Regularity of the solutions of some hypoelliptic operators

Moustafa K. Damlakhi Department of Mathematics, College of Science King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia

Abstract. Let P(D) be an hypoelliptic operator with constant coefficients, having a fundamental solution that is locally integrable in \mathbb{R}^n . Let u be a distribution defined on an open set Ω in \mathbb{R}^n such that Pu = f. It's proved that if $f \in L^1_{loc}(\Omega)$ then $u \in L^1_{loc}(\Omega)$ and if f is in $C^m(\Omega)$ so is u.

1. Introduction.

Let Ω be a domain in \mathbb{R}^n , $n \geq 1$. Let $A = \sum_{|\alpha| \leq m} a_{\alpha}(x)D^{\alpha}$ be a differential operator of order m with $a_{\alpha} \in C^m(\Omega)$. Let A^* denote the adjoint operator of A. Let 1 $and <math>\frac{1}{p} + \frac{1}{q} = 1$. If $f \in L^p(\Omega)$, it is proved in [1], there exists a weak solution of $Au = f, u \in L^p(\Omega)$ and $||u||_p \leq c$ if and only if $| < f, \phi > | \leq c ||A^*\phi||_q$ for all $\phi \in C_0^{\infty}(\Omega)$. In this note we discuss the possibility of finding an $L^1_{loc}(\Omega)$ solution u for the equation Au = f, if it is known that $f \in L^1_{loc}(\Omega)$.

Now it is known that if $P = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}$ is a hypoelliptic differential operator of order m with constant coefficients and Ω is a convex open set of \mathbb{R}^n , then for any $T \in D'(\Omega)$, there exists a distribution $u \in D'(\Omega)$ such that Pu = T (see [2]). If we suppose moreover that P is elliptic, then the above result is true even if Ω is

Key words and phrases: Hypoelliptic operators, fundamental solutions

<u> — 133 —</u>

AMS subjects classification: 35H05

assumed to be just open in \mathbb{R}^n . Consequently, for such operators P, given $f \in L^1_{loc}(\Omega)$ there always exists a distribution solution $u \in D'(\Omega)$. Our interest here is to find out whether u also is in $L^1_{loc}(\Omega)$. It turns out that this is true if the fundamental solution of P is locally integrable. As for this condition, it's known (see (see [3]) that if Pis an elliptic differential operator with constant coefficients in \mathbb{R}^n , then there exists a locally integrable function E such that $PE = \delta$. Also for some of the non-elliptic but hypoelliptic type operators (for example, the heat operator $P = \frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2}$), we have fundamental solutions that are locally integrable.

Our main result is that if P is an hypoelliptic differential operator with constant coefficients in \mathbb{R}^n , having a fundamental solution that is locally integrable, and if for a given $f \in L^1_{loc}(\Omega)$, Ω an open set, Pu = f has a solution $u \in D'(\Omega)$, then u should also be in $L^1_{loc}(\Omega)$. Moreover in the special case when $f \in C^m(\Omega)$, we prove that $u \in C^m(\Omega)$ for any $m \ge 0$.

2. Locally integrable solutions

Lemma 2.1. Let P be an hypoelliptic differential operator with constant coefficients having a fundamental solution that is locally integrable. Let Ω and Ω_0 be open sets of \mathbb{R}^n such that $\overline{\Omega}_0 \subset \Omega$. If $f \in L^1_{loc}(\Omega)$ and $u \in D'(\Omega)$ is a solution of Pu = f then $u \in L^1_{loc}(\Omega_0)$.

Proof. Let dist $(\partial \Omega_0, \partial \Omega) = \eta > 0$ and E be a locally integrable fundamental solution of P. We suppose that $o \in \Omega_0$ for the convenience of writing. We choose $\mu > 0$ such that $\mu < \eta$ and $\varphi \in D(\Omega)$ such that supp $\varphi \subset \overline{B}(0, \mu)$ and $\varphi = 1$ on $\overline{B}(0, \frac{\mu}{2})$, where $\overline{B}(0, \mu) = \{x \in \Omega; |x| \le \mu\} \subset \Omega_0$.

We'll prove that $P(\varphi E) - \delta \in D(\mathbb{R}^n)$. For, by using Leibnitz formula in $D'(\Omega)$ we

have

$$P(\varphi E) = \sum_{|\alpha| \le m} a_{\alpha} \sum_{\beta \le \alpha} {\alpha \choose \beta} D^{\beta} \varphi D^{\alpha - \beta} E$$
$$= \varphi P E + \sum_{|\alpha| \le m} a_{\alpha} \sum_{\substack{\beta \le \alpha \\ \beta \ne 0}} {\alpha \choose \beta} D^{\beta} \varphi D^{\alpha - \beta} E$$

Since $PE = \delta$, $\varphi PE = \varphi \delta = \varphi(0)\delta = \delta$,

Let
$$\psi = P(\varphi E) - \delta = \sum_{|\alpha| \le m} a_{\alpha} \sum_{\substack{\beta \le \alpha \\ \beta \neq 0}} {\alpha \choose \beta} D^{\beta} \varphi D^{\alpha - \beta} E.$$

In $\Omega \setminus \{0\}$, E is C^{∞} and $\psi \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$; and since $\varphi = 1$ on $\overline{B}(0, \frac{\mu}{2})$, $D^{\beta}\varphi = 0$ in $B(0, \frac{\mu}{2})$ for all $\beta \neq 0$. So $\psi = 0$ on $\overline{B}(0, \frac{\mu}{2})$, hence $\psi \in C^{\infty}(\mathbb{R}^n)$.

Since the supp ψ is contained in the supp φ , $\psi \in D(\mathbb{R}^n)$. Let $u \in D'(\Omega)$ be a solution of Pu = f, we have then,

$$u = \delta * u = [P(\varphi E) - \psi] * u$$

= $P(\varphi E) * u - \psi * u$
= $\varphi E * Pu - \psi * u$
 $u = \varphi E * f - \psi * u$ (1)

 φE is a function on Ω such that supp $(\varphi E) \subset \overline{B}(0,\mu)$ and $\varphi E \in L^1_{loc}(\Omega)$; also since $f \in L^1_{loc}(\Omega), \ \varphi E * f \in L^1_{loc}(\Omega_0)$. As $\psi * u \in C^{\infty}(\Omega_0), \ \psi * u \in L^1_{loc}(\Omega_0)$. Hence $u \in L^1_{loc}(\Omega_0)$.

Theorem 2.2. With the same hypotheses as in Lemma 2.1, if $f \in L^1_{loc}(\Omega)$ and if $u \in D'(\Omega)$ is a solution of Pu = f then $u \in L^1_{loc}(\Omega)$.

Proof. Let K be any compact set of Ω . Let dist $(K, \Omega) = \eta_1 > 0$ and we take $\Omega_0 = \bigcup_{x \in K} B(x, \eta_1/2)$, so $\overline{\Omega}_0 \subset \Omega$. By using the lemma 2.1, we have $u \in L^1_{loc}(\Omega_0)$, hence $u \in L^1(K)$. Thus $u \in L^1_{loc}(\Omega)$.

— 135 —

Theorem 2.3. With the same hypotheses as in Lemma 2.1, if f is a continuous function in Ω and $u \in D'(\Omega)$ is a solution of Pu = f, then u also is continuous.

Proof. From the equation (1) in the proof of lemma 2.1, we have $u = \varphi E * f - \psi * u$. Since supp $(\varphi E) \subset \overline{B}(0, \mu)$ and f is continuous on Ω , $\varphi E * f$ is continuous on Ω . For, if $x_0 \in \Omega_0$, we have

$$\varphi E * f(x) - \varphi E * f(x_0) = \int_{\mathcal{B}(0,\mu)} (\varphi E)(y)(f(x-y) - f(x_0-y))dy.$$

We put

$$M = \int_{\bar{B}(0,\mu)} |(\varphi E)(y)| dy.$$

Let $y_1 \in \overline{B}(0,\mu)$, so $x_0 - y_1 \in \Omega$.

Given $\epsilon > 0$, since f is continuous at $x_0 - y_1$ there exists an open neighbourhood $V_1 \subset \Omega_0$ of x_0 and an open neighbourhood U_1 of y_1 such that: $|f(x-y)-f(x_0-y_1)| < \frac{\epsilon}{M}$ for all $x \in V_1$, and all $y \in U_1$. Since such neigbourhoods U_1 cover the compact set $\overline{B}(0,\mu)$, there exists U_1, U_2, \ldots, U_n s.t. $\overline{B}(0,\mu) \subset \bigcup_{i=1}^n U_i$. Let $V = \bigcap_{i=1}^n V_i$. Then we have $|f(x-y) - f(x_0-y)| < \frac{\epsilon}{M}$ for all $x \in V$ and all $y \in \overline{B}(0,\mu)$.

Hence,

$$\begin{aligned} |\varphi E * f(x) - \varphi E * f(x_0)| &\leq \int_{\bar{B}(0,\mu)} |(\varphi E)(y)| f(x-y) - f(x_0-y)| dy \\ &< \frac{\epsilon}{M} \int_{\bar{B}(0,\mu)} |(\varphi E)(y)| dy = \epsilon \end{aligned}$$

for all $x \in V$. So $\varphi E * f$ is continuous at any point $x_0 \in \Omega_0$. As $\psi * u \in C^{\infty}(\Omega_0)$, we deduce from (1) that u is continuous on Ω_0 , and hence u is continuous on Ω .

Corollary 2.4. With the same hypotheses as in lemma 2.1, if u is a distribution such that $Pu = f \in C^m(\Omega), \ m \ge 0$, then u also belongs to $C^m(\Omega)$.

Proof. From the equation (1) in lemma 2.1 $D^{\alpha}u = \varphi E * D^{\alpha}f - D^{\alpha}(\psi * u)$. This proves the corollary.

References

- M. Damlakhi and V. Anandam: On the surjectivity of linear transformations. Internat. J. Math., Math. Sci. vol. 19 No. 3 (1996), 545-548.
- [2] L. Hörmander: Linear partial differential operators, Grundlehren 116, Springerverlag, 1963.
- [3] F. John: Plane waves and spherical means, Interscience, N.Y. 1955.

Received January 31, 1997