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Abstract. Let $P(D)$ be an hypoelliptic operator with constant coefficients, having a

fundamental solution that is locally integrable in $R^{n}$ . Let $u$ be a distribution defined on

an open set $\Omega$ in $R^{n}$ such that $Pu=f$ . It’s proved that if $f\in L_{loc}^{1}(\Omega)$ then $u\in L_{loc}^{1}(\Omega)$

and if $f$ is in $C^{m}(\Omega)$ so is $u$ .

1. Introduction.

Let $\Omega$ be a domain in $R^{n},$ $n\geq 1$ . Let
$A=\sum_{|\alpha|\leq m}a_{\alpha}(x)D^{\alpha}$

be a differential operator

of order $m$ with $a_{\alpha}\in C^{m}(\Omega)$ . Let $A^{*}$ denote the adjoint operator of $A$ . Let $ 1<p\leq\infty$

and $\frac{1}{p}+\frac{1}{q}=1$ . If $f\in L^{p}(\Omega)$ , it is proved in [1], there exists a weak solution of

$Au=f,$ $u\in L^{p}(\Omega)$ and $\Vert u\Vert_{p}\leq c$ if and only if $|<f,$ $\phi>|\leq c\Vert A^{*}\phi||_{q}$ for all

$\phi\in C_{0}^{\infty}(\Omega)$ . In this note we discuss the possibility of finding an $L_{Ioc}^{1}(\Omega)$ solution $u$ for

the equation $Au=f$ , if it is known that $f\in L_{loc}^{1}(\Omega)$ .

Now it is known that if $P=$ $\sum a_{\alpha}D^{\alpha}$ is a hypoelliptic differential operator of
$|\alpha|\leq m$

order $m$ with constant coefficients and $\Omega$ is a convex open set of $R^{n}$ , then for any

$T\in D^{\prime}(\Omega)$ , there exists a distribution $u\in D^{\prime}(\Omega)$ such that $Pu=T$ (see [2]). If

we suppose moreover that $P$ is elliptic, then the above result is true even if $\Omega$ is
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assumed to be just open in $R^{n}$ . Consequently, for such operators $P$ , given $f\in L_{loc}^{1}(\Omega)$

there always exists a distribution solution $u\in D^{\prime}(\Omega)$ . Our interest here is to find out

whether $u$ also is in $L_{oc}^{1}(\Omega)$ . It turns out that this is true if the fundamental solution
of $P$ is locally integrable. As for this condition, it’s known (see (see [3]) that if $P$

is an elliptic differential operator with constant coefficients in $R^{n}$ , then there exists a
locally integrable function $E$ such that $ PE=\delta$ . Also for some of the non-elliptic but

hypoelliptic type operators (for example, the heat operator $P=\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}$ ), we have

fundamental solutions that are locally integrable.

Our main result is that if $P$ is an hypoelliptic differential operator with constant

coefficients in $R^{n}$ , having a fundamental solution that is locally integrable, and if for a

given $f\in L_{loc}^{1}(\Omega),$ $\Omega$ an open set, $Pu=f$ has a solution $u\in D^{\prime}(\Omega)$ , then $u$ should also
be in $L_{loc}^{1}(\Omega)$ . Moreover in the special case when $f\in C^{m}(\Omega)$ , we prove that $u\in C^{m}(\Omega)$

for any $m\geq 0$ .

2. Locally integrable solutions

Lemma 2.1. Let $P$ be an hypoelliptic differential operator with constant coefficients
having a fundamental solution that is locally integrable. Let $\Omega$ and $\Omega_{0}$ be open sets

of $R^{n}$ such that $\overline{\Omega}_{0}\subset\Omega$ . If $f\in L_{loc}^{1}(\Omega)$ and $u\in D^{\prime}(\Omega)$ is a solution of $Pu=f$ then
$u\in L_{loc}^{1}(\Omega_{0})$ .

Proof. Let dist $(\partial\Omega_{0}, \partial\Omega)=\eta>0$ and $E$ be a locally integrable fundamental solution

of $P$ . We suppose that $0\in\Omega_{0}$ for the convenience of writing. We choose $\mu>0$ such

that $\mu<\eta$ and $\varphi\in D(\Omega)$ such that supp $\varphi\subset\overline{B}(0, \mu)$ and $\varphi=1$ on $\overline{B}(0,2\mu)$ , where
$\overline{B}(0, \mu)=\{x\in\Omega;|x|\leq\mu\}\subset\Omega_{0}$ .

$We’ 11$ prove that $P(\varphi E)-\delta\in D(R^{n})$ . For, by using Leibnitz formula in $D^{\prime}(\Omega)$ we
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have

$P(\varphi E)$ $=$ $\sum_{|\alpha|\leq m}a_{\alpha}\sum_{\beta\leq\alpha}\left(\begin{array}{l}\alpha\\\beta\end{array}\right)D^{\beta}\varphi D^{\alpha-\beta}E$

$\varphi PE+\sum_{|\alpha|\leq m}a_{\alpha}$ $\sum_{\rho<\alpha,\beta\neq 0}\left(\begin{array}{l}\alpha\\\beta\end{array}\right)D^{\beta}\varphi D^{\alpha-\beta}E$

Since $PE=\delta,$ $\varphi PE=\varphi\delta=\varphi(O)\delta=\delta$ ,

Let
$\psi=P(\varphi E)-\delta=\sum_{|\alpha|\leq m}a_{\alpha}$ $\sum_{\beta\leq a,\beta\neq 0}\left(\begin{array}{l}\alpha\\\beta\end{array}\right)D^{\beta}\varphi D^{\alpha-\beta}E$

.

In $\Omega\backslash \{0\},$ $E$ is $C^{\infty}$ and $\psi\in C^{\infty}(R^{n}\backslash \{0\})$ ; and since $\varphi=1$ on $\overline{B}(0,24),$ $D^{\beta}\varphi=0$ in

$B(O, 12i)$ for all $\beta\neq 0$ . So $\psi=0$ on $\overline{B}(0,2\mu)$ , hence $\psi\in C^{\infty}(R^{n})$ .

Since the supp $\psi$ is contained in the supp $\varphi,$
$\psi\in D(R^{n})$ . Let $u\in D^{\prime}(\Omega)$ be a

solution of $Pu=f$ , we have then,

$u=\delta*u$ $=$ $[P(\varphi E)-\psi]*u$

$=$ $P(\varphi E)*u-\psi*u$

$=\varphi E*Pu-\psi*u$

$u$ $=$ $\varphi E*f-\psi*u$ (1)

$\varphi E$ is a function on $\Omega$ such that supp $(\varphi E)\subset\overline{B}(0, \mu)$ and $\varphi E\in L_{loc}^{1}(\Omega)$ ; also since

$f\in L_{loc}^{1}(\Omega),$ $\varphi E*f\in L_{toc}^{1}(\Omega_{0})$ . As $\psi*u\in C^{\infty}(\Omega_{0}),$ $\psi*u\in L_{loc}^{1}(\Omega_{0})$ . Hence

$u\in L_{loc}^{1}(\Omega_{0})$ .

Theorem 2.2. With the same hypotheses as in Lemma 2.1, if $f\in L_{loc}^{1}(\Omega)$ and if

$u\in D^{\prime}(\Omega)$ is a solution of $Pu=f$ then $u\in L_{loc}^{1}(\Omega)$ .

Proof. Let $K$ be any compact set of $\Omega$ . Let dist $(K, \Omega)=\eta_{1}>0$ and we take

$\Omega_{0}=\bigcup_{x\in K}B(x, \eta_{1}/2)$
, so $\overline{\Omega}_{0}\subset\Omega$ . By using the lemma 2.1, we have $u\in L_{loc}^{1}(\Omega_{0})$ , hence

$u\in L^{1}(K)$ . Thus $u\in L_{l\circ c}^{1}(\Omega)$ .
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Theorem 2.3. With the same hypotheses as in Lemma 2.1, if $f$ is a continuous
function in $\Omega$ and $u\in D^{\prime}(\Omega)$ is a solution of $Pu=f$ , then $u$ also is continuous.

Proof. From the equation (1) in the proof of lemma 2.1, we have $u=\varphi E*f-\psi*u$ .
Si’nce $supp(\varphi E)\subset\overline{B}(0, \mu)$ and $f$ is continuous on $\Omega,$ $\varphi E*f$ is continuous on $\Omega$ . For,
if $x_{0}\in\Omega_{0}$ , we have

$\varphi E*f(x)-\varphi E*f(x_{0})=\int_{B(0,\mu)}(\varphi E)(y)(f(x-y)-f(x_{0}-y))dy$ .

We put

$M=\int_{B(0,\mu)}|(\varphi E)(y)|dy$ .

Let $y_{1}\in\overline{B}(0, \mu)$ , so $ x_{0}-y_{1}\in\Omega$ .

Given $\epsilon>0$ , since $f$ is continuous at $x_{0}-y_{1}$ there exists an open neighbourhood
$V_{1}\subset\Omega_{0}$ of $x_{0}$ and an open neighbourhood $U_{1}$ of $y_{1}$ such that: $|f(x-y)-f(x_{r}-y_{1})|<\frac{\epsilon}{M}$

for all $x\in V_{1}$ , and all $y\in U_{1}$ . Since such neigbourhoods $U_{1}$ cover the compact set
$\overline{B}(0, \mu)$ , there exists $U_{1},$ $U_{2},$

$\ldots,$
$U_{n}$ s.t. $\overline{B}(0, \mu)\subset\bigcup_{1=1}^{n}U_{1}$ . Let $V=\bigcap_{1=1}^{n}V_{j}$ . Then we have

$|f(x-y)-f(x_{0}-y)|<\frac{\epsilon}{M}$ for all $x\in V$ and all $y\in\overline{B}(0, \mu)$ .

Hence,

$|\varphi E*f(x)-\varphi E*f(x_{0})|$ $\leq$ $\int_{B(0,\mu)}|(\varphi E)(y)|f(x-y)-f(x_{0}-y)|dy$

$<$ $\frac{\epsilon}{M}\int_{B(0,\mu)}|(\varphi E)(y)|dy=\epsilon$

for all $x\in V$ . So $\varphi E*f$ is continuous at any point $x_{0}\in\Omega_{0}$ . As $\psi*u\in C^{\infty}(\Omega_{0})$ , we

deduce from (1) that $u$ is continuous on $\Omega_{0}$ , and hence $u$ is continuous on $\Omega$ .

Corollary 2.4. With the same hypotheses as in lemma 2.1, if $u$ is a distribution such
that $Pu=f\in C^{m}(\Omega),$ $m\geq 0$ , then $u$ also belongs to $C^{m}(\Omega)$ .
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Proof. From the equation (1) in lemma 2.1 $D^{\alpha}u=\varphi E*D^{\alpha}f-D^{\alpha}(\psi*u)$ . This

proves the corollary.
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