $M$ such that $ A^{2}\xi=\lambda A\xi$ . Then
we have $(\lambda-h)A\xi\in ker\phi$ , that is, $(\lambda-h)A\xi=\mu\xi$ for a function $\mu$ on
$M$ . Since $\lambda\neq h$ , we see that $\xi$ is principal. $\square $

Remark 1. In general, $\xi$ is principal” implies $ A\xi$ is principal”
But the converse is not true.

Remark 2. Let $M$ be a real hypersurface in $M_{n}(c),$ $c\neq 0$ . If $M$

satisfies the condition $ A^{2m-1}\phi+\phi A^{2m-1}=k\phi$ for $1\leq m\leq n$ , then
we can easily verify the fact that $\xi$ is principal. In fact, let $\lambda_{1},$

$\ldots,$
$\lambda_{d}$

are the distinct principal curvatures. Then, since $\phi A^{2m-1}\xi=0$ , we get
$\xi\in V_{\lambda_{i}}$ for some $i(1\leq i\leq d)$ and hence we obtain $\zeta$ is principal.

However, if $M$ satisfies the condition $ A^{2n\iota}\phi+\phi A^{2m}=k\phi$ for $ 1\leq$

$m\leq n$ , then we have $\phi A^{2m}\xi=0$ , which means $\xi\in V_{\lambda;}\oplus V_{-\lambda;}$ for some
$i(1\leq i\leq d)$ .

Remark 3. Yano and Kon [15] in $P_{n}\mathbb{C}$ and Suh [12] in $H_{n}\mathbb{C}$ showed
that $M$ satisfying the condition $ A\phi+\phi A=k\phi$ for a constant $k\neq 0$ is
locally congruent to one of type $A_{1}$ and $B$ , and of type $A_{0},$ $A_{1}$ and $B$ ,
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respectively. Recently, Takagi and the author of the present paper [5]
proved that $M$ in $M_{\mathfrak{n}}(c),$ $c\neq 0$ satisfying the following two conditions:
(i) $A\phi A,$ $A^{2}\phi+\phi A^{2}$ or $A^{2}\phi+aA\phi A+\phi A^{2}$ is equal to $ k\phi$ for constants
$a$ and $k$ and (ii) $\xi$ is principal is localy congruent to one of type $A_{1},$ $A_{2}$

with $r=\pi/4$ and $B$ when $c>0,$ and of type $A_{0},$ $A_{1}$ and $B$ when $c<0$ .

Now we need the following.

Lemma 2.2([3]). Let $M$ be a connected complete real hypersurface in
$P_{n}\mathbb{C}$ and assume that $\zeta$ is principal. If it satisfies (2.1), then $M$ is locally
$ congr\cdot uen\ell$ to type $A_{1}$ , type $B$ or some hypersurface of type $A_{2}$ .

According to Lemmas 2.1 and 2.2 the following is immediate.

Theorem 2.3. Let $M$ be a real hypersurface in $P_{n}\mathbb{C}$ . Assume that $ A\xi$

is principal such that $\eta(A^{3}\xi)\neq trA.$ Then it satisties $ S\phi+\phi S=k\phi$ for
a constant $k$ if and only if $M$ is locally congruent to type $A_{1}$ , type $B$ or
some hypersurface of type $A_{2}$ .

For a real hypersurface of $H_{\mathfrak{n}}\mathbb{C}$ we have the following.

Theorem 2.4. Let $M$ be a real hypersurface in $H_{n}\mathbb{C}.$ Assume that $ A\xi$

is principal such that $\eta(A^{3}\xi)\neq trA$ . Then it satisties $ S\phi+\phi S=k\phi$ for
a constant $k$ if and only if $M$ is locally congruent to one of the following:

(A) a horosphere in $H_{n}\mathbb{C}$ ,

(A) a geodesic hypersphere $H_{0}\mathbb{C}$ or a tube over a hyperplane $H_{\mathfrak{n}-1}\mathbb{C}$ ,

(B) a tube over a totally real hyperbohc space $H_{n}\mathbb{R}$ .

Proof. We may set $c=-1.$ Owing to (1.9) and Lenmua 2.1, our condition
(2.2) reduces

(2.3) $(\lambda^{2}+\mu^{2})-h(\lambda+\mu)=k$ , $k=-2(2n+1)-k_{1}$ ,

where $AX=\lambda X$ and $A\phi X=\mu\phi X$ for any vector field $X$ orthogonal
to $\xi$ . $Rom$ Proposition A and Lemma 2.1 we can consider the folowing
two cases: (I) $a^{2}-4\neq 0$ and (II) $\alpha^{2}-4=0$ .
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Case (I): Since $2\lambda-\alpha\neq 0$ , we see from (1.9) that $\phi X$ is also a principal
(unit) vector orthogonal to $\xi$ with the corresponding principal curvature
$\mu=(\alpha\lambda-2)/(2\lambda-a)$ . Then (2.3) gives us

(2.4) $4\lambda^{4}-4(a+h)\lambda^{3}+2(a^{2}+ha-2k)\lambda^{2}$

$+4(h-a+k\alpha)\lambda+4-2h\alpha-ka^{2}=0$ .

This, together with our assumption and Proposition $A$ , tells us that $M$

has at most five distinct constant principal curvatures. Thus according to
Theorem $B,$ $M$ is a homogeneous one. Then taking account of Berndt’s
classification theorem [1], we obtain that $M$ is congruent to one of type
$A_{0},$ $A_{1},$ $A_{2}$ and $B$ . Thus we must check whether or not these four model
spaces satisfy the condition (2.2) one by one. Since $\alpha^{2}\neq 4$ , it is enough
to check (2.2) for the type $A_{1},$ $A_{2}$ and $B$ .

First of all, let $M$ be the type $B$ . Then from the table in [1], we get
$a=2\tanh(2f\cdot),$ $\lambda=\tanh(r)$ and $\mu=\coth(r)$ , which implies

$\lambda+\mu=\frac{4}{a}$ and $\lambda\mu=1$ .

Combining this with (2.3), we find $k=(4/a)^{2}-h(4/a)-2$ . If we
substitute this into (2.4), then we have

$4a^{2}\lambda^{4}-(4a^{3}+4a^{2}h)\lambda^{3}+2(a^{4}+a^{3}h+4\alpha^{2}+8\alpha h-32)\lambda^{2}$

$-4(3a^{3}+3a^{2}h-16\alpha)\lambda+2\alpha^{4}+2a^{3}h-12a^{2}=0$ .

Then this equation can be decomposed into

$(a\lambda^{2}-4\lambda+a)(2a\lambda^{2}-2(a^{2}+ah-4)\lambda+\alpha^{3}+a^{2}h-6\alpha)=0$ .

Since the roots $\tanh(r)$ and $\coth(r)$ of the type $B$ satisfy the quadratic
equation $a\lambda^{2}-4\lambda+a=0$ , we see that the type $B$ satisfies (2.2).

Next, let $\Lambda/I$ be one of type $A_{1}$ and $A_{2}$ . Then owing to Theorem $C$ ,
our condition (2.2) is eqivalent to

(2.5) $ A^{2}\phi-hA\phi=\underline{\frac{k}{9}}\phi$ , $k=-2(2n+1)-k_{1}$ .
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If $\lambda f$ is the type $A_{2}$ , then $M$ ha.s three distinct constant principal cur-
vatures $\alpha=2\coth(2r),$ $\lambda=\tanh(r)$ and $\mu=\coth(’\cdot)$ , where $0<\lambda<1$ .
Thus we have

$\coth^{2}(r)-\tanh^{2}(r)-h(\coth(f\cdot)-taluh(r))=0$ ,

which implies $\tanh(r)+\coth(\cdot)=h$ because of $\tanh(r)\neq\coth(r)$ , that
is, $a=h$ . Substituting this into (2.5) we get $k=-2$ and hence we
have $k_{1}=-4n$ . Then (2.1) implies $ S\phi+\phi S=-4n\phi$ . Combining
this with (1.6) and Theorem $C$ , it follows $ S\phi=\phi S=-2n\phi$ . Then
$ S=-2nI+b\eta\otimes\xi$ for some function $b$ on $M$ . Thus we obtain the type
$A_{2}$ satisfying (2.1) is pseudo-Einstein. But it is contrary to Theorem
D. Therefore the type $A_{2}$ can not occur. If $M$ is the type $A_{1}$ , then
$M$ has two distinct constant principal curvatures $a=2\coth(2r)$ and
$\lambda=$ taiih(r) if $0<\lambda<1$ or $\lambda=$ coth(r) if $\lambda>1$ . Thus (2.5) yields
$k=-2(1+2(n-1)\tanh^{2}(r))$ or $k=-2(1+2(n-1)\coth^{2}(r))$ . Therefore
for such constant $k$ the type $A_{1}$ satisfies (2.5).

Case (II): First, we consider the subcase where $\alpha=2$ . Then (1.8)
gives forth to

$(\lambda-1)A\phi X=(\lambda-1)\phi X$ .

Let us take an open set $M_{0}=\{x\in M|\lambda(x)\neq 1\}$ . Then $A\phi X=\phi X$

on $Af_{0}$ , which implies $\mu=1$ on $M_{0}$ . Conibining this with (2.3), we get
$\lambda^{2}-h\lambda+(1-h-k)=0$ on $M_{0}$ , which means $\lambda$ is constant on $M_{0}$ .
On the other hazid, we have $\lambda=1$ on $M-M_{0}$ . Thus, the continuity
of principal curvatures yields the fact that if the set $M-M_{0}$ is not
empty, then $\lambda=1$ on $M$ . Hence $M$ is the type $A_{0}$ . For the case where
$M_{0}$ coincides with the whole $M$ , we find $2\lambda-a\neq 0$ and this case was
discussed in the Case (I).

Conversely, let $M$ be the type $A_{0}$ . Then $M$ has two distinct constant
principal ctirvatures $a=2$ and $\lambda=1$ . Substituting these into (2.5), we
get $k=2(1-h)=2(1-2n)$ . Thus for such constant $k$ , the type $A_{0}$

satisfies (2.5), namely, (2.2).
Next, let $a=-2$ . Then, by the same method as the above we have

$M$ is the type $A_{0}$ .

According to lemma 2.1 and Theorem 2.4 the following is immediate.
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Theorem2.5. Let $M$ be a real $hypers\cdot urface$ in $H_{n}\mathbb{C}$ . $Ass\cdot ume$ that $\xi$ is
principal. Then it satisties $ S\phi+\phi S=k\phi$ for a constant $k$ if and only if
$M$ is locally congruent to one of the $follo\cdot wing$ :

(A) a horosphere in $H_{n}\mathbb{C}$ ,
$(A_{1})$ a geodesic hypersphere $H_{0}\mathbb{C}$ or a tube over a hyperplane $H_{n-1}\mathbb{C}$ ,
(B) a tube over a totally real hyperbolic space $H_{n}\mathbb{R}$ .

3. Real llypersurfaces $satis\Phi ingS\phi S=k\phi$

Let $M$ be a real hypersurface in a complex space form $M_{n}(c),$ $c\neq 0$ .
In this section, we will consider $M$ satisfying the following condition:

(3.1) $S\phi S=k_{1}\phi(k_{1}=constant)$ .

From (1.6) it follows that the condition (3.1) is equivalent to

(3.2) $c(2n+1)h(A\phi+\phi A)-c(2n+1)(A^{2}\phi+\phi A^{2})$

$+h^{2}A\phi A-h(A^{2}\phi A+A\phi A^{2})+A^{2}\phi A^{2}=k\phi$ ,
$k=k_{1}-c^{2}(2n+1)^{2}$ .

Then we first have the following.

Theorem 3.1. Let $Af$ be a real hypersurface in $P_{n}\mathbb{C},$ $n\geq 3$ . Then it
satisties $ S\phi S=k\phi$ for a constant $k$ and $\xi$ is principal if and only if $M$

is locally congruent to one of the following:

(A) a tube of radius $r$ over a hyperplane $P_{n-1}\mathbb{C}$ , where $0<r<\underline{\pi}$

2
(B) a tube of radius $r$ over a complex quadratic $Q_{n-1}$ ,

where $0<r<\frac{\pi}{4}$

Proof. Assume that $\xi$ is principal. Let $X$ be a principal (unit) vector
orthogonal to $\xi$ with the corresponding principal curvature $\lambda$ . Then
we see from (1.9) that $\phi X$ is also a principal curvature (unit) vector
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orthogonal to $\xi$ with the corresponding principal curvature $\mu=(\alpha\lambda+$

$2)/(2\lambda-\alpha)$ , where we have set $c=1$ . Thus our condition (3.2) means

(3.3)
$\lambda^{2}\mu^{2}-(2n+1)(\lambda^{2}+\mu^{2})-h\lambda\mu(\lambda+\mu)+h(2n+1)(\lambda+\mu)$

$+h^{2}\lambda\mu=k$ , $k=k_{1}-(2n+1)^{2}$

Then we get

(3.4)
$(\alpha^{2}-2ah-8n-4)\lambda^{4}+2(4a+\alpha h^{2}+4an+4hn)\lambda^{3}$

$-(a^{2}(2+h^{2}+4n)+4\alpha h(1+n)+4(k-h^{2}-1))\lambda^{2}$

$+2(\alpha(2k-h^{2}-4n-2)+4hn)\lambda$

$-\alpha^{2}k-2\alpha h(2n+1)-8n-4=0$ .

Owing to Proposition A , (3.4) tells us that $M$ has at most five distinct
constant principal curvatures. Thus, accorrding to a theorem due to
Kimura [6] $M$ is homogeneous one. By virtue of the classification theo-
rem in [13], $M$ is one of type $A_{1},$ $A_{2},$ $B,$ $C,$ $D$ and $E$ . Hence, in order to
prove our theorem we must check the condition (3.2) one by one for the
above six model spaces.

First, let $M$ be one of type $C,$ $D$ and $E$ . Then from the table in [13],
it follows that

$\lambda+\mu=-\frac{4}{\alpha}$ and $\lambda\mu=-1$ ,

where $\lambda=\cot(r-\pi/4),$ $\mu=-\tan(r-\pi/4)$ (resp. $\lambda=$ cot $r,$ $\mu=$

$-\tan r)$ axid $a=2$ cot $2r$ . Thus taking account of this aiid (3.3) we find
$k=-(2n+1)h(4/a)-(2n+1)(2\alpha^{2}+16)/\alpha^{2}-h^{2}-h(4/a)+1$ . The
substitution of this into (3.4) gives rise to

(3.5)
$(a^{4}-2a^{3}h-8a^{2}n-4a^{2})\lambda^{4}+2(a^{3}(h^{2}+4n+4)\lambda^{3}$

$+4a^{2}hn)\lambda^{3}-(\alpha^{4}(h^{2}+4n+2)+4\alpha^{3}h(n+1)$

$-8\alpha^{2}(h^{2}+2n+1)-32\alpha h(n+1)-128n-64)\lambda^{2}$

$-(2a^{3}(3h^{2}+12n+4)+8\alpha^{2}h(3n+4)+64a(2n+1))\lambda$

$+a^{4}(h^{2}+4n+1)+2\alpha^{3}h(2n+3)+12a^{2}(2n+1)=0$ .
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Then (3.5) can be decomposed into

(3.6)
$(a\lambda^{2}+4\lambda-a)((a^{3}-2\alpha^{2}h-4\alpha-8an)\lambda^{2}$

$+(2a^{2}(h^{2}+4n+2)+8ah(n+1)+32n+16)\lambda$

$-a^{3}(4n+h^{2}+1)-2\alpha^{2}h(2n+3)-12a(2n+1))=0$ .

Since $\cot(r-\pi/4)and-\tan(r-\pi/4)$ satisfy the quadratic equation
$\alpha\lambda^{2}+4\lambda-\alpha=0$ , another roots cot $r$ and - tan $r$ of the types $C,$ $D$ and
$E$ must satisfy

$((\alpha^{3}-2a^{2}h-4a-8\alpha z)\lambda^{2}+(2\alpha^{2}(h^{2}+4n+2)+8\alpha h(n+1)+32n$

$+16)\lambda-a^{3}(4n+h^{2}+1)-2a^{2}h(2n+3)-12a(2n+1)=0$ .

However, since cot $r$ and – tan $r$ are the roots of the quadratic equation
$\lambda^{2}-a\lambda-1=0$ , comparing these two quadratic equations, we have

$a^{3}-2ha^{2}-4(2n+1)\alpha-1=0$ ,
$2(h^{2}+4n+2)\alpha^{2}+(8h(n+1)+1)a+16(2n+1)=0$ ,
$(4n+h^{2}+1)\alpha^{3}+2h(2n+3)a^{2}+12(2n+1)a-1=0$ .

Taking account of $a$ and $h$ of these types $C,$ $D$ aiid $E$ , we have a contra-
diction. Hence the type $C,$ $D$ and $E$ can not occur.

Next, let $M$ be the type B. Rom the table in [13], we see that
$\lambda+\mu=-4/\alpha$ and $\lambda\mu=-1$ , where $\lambda=\cot(r-\pi/4),$ $\mu=-\tan(r-\pi/4)$

and $\alpha=2$ cot 2,.. Then taking account of (3.6) we see that the type $B$

satisfies the condition (3.2).
Last, let $\lambda/I$ be one of type $A_{1}$ alud $A_{2}$ . Then owing to Theorem $C$ ,

(3.2) equals to

(3.7) $\lambda^{4}-2h\lambda^{3}+(h^{2}-2(2n+1))\lambda^{2}+2(2n+1)h\lambda=k$ ,

$k=k_{1}-(2n+1)^{2}$ .

If $M$ is the type $A_{2}$ , then $M$ has three distinct principal curvatures
$\alpha=2$ cot $2r,$ $\lambda=$ -tan $r$ and $\mu=\cot r$ . Thus we have

$ 2h(2n+1)(\cot r+\tan r)+(h^{2}-2(2n+1))(\cot^{2}\uparrow$

$-\tan^{2}r)-2h(\cot^{3}r+\tan^{3}r)+\cot^{4}r-\tan^{4}\Gamma^{\backslash }=0$ ,
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which yields

( $h$ –cot $ r+\tan$ r)(cot $ r+\tan$ r)(cot2 $r$

$+talu^{2}r-h$( $\cot r$ –tan $r$ ) $-4n-2$ ) $=0$ .

Then we get $a=h$ or $a^{2}-\alpha h-4n=0$ because of cot $r+\tan r\neq 0$ . First,
let $a=h$ . Substituting this into (3.7) we get $k=-2(2n+1)$ and hence
we have $k_{1}=4n^{2}-1$ . Then (3.1) implies $ S\phi S=(4n^{2}-1)\phi$ . Combining
this with (1.6) and Theorem $C$ , it follows $ S\phi=\phi S=\pm\sqrt{4n^{2}-1}\phi$ . Then
$ S=\pm\sqrt{4n^{2}-1}I+b\eta\otimes\xi$ for some function $b$ on $M$ , that is, $M$ is pseudo-
Einstein. But, owing to well-known theorem (cf. [2], [7], [15]) of pseudo-
Einstein real hypersurfaces in $P_{\mathfrak{n}}\mathbb{C}$ , we see that this is not the case. Next,

let $\alpha^{2}-h\alpha-4\tau=0$ . Then we get $\alpha(a-h)=4n$ . Since $M$ is type $A_{2}$ ,
we have $h=\alpha+2(p-1)$ cot $r-2(q-1)$ tan $r$ . Substituting this into the
above equation, we obtain $(p-1)$ cot2 $r+(q-1)$ tan2 $r=-2(n+1)+p+q$ .
This implies $p+q\geq 2(n+1)$ and hence it is contrary to the fact that
$4\leq p+q\leq n+1$ . Therefore this is not the case, too. Therefore, the
type $A_{2}$ does not occur.

If $Af$ is the type $A_{1}$ , then $M$ has two distinct principal curvatures
$a=2$ cot $2r$ and $\lambda=cot’\cdot$ . Thus from (3.7) it follows that for constant $k$

such that $k=\cot^{4}r-2h$ cot3 $r+(h^{2}-2(2n+1))$ cot2 $r+2(2n+1)h$ cot $r$ ,
the type $A_{1}$ satisfies (3.2). $\square $

For a real hypersurface of $H_{n}\mathbb{C}$ we have the following.

Theorem 3.2. Let $M$ be a real hypersurface in $H_{n}\mathbb{C},$ $n\geq 2$ . Then it
satisties $ S\phi S=k\phi$ for a constant $k$ and $\xi$ is principal if and only if $M$

is locally congruent to one of the following:

(A) a horosphere in $H_{n}\mathbb{C}$ ,
$(A_{1})$ a geodesic hypersphere $H_{0}\mathbb{C}$ or a tube over a hyperplane $H_{\mathfrak{n}-1}\mathbb{C}$ ,

(B) a tube over a totally real hyperbolic space $H_{\mathfrak{n}}R$ .

Proof. Assume that $\xi$ is principal. Let $X$ be a principal (unit) vector
orthogonal to $\xi$ with the corresponding principal curvature $\lambda$ . From
Proposition A and (1.9) we can consider the following two cases: (I)
$\alpha^{2}-4\neq 0_{al1}d$ (II) $a^{2}-4=0$ .
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Case (I): Since $2\lambda-\alpha\neq 0$ , we see from (1.9) that $\phi X$ is also a principal
(unit) vector orthogonal to $\xi$ with the corresponding principal curvature
$\lambda=(\alpha\lambda-2)/(2\lambda-\alpha)$ , where we have set $c=-1$ . Thus our condition
(3.2) means
(3.8)

$\lambda^{2}\mu^{2}+(2n+1)(\lambda^{2}+\mu^{2})-h\lambda\mu(\lambda+\mu)-h(2n+1)(\lambda+\mu)$

$+h^{2}\lambda\mu=k$ , $k=k_{1}-(2n+1)^{2}$

Then we get

(3.9)
$(a^{2}-2ah+8n+4)\lambda^{4}+2(\alpha h^{2}-4a-4\alpha n-4hn)\lambda^{3}$

$+(\alpha^{2}(2-h^{2}+4n)+4ah(1+n)-4(k+h^{2}-1))\lambda^{2}$

$+2(\alpha(2k+h^{2}-4n-2)+4hn)\lambda$

$-a^{2}k-2ah(2n+1)+8n+4=0$ .

Owing to Proposition A , (3.9) tells us that $M$ has at most five distinct
constant principal curvatures. Thus, accorrding to a theorem due to
Berndt [1] $\Lambda f$ is homogeneous one, that is, $M$ is congruent to one of type
$A_{0},$ $A_{1},$ $A_{2}$ and $B$ . Thus by the sanle argument as the above theorem we
must check the condition (3.2) one by one for these four model spaces.
Since $\alpha^{2}\neq 4$ , it is enough to check (3.2) for the type $A_{1},$ $A_{2}$ and $B$ .

First of all, let $M$ be the type $B$ . Then from the table in [1], we get
$a=2\tanh(2r),$ $\lambda=taluh(r)$ and $\mu=\coth(r)$ , which implies

$\lambda+\mu=\frac{4}{a}$ and $\lambda\mu=1$ .

Combining this with (3.8), we obtain $k=-(2n+1)h(4/a)+(2n+1)(16-$
$2a^{2})/\alpha^{2}+h^{2}-h(4/a)+1$ . The substitution of this into (3.9) gives rise
to
(3.10)

$(a^{4}-2\alpha^{3}h+8\alpha^{2}n+4a^{2})\lambda^{4}+2(\alpha^{3}(h^{2}-4n-4)$

$-4\alpha^{2}hn)\lambda^{3}+(\alpha^{4}(4n-h^{2}+2)+4a^{3}h(n+1)$

$+8a^{2}(2n+1-h^{2})+32ah(n+1)-64(2n+1))\lambda^{2}$

$+(2\alpha^{3}(3h^{2}-12n-4)-8a^{2}h(3n+4)+64a(2n+1))\lambda$

$+\alpha^{4}(4n+1-h^{2})+2\alpha^{3}h(2n+3)-12a^{2}(2n+1)=0$ .
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Then (3.10) can be decomposed into

$(a\lambda^{2}-4\lambda+a)((\alpha^{3}-2\alpha^{2}h+4a(2n+1))\lambda^{2}$

$+(2a^{2}(h^{2}-4n-2)-8\alpha h(n+1)+32n+16)\lambda$

$+\alpha^{3}(n+1-h^{2})+2\alpha^{2}h(2n+3)-12a(2n+1))=0$ .

Since the roots tanh(r) and $\coth(r)$ of the type $B$ satisfy the quadratic
equation $\alpha\lambda^{2}-4\lambda+a=0$ , we see that the type $B$ satisfies (3.2).

Next, let $M$ be one of type $A_{1}$ and $A_{2}$ . Then owing to Theorem $C$

(3.8) is equivalent to

(3.11)
$\lambda^{4}-2h\lambda^{3}+(h^{2}+2(2n+1))\lambda^{2}-2(2n+1)h\lambda=k$ ,

$k=k_{1}-(2n+1)^{2}$ .

If $Af$ is the type $A_{2}$ , then $M$ has three distinct constant principal cur-
vatures $a=2\coth(2r),$ $\lambda=\tanh(r)$ and $\mu=\coth(r)$ , where $0<\lambda<1$ .
Thus by means of (3.11) we have

ta.$nh^{4}(r)-\coth^{4}(r)-2h(\tanh^{3}(r)-\coth^{3}(r))+(h^{2}+2(2n+1))$

$(\tanh^{2}(r)-\coth^{2}(r))-2(2n+1)h(\tanh(r)-\coth(r))=0$ ,

which yields

$(h-\coth(r)-talA(r))(\tanh(r)-\coth(r))(\coth^{2}(r)$

$+\tanh^{2}(r)-h(\coth(r)+\tanh(r))+4n+2)=0$ .

Then we get $a=h$ or $a^{2}-ha+4n=0$ because of $\coth(\cdot)-\tanh(\gamma)\neq 0$ .
First, let $a=h$ . Substituting this into (3.11) we get $k=2(2n+1)$ and
hence we have $k_{1}=(2n+1)(2n+3)$ . Then (3.1) implies $S\phi S=(2n+$

$ 1)(2n+3)\phi$ . Combining this with (1.6) and Theorem $C$ , it follows $S\phi=$

$\phi S=\pm\sqrt{(2n+1)(2n+3)}\phi$ . Then $ S=\pm\sqrt{(2n+1)(2n+3)}I+b\eta\otimes\xi$

for some function $b$ on $M$ , that is, $M$ is pseudo-Einstein. However,
owing to Theorem $D$ , we see that this is not the case. Next, let $a^{2}-$

$h\alpha+4n=0$ . Then we get $\alpha(\alpha-h)=-4n$ . Since we may say $a\neq h$ ,
we have $\alpha=4n/(h-a)$ . On the other halld, type $A_{2}$ satisfies the
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quadratic equation $a\lambda^{2}-4\lambda+\alpha=0$ . Combining these two equations
we get $taluh^{2}(r)=\{p-(n+1)\}/\{(n+1)-q\}$ or $\coth^{2}(r)=\{q-(n+$

$1)\}/\{(\uparrow z+1)-p\}$ . This is contrary to the fact that $4\leq p+q\leq n+1$ .
Therefore this is not the case, too. Consequently, the type $A_{2}$ can not
occur. If $A/I$ is the type $A_{1}$ , then $M$ has two distinct constant principal
curvatures $a=2\coth(2r)$ and $\lambda=tallh(r)$ if $0<\lambda<1$ or $\lambda=\coth(\Gamma)$

if $\lambda>1$ . Then from (3.11), it follows that for constant $k$ such that $k=$

tanh4 $(r)-2h$ tanh3 $(r)+(h^{2}+2(2n+1))$ tanh2 $(r)-2(2n+1)h\tanh(r)$ or
$k=\coth^{4}(r)-2h$ coth3 $(r)+(h^{2}+2(2n+1))$ coth2 $(r)-2(2n+1)h\coth(r)$ ,
the type $A_{1}$ satisfies (3.8).

Case (II): First, we consider the subcase where $\alpha=2$ . Then (1.8)
gives forth to

$(\lambda-1)A\phi X=(\lambda-1)\phi X$ .

Let us take an open set $M_{0}=\{x\in M|\lambda(x)\neq 1\}$ . Then $A\phi X=$

$\phi X$ on $M_{0}$ , which implies $\mu=1$ . Combining this with (3.8), we get
$(2(n+1)-h)\lambda^{2}+(h^{2}-2h(n+1))\lambda+(2n+1)(1-h)-k=0$ on $M_{0}$ ,
which means $\lambda$ is constant on $M_{0}$ . On the other hand, we have $\lambda=1$

on $M-M_{0}$ . Thus, the continuity of principal curvatures yields the fact
that if the set $M-M_{0}$ is not empty, then $\lambda=1$ on $M$ . Hence $M$ is the
type $A_{0}$ . For the case where $M_{0}$ coincides with the whole $M$ , we find
$2\lambda-\alpha\neq 0$ and this case was discussed in the Case (I).

Conversely, let $M$ be the type $A_{0}$ . Then $M$ has two distinct constant
principal curvatures $a=2$ and $\lambda=1$ . Substituting these into (3.11),
we obtain $k=h^{2}-4(n+1)h+4n+3=3-4n-4n^{2}$ . Thus for such
consta.nt $k$ the type $A_{0}$ satisfies (3.11), namely, (3.2).

Next, let $a=-2$ . Then, by the same method as the above we have
$M$ is the type $A_{0}$ .
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