CERTAIN REAL HYPERSURFACES OF A COMPLEX SPACE FORM II

Hyang Sook Kim
Yong Soo Рho

0. Introduction

We denote by $M_{n}(c)$ a complete and simply connected complex n dimensional Kählerian manifold of constant holomorphic sectional curvature $4 c$, which is called a complex space form. Such an $M_{n}(c)$ is biholomorphically isometric to a complex projective space $P_{n} \mathbb{C}$, a complex Euclidean space \mathbb{C}^{n} or a complex hyperbolic space $H_{n} \mathbb{C}$, according as $c>0, c=0$ or $c<0$.

In this paper, we consider a real hypersurface M in $M_{n}(c)$. Typical examples of M in $P_{n} \mathbb{C}$ are the six model spaces of type A_{1}, A_{2}, B, C, D and E (cf. Theorem A in $\S 1$), and the ones of M in $H_{n} \mathbb{C}$ are the four model spaces of type A_{0}, A_{1}, A_{2} and B (cf. Theorem B in $\S 1$), which are all given as orbits under certain Lie subgroups of the group consisting of all isometries of $P_{n} \mathbb{C}$ or $H_{n} \mathbb{C}$. Denote by (ϕ, ξ, η, g) the almost contact metric structure of M induced from the almost complex structure of $M_{n}(c)$, by A the shape operator and by S the Ricci tensor of M. Many differential geometers have studied M from various points of view. For example, Berndt [1] and Takagi [13] investigated the homogeneity of M. Kimura [6] proved that if all principal curvatures of M in $P_{\boldsymbol{n}} \mathbb{C}$ are constant and ξ is principal vector of A, then M is congruent to one of model spaces. Moreover, Yano and Kon [15] studied M in $P_{n} \mathbb{C}$ satisfying the condition $A \phi+\phi A=k \phi$ for a constant $k \neq 0$ and Ki and Suh [3]

[^0]investigated M in $P_{n} \mathbb{C}$ satisfying the condition $S \phi+\phi S=k \phi$ for a constant k. Recently, Takagi and the author of the present paper [5] studied M in $M_{n}(c), c \neq 0$ satisfying the condition that $A^{2} \phi+\phi A^{2}$, $A \phi A$ or $A^{2} \phi+a A \phi A+\phi A^{2}$ is equal to $k \phi$ for constants a and k.

In the present paper, we shall classify a real hypersurface M in $M_{n}(c)$ satisfying the condition that $S \phi+\phi S$ or $S \phi S$ is equal to $k \phi$ for a constant k.

1. Preliminaries

We begin with recalling the basic properties of real hypersurfaces of a complex space form. Let N be a unit normal vector field on a neighborhood of a point p in M and J the almost complex structure of $M_{n}(c)$. For a local vector field X on a neighborhood of p, the images of X and N under the transformation J can be represented as

$$
J X=\phi X+\eta(X) N, \quad J N=-\xi
$$

where ϕ defines a skew-symmetric transformation on the tangent bundle $T M$ of M, while η and ξ denote a 1 -form and a vector field on the neighborhood of p, respectively. Moreover, it is seen that $g(\xi, X)=$ $\eta(X)$, where g denotes the induced Riemannian metric on M. By the properties of the almost complex structure J, the set (ϕ, ξ, η, g) of tensors satisfies

$$
\begin{equation*}
\phi^{2}=-I+\eta \otimes \xi, \phi \xi=0, \quad \eta(\phi X)=0 \quad \eta(\xi)=1, \tag{1.1}
\end{equation*}
$$

where I denotes the identity transformation. Accordingly, this set (ϕ, ξ, η, g) defines the almost contact metric structure on M. Furthermore, the covariant derivatives of the structure tensors are given by

$$
\begin{gather*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi \tag{1.2}\\
\nabla_{X} \xi=\phi A X
\end{gather*}
$$

where ∇ is the Riemannian connection of g. Since the ambient space is of constant holomorphic sectional curvature $4 c$, the equations of Gauss and Codazzi are respectively given as follows :

$$
\begin{align*}
R(X, Y) Z= & c\{g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X \tag{1.4}\\
& -g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z\} \\
& +g(A Y, Z) A X-g(A X, Z) A Y,
\end{align*}
$$

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=c\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\} \tag{1.5}
\end{equation*}
$$

where R denotes the Riemannian curvature tensor of M. The Ricci tensor S^{\prime} of M is the tensor of type $(0,2)$ given by $S^{\prime}(X, Y)=\operatorname{tr}\{Z \rightarrow$ $R(Z, X) Y\}$. But it may be also regarded as a tensor of type (1,1) and denoted by $S: T M \rightarrow T M$; it satisfies $S^{\prime}(X, Y)=g(S X, Y)$. From the Gauss equation and (1.1), the Ricci tensor S is given by

$$
\begin{equation*}
S=c\{(2 n+1) I-3 \eta \otimes \xi\}+h A-A^{2} \tag{1.6}
\end{equation*}
$$

where h is the trace of A. A real hypersurface M of $M_{n}(c)$ is said to be pseudo-Einstein if the Ricci tensor S satisfies

$$
S X=a X+b \eta(X) \xi
$$

for some smooth functions a and b on M.

Now we quote the following in order to prove our results.
Theorem A ([13]). Let M be a homogeneous real hypersurface of $P_{\boldsymbol{n}} \mathbb{C}$. Then M is a tube of radius r over one of the following Kähler submanifolds:
(A_{1}) a hyperplane $P_{n-1} \mathbb{C}$, where $0<r<\frac{\pi}{2}$,
(A_{2}) a totally geodesic $P_{k} \mathbb{C}(1 \leq k \leq n-2)$, where $0<r<\frac{\pi}{2}$,
(B) a complex quadratic Q_{n-1}, where $0<r<\frac{\pi}{4}$,
(C) $\quad P_{1} \mathbb{C} \times P_{(n-1) / 2} \mathbb{C}$, where $0<r<\frac{\pi}{4}$ and $n(\geq 5)$ is odd,
(D) a complex Grassmann $G_{2,5} \mathbb{C}$, where $0<r<\frac{\pi}{4}$ and $n=9$,
(E) a Hermitian symmetric space $S O(10) / U(5)$, where $0<r<\frac{\pi}{4}$ and $n=15$.

Theorem B ([1]). Let M be a real hypersurface of $H_{\boldsymbol{n}} \mathbb{C}$. Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the following:
$\left(\mathrm{A}_{0}\right)$ a horosphere in $H_{n} \mathbb{C}$,
$\left(\mathrm{A}_{1}\right)$ a geodesic hypersphere $H_{0} \mathbb{C}$ or a tube over a hyperplane $H_{n-1} \mathbb{C}$,
$\left(\mathrm{A}_{2}\right)$ a tube over a totally geodesic $H_{k} \mathbb{C}(1 \leq k \leq n-2)$,
(B) a tube over a totally real hyperbolic space $H_{n} \mathbb{R}$.

Theorem C ([10], [11]). Let M be a real hypersurface of $M_{n}(c)$. Then M satisfies $A \phi=\phi A$ if and only if M is locally congruent to one of type A_{1} and A_{2} when $c>0$, and of type A_{0}, A_{1} and A_{2} when $c<0$.
Theorem \mathbf{D} ([2], [7], [10]). Let M be a real hypersurface of $M_{n}(c)$ whose Ricci tensor is pseudo-Einstein. Then M is locally congruent to one of type A_{1}, A_{2} and B when $c>0$, and of type A_{0} and A_{1} when $c<0$.

Proposition A ([3], [9]). Let M be a real hypersurface of $M_{n}(c), c \neq 0$. If ξ is principal, then the corresponding principal curvature α is locally constant.

Here we consider the case where the structure vector ξ is principal, namely, $A \xi=\alpha \xi$. It follows from (1.5) that

$$
\begin{equation*}
2 A \phi A=2 c \phi+\alpha(A \phi+\phi A) \tag{1.7}
\end{equation*}
$$

and hence, if $A X=\lambda X$ for any vector field X orthogonal to ξ, then we get

$$
\begin{equation*}
(2 \lambda-\alpha) A \phi X=(\alpha \lambda+2 c) \phi X \tag{1.8}
\end{equation*}
$$

Accordingly, it turns out that in the case where $\alpha^{2}+c \neq 0, \phi X$ is also principal vector with principal curvature $\mu=(\alpha \lambda+2 c) /(2 \lambda-\alpha)$, that is, we obtain

$$
\begin{align*}
& A \phi X=\mu \phi X, \tag{1.9}\\
& 2 \lambda-\alpha \neq 0, \quad \mu=(\alpha \lambda+2 c) /(2 \lambda-\alpha) .
\end{align*}
$$

2. Real hypersurfaces satisfying $S \phi+\phi S=k \phi$

We denote by $M_{n}(c)$ a complex space form with the metric of constant holomorphic sectional curvature $4 c$ and M a real hypersurface in $M_{n}(c), c \neq 0$. In this section, we are concerned with M satisfying the following condition:

$$
\begin{equation*}
S \phi+\phi S=k_{1} \phi \quad\left(k_{1}=\text { constant }\right) . \tag{2.1}
\end{equation*}
$$

From (1.6) we obtain the condition (2.1) is equivalent to

$$
\begin{equation*}
A^{2} \phi+\phi A^{2}-h(A \phi+\phi A)=k \phi, \quad k=2 c(2 n+1)-k_{1} . \tag{2.2}
\end{equation*}
$$

Then we first prove the following.
Lemma 2.1. Let M be a real hypersurface in $M_{n}(c), c \neq 0$. If it satiesfies $S \phi+\phi S=k \phi$ for a function k and $A \xi$ is principal such that $\eta\left(A^{3} \xi\right) \neq \operatorname{tr} A$, then ξ is principal.

Proof. The condition (2.2) yields $\phi A^{2} \xi-h \phi A \xi=0$. From our assumption there is the function $\lambda=\eta\left(A^{3} \xi\right)$ on M such that $A^{2} \xi=\lambda A \xi$. Then we have $(\lambda-h) A \xi \in \operatorname{ker} \phi$, that is, $(\lambda-h) A \xi=\mu \xi$ for a function μ on M. Since $\lambda \neq h$, we see that ξ is principal.

Remark 1. In general, " ξ is principal" implies " $A \xi$ is principal". But the converse is not true.

Remark 2. Let M be a real hypersurface in $M_{n}(c), c \neq 0$. If M satisfies the condition $A^{2 m-1} \phi+\phi A^{2 m-1}=k \phi$ for $1 \leq m \leq n$, then we can easily verify the fact that ξ is principal. In fact, let $\lambda_{1}, \ldots, \lambda_{d}$ are the distinct principal curvatures. Then, since $\phi A^{2 m-1} \xi=0$, we get $\xi \in V_{\lambda_{i}}$ for some $i(1 \leq i \leq d)$ and hence we obtain ξ is principal.

However, if M satisfies the condition $A^{2 m} \phi+\phi A^{2 m}=k \phi$ for $1 \leq$ $m \leq n$, then we have $\phi A^{2 m} \xi=0$, which means $\xi \in V_{\lambda_{i}} \oplus V_{-\lambda_{i}}$ for some $i(1 \leq i \leq d)$.

Remark 3. Yano and Kon [15] in $P_{n} \mathbb{C}$ and Suh [12] in $H_{n} \mathbb{C}$ showed that M satisfying the condition $A \phi+\phi A=k \phi$ for a constant $k \neq 0$ is locally congruent to one of type A_{1} and B, and of type A_{0}, A_{1} and B,
respectively. Recently, Takagi and the author of the present paper [5] proved that M in $M_{n}(c), c \neq 0$ satisfying the following two conditions: (i) $A \phi A, A^{2} \phi+\phi A^{2}$ or $A^{2} \phi+a A \phi A+\phi A^{2}$ is equal to $k \phi$ for constants a and k and (ii) ξ is principal is locally congruent to one of type A_{1}, A_{2} with $r=\pi / 4$ and B when $c>0$, and of type A_{0}, A_{1} and B when $c<0$.

Now we need the following.
Lemma 2.2([3]). Let M be a connected complete real hypersurface in $P_{n} \mathbb{C}$ and assume that ξ is principal. If it satisfies (2.1), then M is locally congruent to type A_{1}, type B or some hypersurface of type A_{2}.

According to Lemmas 2.1 and 2.2 the following is immediate.
Theorem 2.3. Let M be a real hypersurface in $P_{n} \mathbb{C}$. Assume that $A \xi$ is principal such that $\eta\left(A^{3} \xi\right) \neq \operatorname{tr} A$. Then it satisties $S \phi+\phi S=k \phi$ for a constant k if and only if M is locally congruent to type A_{1}, type B or some hypersurface of type A_{2}.

For a real hypersurface of $H_{\boldsymbol{n}} \mathbb{C}$ we have the following.
Theorem 2.4. Let M be a real hypersurface in $H_{n} \mathbb{C}$. Assume that $A \xi$ is principal such that $\eta\left(A^{3} \xi\right) \neq \operatorname{tr} A$. Then it satisties $S \phi+\phi S=k \phi$ for a constant k if and only if M is locally congruent to one of the following:
$\left(\mathrm{A}_{0}\right)$ a horosphere in $H_{n} \mathbb{C}$,
$\left(\mathrm{A}_{1}\right)$ a geodesic hypersphere $H_{0} \mathbb{C}$ or a tube over a hyperplane $H_{n-1} \mathbb{C}$,
(B) a tube over a totally real hyperbolic space $H_{n} \mathbb{R}$.

Proof. We may set $c=-1$. Owing to (1.9) and Lemma 2.1, our condition (2.2) reduces

$$
\begin{equation*}
\left(\lambda^{2}+\mu^{2}\right)-h(\lambda+\mu)=k, \quad k=-2(2 n+1)-k_{1}, \tag{2.3}
\end{equation*}
$$

where $A X=\lambda X$ and $A \phi X=\mu \phi X$ for any vector field X orthogonal to ξ. From Proposition A and Lemma 2.1 we can consider the following two cases: (I) $\alpha^{2}-4 \neq 0$ and (II) $\alpha^{2}-4=0$.

Case (I): Since $2 \lambda-\alpha \neq 0$, we see from (1.9) that ϕX is also a principal (unit) vector orthogonal to ξ with the corresponding principal curvature $\mu=(\alpha \lambda-2) /(2 \lambda-\alpha)$. Then (2.3) gives us

$$
\begin{align*}
& 4 \lambda^{4}-4(\alpha+h) \lambda^{3}+2\left(\alpha^{2}+h \alpha-2 k\right) \lambda^{2} \tag{2.4}\\
& +4(h-\alpha+k \alpha) \lambda+4-2 h \alpha-k \alpha^{2}=0
\end{align*}
$$

This, together with our assumption and Proposition A, tells us that M has at most five distinct constant principal curvatures. Thus according to Theorem B, M is a homogeneous one. Then taking account of Berndt's classification theorem [1], we obtain that M is congruent to one of type A_{0}, A_{1}, A_{2} and B. Thus we must check whether or not these four model spaces satisfy the condition (2.2) one by one. Since $\alpha^{2} \neq 4$, it is enough to check (2.2) for the type A_{1}, A_{2} and B.

First of all, let M be the type B. Then from the table in [1], we get $\alpha=2 \tanh (2 r), \lambda=\tanh (r)$ and $\mu=\operatorname{coth}(r)$, which implies

$$
\lambda+\mu=\frac{4}{\alpha} \text { and } \lambda \mu=1
$$

Combining this with (2.3), we find $k=(4 / \alpha)^{2}-h(4 / \alpha)-2$. If we substitute this into (2.4), then we have

$$
\begin{aligned}
& 4 \alpha^{2} \lambda^{4}-\left(4 \alpha^{3}+4 \alpha^{2} h\right) \lambda^{3}+2\left(\alpha^{4}+\alpha^{3} h+4 \alpha^{2}+8 \alpha h-32\right) \lambda^{2} \\
& -4\left(3 \alpha^{3}+3 \alpha^{2} h-16 \alpha\right) \lambda+2 \alpha^{4}+2 \alpha^{3} h-12 \alpha^{2}=0 .
\end{aligned}
$$

Then this equation can be decomposed into

$$
\left(\alpha \lambda^{2}-4 \lambda+\alpha\right)\left(2 \alpha \lambda^{2}-2\left(\alpha^{2}+\alpha h-4\right) \lambda+\alpha^{3}+\alpha^{2} h-6 \alpha\right)=0 .
$$

Since the roots $\tanh (r)$ and $\operatorname{coth}(r)$ of the type B satisfy the quadratic equation $\alpha \lambda^{2}-4 \lambda+\alpha=0$, we see that the type B satisfies (2.2).

Next, let M be one of type A_{1} and A_{2}. Then owing to Theorem C, our condition (2.2) is eqivalent to

$$
\begin{equation*}
A^{2} \phi-h A \phi=\frac{k}{2} \phi, \quad k=-2(2 n+1)-k_{1} . \tag{2.5}
\end{equation*}
$$

If M is the type A_{2}, then M has three distinct constant principal curvatures $\alpha=2 \operatorname{coth}(2 r), \lambda=\tanh (r)$ and $\mu=\operatorname{coth}(r)$, where $0<\lambda<1$. Thus we have

$$
\operatorname{coth}^{2}(r)-\tanh ^{2}(r)-h(\operatorname{coth}(r)-\tanh (r))=0,
$$

which implies $\tanh (r)+\operatorname{coth}(r)=h$ because of $\tanh (r) \neq \operatorname{coth}(r)$, that is, $\alpha=h$. Substituting this into (2.5) we get $k=-2$ and hence we have $k_{1}=-4 n$. Then (2.1) implies $S \phi+\phi S=-4 n \phi$. Combining this with (1.6) and Theorem C, it follows $S \phi=\phi S=-2 n \phi$. Then $S=-2 n I+b \eta \otimes \xi$ for some function b on M. Thus we obtain the type A_{2} satisfying (2.1) is pseudo-Einstein. But it is contrary to Theorem D. Therefore the type A_{2} can not occur. If M is the type A_{1}, then M has two distinct constant principal curvatures $\alpha=2 \operatorname{coth}(2 r)$ and $\lambda=\tanh (r)$ if $0<\lambda<1$ or $\lambda=\operatorname{coth}(r)$ if $\lambda>1$. Thus (2.5) yields $k=-2\left(1+2(n-1) \tanh ^{2}(r)\right)$ or $k=-2\left(1+2(n-1) \operatorname{coth}^{2}(r)\right)$. Therefore for such constant k the type A_{1} satisfies (2.5).

Case (II): First, we consider the subcase where $\alpha=2$. Then (1.8) gives forth to

$$
(\lambda-1) A \phi X=(\lambda-1) \phi X .
$$

Let us take an open set $M_{0}=\{x \in M \mid \lambda(x) \neq 1\}$. Then $A \phi X=\phi X$ on M_{0}, which implies $\mu=1$ on M_{0}. Combining this with (2.3), we get $\lambda^{2}-h \lambda+(1-h-k)=0$ on M_{0}, which means λ is constant on M_{0}. On the other hand, we have $\lambda=1$ on $M-M_{0}$. Thus, the continuity of principal curvatures yields the fact that if the set $M-M_{0}$ is not empty, then $\lambda=1$ on M. Hence M is the type A_{0}. For the case where M_{0} coincides with the whole M, we find $2 \lambda-\alpha \neq 0$ and this case was discussed in the Case (I).

Conversely, let M be the type A_{0}. Then M has two distinct constant principal curvatures $\alpha=2$ and $\lambda=1$. Substituting these into (2.5), we get $k=2(1-h)=2(1-2 n)$. Thus for such constant k, the type A_{0} satisfies (2.5), namely, (2.2).

Next, let $\alpha=-2$. Then, by the same method as the above we have M is the type A_{0}.

According to lemma 2.1 and Theorem 2.4 the following is immediate.

Theorem 2.5. Let M be a real hypersurface in $H_{n} \mathbb{C}$. Assume that ξ is principal. Then it satisties $S \phi+\phi S=k \phi$ for a constant k if and only if M is locally congruent to one of the following:
$\left(\mathrm{A}_{0}\right)$ a horosphere in $H_{n} \mathbb{C}$,
$\left(\mathrm{A}_{1}\right)$ a geodesic hypersphere $H_{0} \mathbb{C}$ or a tube over a hyperplane $H_{n-1} \mathbb{C}$,
(B) a tube over a totally real hyperbolic space $H_{n} \mathbb{R}$.

3. Real hypersurfaces satisfying $S \phi S=k \phi$

Let M be a real hypersurface in a complex space form $M_{n}(c), c \neq 0$. In this section, we will consider M satisfying the following condition:

$$
\begin{equation*}
S \phi S=k_{1} \phi \quad\left(k_{1}=\text { constant }\right) . \tag{3.1}
\end{equation*}
$$

From (1.6) it follows that the condition (3.1) is equivalent to

$$
\begin{gather*}
c(2 n+1) h(A \phi+\phi A)-c(2 n+1)\left(A^{2} \phi+\phi A^{2}\right) \tag{3.2}\\
+h^{2} A \phi A-h\left(A^{2} \phi A+A \phi A^{2}\right)+A^{2} \phi A^{2}=k \phi, \\
k=k_{1}-c^{2}(2 n+1)^{2} .
\end{gather*}
$$

Then we first have the following.
Theorem 3.1. Let M be a real hypersurface in $P_{n} \mathbb{C}, n \geq 3$. Then it satisties $S \phi S=k \phi$ for a constant k and ξ is principal if and only if M is locally congruent to one of the following:
$\left(\mathrm{A}_{1}\right)$ a tube of radius r over a hyperplane $P_{n-1} \mathbb{C}$, where $0<r<\frac{\pi}{2}$,
(B) a tube of radius r over a complex quadratic Q_{n-1}, where $0<r<\frac{\pi}{4}$.

Proof. Assume that ξ is principal. Let X be a principal (unit) vector orthogonal to ξ with the corresponding principal curvature λ. Then we see from (1.9) that ϕX is also a principal curvature (unit) vector
orthogonal to ξ with the corresponding principal curvature $\mu=(\alpha \lambda+$ $2) /(2 \lambda-\alpha)$, where we have set $c=1$. Thus our condition (3.2) means

$$
\begin{gather*}
\lambda^{2} \mu^{2}-(2 n+1)\left(\lambda^{2}+\mu^{2}\right)-h \lambda \mu(\lambda+\mu)+h(2 n+1)(\lambda+\mu) \tag{3.3}\\
+h^{2} \lambda \mu=k, \quad k=k_{1}-(2 n+1)^{2} .
\end{gather*}
$$

Then we get

$$
\begin{align*}
& \left(\alpha^{2}-2 \alpha h-8 n-4\right) \lambda^{4}+2\left(4 \alpha+\alpha h^{2}+4 \alpha n+4 h n\right) \lambda^{3} \tag{3.4}\\
& -\left(\alpha^{2}\left(2+h^{2}+4 n\right)+4 \alpha h(1+n)+4\left(k-h^{2}-1\right)\right) \lambda^{2} \\
& +2\left(\alpha\left(2 k-h^{2}-4 n-2\right)+4 h n\right) \lambda \\
& -\alpha^{2} k-2 \alpha h(2 n+1)-8 n-4=0 .
\end{align*}
$$

Owing to Proposition A, (3.4) tells us that M has at most five distinct constant principal curvatures. Thus, accorrding to a theorem due to Kimura [6] M is homogeneous one. By virtue of the classification theorem in [13], M is one of type A_{1}, A_{2}, B, C, D and E. Hence, in order to prove our theorem we must check the condition (3.2) one by one for the above six model spaces.

First, let M be one of type C, D and E. Then from the table in [13], it follows that

$$
\lambda+\mu=-\frac{4}{\alpha} \text { and } \lambda \mu=-1
$$

where $\lambda=\cot (r-\pi / 4), \mu=-\tan (r-\pi / 4)$ (resp. $\lambda=\cot r, \mu=$ $-\tan r$) and $\alpha=2 \cot 2 r$. Thus taking account of this and (3.3) we find $k=-(2 n+1) h(4 / \alpha)-(2 n+1)\left(2 \alpha^{2}+16\right) / \alpha^{2}-h^{2}-h(4 / \alpha)+1$. The substitution of this into (3.4) gives rise to

$$
\begin{align*}
& \left(\alpha^{4}-2 \alpha^{3} h-8 \alpha^{2} n-4 \alpha^{2}\right) \lambda^{4}+2\left(\alpha^{3}\left(h^{2}+4 n+4\right) \lambda^{3}\right. \tag{3.5}\\
& \left.+4 \alpha^{2} h n\right) \lambda^{3}-\left(\alpha^{4}\left(h^{2}+4 n+2\right)+4 \alpha^{3} h(n+1)\right. \\
& \left.-8 \alpha^{2}\left(h^{2}+2 n+1\right)-32 \alpha h(n+1)-128 n-64\right) \lambda^{2} \\
& -\left(2 \alpha^{3}\left(3 h^{2}+12 n+4\right)+8 \alpha^{2} h(3 n+4)+64 \alpha(2 n+1)\right) \lambda \\
& +\alpha^{4}\left(h^{2}+4 n+1\right)+2 \alpha^{3} h(2 n+3)+12 \alpha^{2}(2 n+1)=0 .
\end{align*}
$$

Then (3.5) can be decomposed into

$$
\begin{align*}
& \left(\alpha \lambda^{2}+4 \lambda-\alpha\right)\left(\left(\alpha^{3}-2 \alpha^{2} h-4 \alpha-8 \alpha n\right) \lambda^{2}\right. \tag{3.6}\\
& +\left(2 \alpha^{2}\left(h^{2}+4 n+2\right)+8 \alpha h(n+1)+32 n+16\right) \lambda \\
& \left.-\alpha^{3}\left(4 n+h^{2}+1\right)-2 \alpha^{2} h(2 n+3)-12 \alpha(2 n+1)\right)=0
\end{align*}
$$

Since $\cot (r-\pi / 4)$ and $-\tan (r-\pi / 4)$ satisfy the quadratic equation $\alpha \lambda^{2}+4 \lambda-\alpha=0$, another roots $\cot r$ and $-\tan r$ of the types C, D and E must satisfy

$$
\begin{aligned}
& \left(\left(\alpha^{3}-2 \alpha^{2} h-4 \alpha-8 \alpha n\right) \lambda^{2}+\left(2 \alpha^{2}\left(h^{2}+4 n+2\right)+8 \alpha h(n+1)+32 n\right.\right. \\
& +16) \lambda-\alpha^{3}\left(4 n+h^{2}+1\right)-2 \alpha^{2} h(2 n+3)-12 \alpha(2 n+1)=0
\end{aligned}
$$

However, since $\cot r$ and $-\tan r$ are the roots of the quadratic equation $\lambda^{2}-\alpha \lambda-1=0$, comparing these two quadratic equations, we have

$$
\begin{aligned}
& \alpha^{3}-2 h \alpha^{2}-4(2 n+1) \alpha-1=0 \\
& 2\left(h^{2}+4 n+2\right) \alpha^{2}+(8 h(n+1)+1) \alpha+16(2 n+1)=0 \\
& \left(4 n+h^{2}+1\right) \alpha^{3}+2 h(2 n+3) \alpha^{2}+12(2 n+1) \alpha-1=0 .
\end{aligned}
$$

Taking account of α and h of these types C, D and E, we have a contradiction. Hence the type C, D and E can not occur.

Next, let M be the type B. From the table in [13], we see that $\lambda+\mu=-4 / \alpha$ and $\lambda \mu=-1$, where $\lambda=\cot (r-\pi / 4), \mu=-\tan (r-\pi / 4)$ and $\alpha=2 \cot 2 r$. Then taking account of (3.6) we see that the type B satisfies the condition (3.2).

Last, let M be one of type A_{1} and A_{2}. Then owing to Theorem C, (3.2) equals to

$$
\begin{gather*}
\lambda^{4}-2 h \lambda^{3}+\left(h^{2}-2(2 n+1)\right) \lambda^{2}+2(2 n+1) h \lambda=k \tag{3.7}\\
k=k_{1}-(2 n+1)^{2}
\end{gather*}
$$

If M is the type A_{2}, then M has three distinct principal curvatures $\alpha=2 \cot 2 r, \lambda=-\tan r$ and $\mu=\cot r$. Thus we have

$$
\begin{aligned}
& 2 h(2 n+1)(\cot r+\tan r)+\left(h^{2}-2(2 n+1)\right)\left(\cot ^{2} r\right. \\
& \left.-\tan ^{2} r\right)-2 h\left(\cot ^{3} r+\tan ^{3} r\right)+\cot ^{4} r-\tan ^{4} r=0,
\end{aligned}
$$

which yields

$$
\begin{aligned}
& (h-\cot r+\tan r)(\cot r+\tan r)\left(\cot ^{2} r\right. \\
& \left.+\tan ^{2} r-h(\cot r-\tan r)-4 n-2\right)=0 .
\end{aligned}
$$

Then we get $\alpha=h$ or $\alpha^{2}-\alpha h-4 n=0$ because of $\cot r+\tan r \neq 0$. First, let $\alpha=h$. Substituting this into (3.7) we get $k=-2(2 n+1)$ and hence we have $k_{1}=4 n^{2}-1$. Then (3.1) implies $S \phi S=\left(4 n^{2}-1\right) \phi$. Combining this with (1.6) and Theorem C, it follows $S \phi=\phi S= \pm \sqrt{4 n^{2}-1} \phi$. Then $S= \pm \sqrt{4 n^{2}-1} I+b \eta \otimes \xi$ for some function b on M, that is, M is pseudoEinstein. But, owing to well-known theorem (cf. [2], [7], [15]) of pseudoEinstein real hypersurfaces in $P_{n} \mathbb{C}$, we see that this is not the case. Next, let $\alpha^{2}-h \alpha-4 n=0$. Then we get $\alpha(\alpha-h)=4 n$. Since M is type A_{2}, we have $h=\alpha+2(p-1) \cot r-2(q-1) \tan r$. Substituting this into the above equation, we obtain $(p-1) \cot ^{2} r+(q-1) \tan ^{2} r=-2(n+1)+p+q$. This implies $p+q \geq 2(n+1)$ and hence it is contrary to the fact that $4 \leq p+q \leq n+1$. Therefore this is not the case, too. Therefore, the type A_{2} does not occur.

If M is the type A_{1}, then M has two distinct principal curvatures $\alpha=2 \cot 2 r$ and $\lambda=\cot r$. Thus from (3.7) it follows that for constant k such that $k=\cot ^{4} r-2 h \cot ^{3} r+\left(h^{2}-2(2 n+1)\right) \cot ^{2} r+2(2 n+1) h \cot r$, the type A_{1} satisfies (3.2).

For a real hypersurface of $H_{n} \mathbb{C}$ we have the following.
Theorem 3.2. Let M be a real hypersurface in $H_{n} \mathbb{C}, n \geq 2$. Then it satisties $S \phi S=k \phi$ for a constant k and ξ is principal if and only if M is locally congruent to one of the following:
$\left(\mathrm{A}_{0}\right)$ a horosphere in $H_{n} \mathbb{C}$,
$\left(\mathrm{A}_{1}\right)$ a geodesic hypersphere $H_{0} \mathbb{C}$ or a tube over a hyperplane $H_{n-1} \mathbb{C}$,
(B) a tube over a totally real hyperbolic space $H_{n} \mathbb{R}$.

Proof. Assume that ξ is principal. Let X be a principal (unit) vector orthogonal to ξ with the corresponding principal curvature λ. From Proposition A and (1.9) we can consider the following two cases: (I) $\alpha^{2}-4 \neq 0$ and (II) $\alpha^{2}-4=0$.

Case (I): Since $2 \lambda-\alpha \neq 0$, we see from (1.9) that ϕX is also a principal (unit) vector orthogonal to ξ with the corresponding principal curvature $\lambda=(\alpha \lambda-2) /(2 \lambda-\alpha)$, where we have set $c=-1$. Thus our condition (3.2) means

$$
\begin{gather*}
\lambda^{2} \mu^{2}+(2 n+1)\left(\lambda^{2}+\mu^{2}\right)-h \lambda \mu(\lambda+\mu)-h(2 n+1)(\lambda+\mu) \tag{3.8}\\
+h^{2} \lambda \mu=k, \quad k=k_{1}-(2 n+1)^{2} .
\end{gather*}
$$

Then we get

$$
\begin{align*}
& \left(\alpha^{2}-2 \alpha h+8 n+4\right) \lambda^{4}+2\left(\alpha h^{2}-4 \alpha-4 \alpha n-4 h n\right) \lambda^{3} \tag{3.9}\\
& +\left(\alpha^{2}\left(2-h^{2}+4 n\right)+4 \alpha h(1+n)-4\left(k+h^{2}-1\right)\right) \lambda^{2} \\
& +2\left(\alpha\left(2 k+h^{2}-4 n-2\right)+4 h n\right) \lambda \\
& -\alpha^{2} k-2 \alpha h(2 n+1)+8 n+4=0 .
\end{align*}
$$

Owing to Proposition A, (3.9) tells us that M has at most five distinct constant principal curvatures. Thus, accorrding to a theorem due to Berndt [1] M is homogeneous one, that is, M is congruent to one of type A_{0}, A_{1}, A_{2} and B. Thus by the same argument as the above theorem we must check the condition (3.2) one by one for these four model spaces. Since $\alpha^{2} \neq 4$, it is enough to check (3.2) for the type A_{1}, A_{2} and B.

First of all, let M be the type B. Then from the table in [1], we get $\alpha=2 \tanh (2 r), \lambda=\tanh (r)$ and $\mu=\operatorname{coth}(r)$, which implies

$$
\lambda+\mu=\frac{4}{\alpha} \text { and } \lambda \mu=1
$$

Combining this with (3.8), we obtain $k=-(2 n+1) h(4 / \alpha)+(2 n+1)(16-$ $\left.2 \alpha^{2}\right) / \alpha^{2}+h^{2}-h(4 / \alpha)+1$. The substitution of this into (3.9) gives rise to

$$
\begin{align*}
& \left(\alpha^{4}-2 \alpha^{3} h+8 \alpha^{2} n+4 \alpha^{2}\right) \lambda^{4}+2\left(\alpha^{3}\left(h^{2}-4 n-4\right)\right. \tag{3.10}\\
& \left.-4 \alpha^{2} h n\right) \lambda^{3}+\left(\alpha^{4}\left(4 n-h^{2}+2\right)+4 \alpha^{3} h(n+1)\right. \\
& \left.+8 \alpha^{2}\left(2 n+1-h^{2}\right)+32 \alpha h(n+1)-64(2 n+1)\right) \lambda^{2} \\
& +\left(2 \alpha^{3}\left(3 h^{2}-12 n-4\right)-8 \alpha^{2} h(3 n+4)+64 \alpha(2 n+1)\right) \lambda \\
& +\alpha^{4}\left(4 n+1-h^{2}\right)+2 \alpha^{3} h(2 n+3)-12 \alpha^{2}(2 n+1)=0 .
\end{align*}
$$

Then (3.10) can be decomposed into

$$
\begin{aligned}
& \left(\alpha \lambda^{2}-4 \lambda+\alpha\right)\left(\left(\alpha^{3}-2 \alpha^{2} h+4 \alpha(2 n+1)\right) \lambda^{2}\right. \\
& +\left(2 \alpha^{2}\left(h^{2}-4 n-2\right)-8 \alpha h(n+1)+32 n+16\right) \lambda \\
& \left.+\alpha^{3}\left(n+1-h^{2}\right)+2 \alpha^{2} h(2 n+3)-12 \alpha(2 n+1)\right)=0 .
\end{aligned}
$$

Since the roots $\tanh (r)$ and $\operatorname{coth}(r)$ of the type B satisfy the quadratic equation $\alpha \lambda^{2}-4 \lambda+\alpha=0$, we see that the type B satisfies (3.2).

Next, let M be one of type A_{1} and A_{2}. Then owing to Theorem C (3.8) is equivalent to

$$
\begin{gather*}
\lambda^{4}-2 h \lambda^{3}+\left(h^{2}+2(2 n+1)\right) \lambda^{2}-2(2 n+1) h \lambda=k \tag{3.11}\\
k=k_{1}-(2 n+1)^{2}
\end{gather*}
$$

If M is the type A_{2}, then M has three distinct constant principal curvatures $\alpha=2 \operatorname{coth}(2 r), \lambda=\tanh (r)$ and $\mu=\operatorname{coth}(r)$, where $0<\lambda<1$. Thus by means of (3.11) we have

$$
\begin{aligned}
& \tanh ^{4}(r)-\operatorname{coth}^{4}(r)-2 h\left(\tanh ^{3}(r)-\operatorname{coth}^{3}(r)\right)+\left(h^{2}+2(2 n+1)\right) \\
& \left(\tanh ^{2}(r)-\operatorname{coth}^{2}(r)\right)-2(2 n+1) h(\tanh (r)-\operatorname{coth}(r))=0,
\end{aligned}
$$

which yields

$$
\begin{aligned}
& (h-\operatorname{coth}(r)-\tanh (r))(\tanh (r)-\operatorname{coth}(r))\left(\operatorname{coth}^{2}(r)\right. \\
& \left.+\tanh ^{2}(r)-h(\operatorname{coth}(r)+\tanh (r))+4 n+2\right)=0 .
\end{aligned}
$$

Then we get $\alpha=h$ or $\alpha^{2}-h \alpha+4 n=0$ because of $\operatorname{coth}(r)-\tanh (r) \neq 0$. First, let $\alpha=h$. Substituting this into (3.11) we get $k=2(2 n+1)$ and hence we have $k_{1}=(2 n+1)(2 n+3)$. Then (3.1) implies $S \phi S=(2 n+$ $1)(2 n+3) \phi$. Combining this with (1.6) and Theorem C, it follows $S \phi=$ $\phi S= \pm \sqrt{(2 n+1)(2 n+3)} \phi$. Then $S= \pm \sqrt{(2 n+1)(2 n+3)} I+b \eta \otimes \xi$ for some function b on M, that is, M is pseudo-Einstein. However, owing to Theorem D , we see that this is not the case. Next, let α^{2} $h \alpha+4 n=0$. Then we get $\alpha(\alpha-h)=-4 n$. Since we may say $\alpha \neq h$, we have $\alpha=4 n /(h-\alpha)$. On the other hand, type A_{2} satisfies the
quadratic equation $\alpha \lambda^{2}-4 \lambda+\alpha=0$. Combining these two equations we get $\tanh ^{2}(r)=\{p-(n+1)\} /\{(n+1)-q\}$ or $\operatorname{coth}^{2}(r)=\{q-(n+$ $1)\} /\{(n+1)-p\}$. This is contrary to the fact that $4 \leq p+q \leq n+1$. Therefore this is not the case, too. Consequently, the type A_{2} can not occur. If M is the type A_{1}, then M has two distinct constant principal curvatures $\alpha=2 \operatorname{coth}(2 r)$ and $\lambda=\tanh (r)$ if $0<\lambda<1$ or $\lambda=\operatorname{coth}(r)$ if $\lambda>1$. Then from (3.11), it follows that for constant k such that $k=$ $\tanh ^{4}(r)-2 h \tanh ^{3}(r)+\left(h^{2}+2(2 n+1)\right) \tanh ^{2}(r)-2(2 n+1) h \tanh (r)$ or $k=\operatorname{coth}^{4}(r)-2 h \operatorname{coth}^{3}(r)+\left(h^{2}+2(2 n+1)\right) \operatorname{coth}^{2}(r)-2(2 n+1) h \operatorname{coth}(r)$, the type A_{1} satisfies (3.8).

Case (II): First, we consider the subcase where $\alpha=2$. Then (1.8) gives forth to

$$
(\lambda-1) A \phi X=(\lambda-1) \phi X
$$

Let us take an open set $M_{0}=\{x \in M \mid \lambda(x) \neq 1\}$. Then $A \phi X=$ ϕX on M_{0}, which implies $\mu=1$. Combining this with (3.8), we get $(2(n+1)-h) \lambda^{2}+\left(h^{2}-2 h(n+1)\right) \lambda+(2 n+1)(1-h)-k=0$ on M_{0}, which means λ is constant on M_{0}. On the other hand, we have $\lambda=1$ on $M-M_{0}$. Thus, the continuity of principal curvatures yields the fact that if the set $M-M_{0}$ is not empty, then $\lambda=1$ on M. Hence M is the type A_{0}. For the case where M_{0} coincides with the whole M, we find $2 \lambda-\alpha \neq 0$ and this case was discussed in the Case (I).

Conversely, let M be the type A_{0}. Then M has two distinct constant principal curvatures $\alpha=2$ and $\lambda=1$. Substituting these into (3.11), we obtain $k=h^{2}-4(n+1) h+4 n+3=3-4 n-4 n^{2}$. Thus for such constant k the type A_{0} satisfies (3.11), namely, (3.2).

Next, let $\alpha=-2$. Then, by the same method as the above we have M is the type A_{0}.

References

1. J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. reine angew. Math. 395 (1989), 132-141.
2. T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projetive space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
3. U-H. Ki and Y. J. Suh, On real hypersurfaces of complex space form, Math. J. Okayama Univ. 32 (1990), 207-221.
4. U-H. Ki, H.S. Kim and H. Nakagawa, A characterization of a real hypersurface of type B, Tsukuba J. Math. 14 (1990), 9-26.
5. H. S. Kim and R. Takagi, Certain real hypersurfaces in a complex space form, Kyungpook Math. J. 35 (1996), 591-606.
6. M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
7. M. Kon, Pseudo-Einstein real hypersurfaces in complex space form, J. Diff. Geom. 14 (1979), 339-354.
8. M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space II, Tsukuba J. Math. 15 (1991), 547-561.
9. Y. Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1976), 529-540.
10. S. Montiel and A. Romero, Ón some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata 20 (1986), 245-261.
11. M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
12. Y. J. Suh, On real hypersurfaces of a complex space form with η-parallel Ricci tensor, Tsukuba J. Math. 14 (1990), 27-37.
13. R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
14. , Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 27 (1975), 43-53, 507-516.
15. K. Yano and M. Kon, CR-submanifolds of Kaehlerian and Sasakian manifold, Birkhäuser, Boston, Basel, Strutgart, 1983.

Department of Mathematics, Inje University, Kimhae 621-749, Korea E-mail address: mathkim@ijnc.inje.ac.kr

Department of Applied Mathematics, Pukyong National University, Pusan 608-737, Korea

Received February 21, 1997

[^0]: Key words and phrases. complex space form, shape operator, principal structure vector, Ricci tensor.

 This paper was partially supported by YAKSOO Research Foundation

