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CHARACTERIZATIONS OF
CERTAIN REAL HYPERSURFACES

OF A COMPLEX SPACE FORM

YEONG-Wu CHOE

0. Introduction

Let $M_{n}(c)$ be an n-dimensional complex space form with constant $ho1(\succ$

morphic sectional curvature $c$ . It is wel known that a complete and simply
connected complex space form consists of a complex projective space $P_{n}C$ ,
a complex Euclidean space $C_{n}$ or a complex hyperbolic space $H_{n}C$ accord-
ing as $c>0,$ $c=0$ or $c<0$ . In this paper we consider a real hypersurface
$M$ of $P_{n}C$ or $H_{n}C$ . The real hypersurface $M$ has an almost contact metric
structure $(\phi,\xi,\eta,g)$ induced from the complex structure $J$ of $M_{n}(c)$ .

The study of real hypersurfaces of $P_{n}C$ was initiated again by Taka-
gi[14], who proved that all homogeneous real hypersurfaces of $P_{n}C$ could
be divided into the six model spaces (cf. the case $c>0$ of Theorem A).
${\rm Re} cently$, Kimura and Maeda[7] characterized a geodesic hypersphere $M$

in $P_{n}C$ in terms of the derivative of the Ricci tensor $S$ . Moreover, they
investigated real hypersurfaces $M$ in terms of curvature operator $R(X, Y)$

of $M$ on the Ricci tensor $S$ and the shape operator $A$ .
On the other hand, real hypersurfaces of $H_{n}C$ have also been investi-

gated by Berndt[l], Montie1[10], Montiel and Romero[ll], etc. In parti-
cular, by using the notions of the tube in Cecil and Ryan[2], Montie1[10],
also classified the real hypersurfaces of $H_{n}C$ with at most two distinct
principal curvatures. Recently, Berndt[l] classffied al real hypersurfaces
with constant principal curvatures of $H_{n}C$ (cf. the case $c<0$ of Theorem
A).

The main purpose of this paper is to give characterizations of real
hypersurfaces of type $A_{0},$ $A_{1}$ and $A_{2}$ of $H_{n}C$ , and to compare the real
hypersurfaces of $H_{n}C$ with those of $P_{n}C$ under the same conditions. In
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the section 2, we study the real hypersurfaces of $H_{n}C$ corresponding to
the real hypersurfaces of type $A_{1}$ and $A_{2}$ (resp. type $A_{1}$ ) of $P_{n}C$ in terms
of the derivative of the shape operator $A$ (resp. the Ricci tensor $S$). In
the last section, we investigate homogeneous real hypersurfaces of $M_{n}(c)$

in terms of the curvature operator $R(X, Y)$ on $S$ and $A$ .

1. Preliminaries

Let $M$ be a real hypersurface of a complex n-dimensional complex space
form $M_{n}(c)$ , and let $N$ be its local unit normal vector field. Let us denote
by $J$ the almost complex structure of $M_{n}(c)$ . For any tangent vector field
$X$ and normal vector field $N$ on $M$ , the transformations of $X$ and $N$ under
$J$ can be given by

$JX=\phi X+\eta(X)N$, $ JN=\xi$ ,

where $\phi$ defines a skew-symmetric transformation on the tangent bundle
$TM$ of $M$ , while $\eta$ and $\xi$ denote a l-form and a vector field on a neigh-
borhood of $x$ in $M$ respectively. Moreover, it is seen that $g(\xi,X)=\eta(X)$ ,
where $g$ denotes the induced Riemanmian metric on $M$ . By properties of
the almost complex structure $J$ , the set $(\phi,\xi,\eta, g)$ of tensors satisfies

(1.1) $\phi^{2}=-I+\eta\otimes\xi$ , $\phi\xi=0$ , $\eta(\phi X)=0$ , $\eta(\xi)=1$ ,

where $I$ denotes the identity matrix. Furthermore, the covariant deriva-
tives of the structure tensors are given by

(1.2) $\nabla_{X}\phi(Y)=\eta(Y)AX-g(AX,Y)\xi$ , $\nabla_{X}\xi=\phi AX$,

where $\nabla$ is the Riemannian connection of $g$ and $A$ denotes the shape
operator with respect to $N$ on $M$ . Since the ambient swpace is of constant
holomorphic sectional curvature $4c$ , the equations of Gauss and Codazzi
are respectively given as folows

(1.3) $R(X,Y)Z=c\{g(Y,Z)X-g(X,Z)Y+g(\phi Y,Z)\phi X$

$-g(\phi X,Z)\phi Y-2g(\phi X,Y)\phi Z\}$

$+g(AY,Z)AX-g(AX,Z)AY$,
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(1.4) $\nabla_{X}A(Y)-\nabla_{Y}A(X)=c\{\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi\}$ ,

where $R$ denotes the Riemannian curvature tensor of $M$ and $\nabla_{X}A$ denotes
the covariant derivative of the shape operator $A$ with respect to $X$ .

The Ricci tensor $S^{\prime}$ of $M$ is the tensor of type $(0,2)$ given by $S^{\prime}(X, Y)=$

$tr\{Z\rightarrow R(Z,X)Y\}$ . Also it may be regarded as the tensor of type $(1, 1)$

and denoted dby $S:TM\rightarrow TM$ ; it satisfies $S^{\prime}(X, Y)=g(SX,Y)$ . By
the Gauss equation, (1.1) and (1.2), the Ricci tensor $S$ is given by

(1.5) $SX=c\{(2n+1)X-3\eta(X)\xi\}+hAX-A^{2}X$,

(1.6) $\nabla_{X}S(Y)=-3c\{g(\phi AX,Y)\xi+\eta(Y)\phi AX\}$

$+(Xh)AY+h\nabla_{X}A(Y)-\nabla_{X}A^{2}(Y)$ ,

where $h$ is the trace of the shape operator $A$ . A real hypersurface $M$ of
$M_{n}(c)$ is said to be pseudo-Einstein if the Ricci tensor $S$ satisfies

$ SX=aX+b\eta(X)\xi$

for any vector field $X$ of tangent to $M$ and some functions $a$ and $b$ on
$M$ . An eigenvector $X$ of the shape operator $A$ is called a principal cuma-
ture vector. Also an eigenvalue $\lambda$ of $A$ is called a principal curvataure. We
denote by $V_{\lambda}$ the eigenspace of $A$ associated with eigenvalue $\lambda$ . Now we in-
troduce the notion of an $\eta$-parallel shape operator A(r\’ep. $\eta$-parallel Ricci
tensor $\mathfrak{g}$ of $M$ in $M_{n}(c),$ $c\neq 0$ , which is defined by $g(\nabla_{X}A(Y), Z)=0$

(resp. $g(\nabla_{X}S(Y),$ $Z)=0$) for any $X,$ $Y$ and $Z$ orthogonal to $\xi$ .

In the following, we use the same terminology and notations as above
unless otherwise stated. Now we prepare the following theorems in order
to prove our results.

Theorem A. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0$ . Then $M$

has constant principal curvatures and $\xi$ is principal if and only if $M$ is
locally congruent to a tube of radius $r$ over one of the following Kaehler
submanifolds:
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In the case $c>0([5], [14])$ ,
$(A_{1})$ hype$rp$lane $P_{n-1}C$ , where $0<r<\frac{\pi}{2}$ ,
$(A_{2})$ totally geodesic $P_{k}C(1\leq k\leq n-2)$ , where $0<r<\frac{\pi}{2}$

(B) complex quadric $Q_{n-1}$ , where $0<r<\frac{\pi}{4}$ ,
(C) $P_{1}C\times P_{(n-1)/2}C$ , whe$re0<r<\frac{\pi}{4}n(\geq 5)$ is odd,
(D) complex Grassmann $G_{2},{}_{5}C$ where $0<r<\frac{\pi}{4}$ and $n=9$ ,
(E) Hemitian 8ymmetric $8paoeSO(10)/U(5)$ , where $0<r<\frac{\pi}{4}$ and

$n=15$ .
In the case $c<0$ ([1]),

$(A_{0})$ horosphere (or Montiel tube) in $H_{n}C$ ,
$(A_{1})$ geodesic hypersphere $H_{0}C$ or complex hyperbolic hwerplane $H_{n-}{}_{1}C$ ,
$(A_{2})$ totally geodesic $H_{k}C(1\leq k\leq n-2)$

(B) totally real hyperbolic space $H_{n}R$ .

Theorem B. ([11], [12]). Let $M$ be a real hypersurface of $M_{n}(c)$ . Then
$M$ satisfies $\phi A=A\phi$ if and only if $M$ is locally congruent to one of $twe$

$A_{1}$ and $A_{2}$ when $c>0$ and of type $A_{0},$ $A_{1}$ and $A_{2}$ when $c<0$ .
Theorem C. ([2], [8], [11]). Let $M$ be a real hypersurface of $M_{n}(c),$ $n\geq 3$

whose Ricci tensor is pseudo-Einstein. Then $M$ is locally congruent to one
of type $A_{1},$ $A_{2}$ and $B$ when $c>0$ , and of type $A_{0}$ and $A_{1}$ when $c<0$ .
Theorem D. ([3]). Let $M$ be a real hwersurfaoe in $M_{n}(c),$ $n\geq 3$ . Then
$M$ is pseudo-Ein8tein if and only if $M$ satisfies

$(R(X,Y)S)Z+(R(Y, Z)S)X+(R(Z,X)S)Y=0$

for any $X,Y,$ $Z\in TM$ in $M_{n}(c)$ .
Theorem E. ([11], [13]). Let $M$ be a real hypersurface of $M_{n}(c),$ $n\geq 2$ .
Then the Ricci tensor $S$ is $\eta$-parallel and the structure vector $\xi$ is principal
if and only if $M$ is local $ly$ congruent to one of $t\Psi eA_{1},$ $A_{2}$ and $B$ when
$c>0$ and of $tweA_{0},A_{1},A_{2}$ and $B$ when $c<0$ .
Theorem F. ([9]). Let $M$ be $a$ oeal hypersurface of $P_{n}C,$ $n\geq 3$ . Then
the folloutng are equivalent:

(a) $M$ is locally congruednt to one of type $A_{1}$ and $A_{2}$ ,
(b) $\nabla_{X}A(Y)=-g(\phi X,Y)\xi-\eta(Y)\phi X$ for any $X,Y\in TM$ .
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Theorem G. ([6], [7]). Let $M$ be a real hypersurface of $P_{n}C,$ $n\geq 3$ . Then
the folloutng are equivalent:

(c) $M$ is locally congruent to a geodesic hypersphere,
(d) $\nabla_{X}S(Y)=\kappa\{g(\phi X, Y)\xi+\eta(Y)\phi X\}$ for any $X,$ $Y\in TM$ , where

$\kappa$ is a function on $M$ .
Proposition A. Let $M$ be $a$ real hypersurface of $M_{n}(c),$ $c\neq 0$ . If $\xi$ is
a $p$rincipal curvature vector, then the corresponding principal curwatuoe $\alpha$

is locally constant.
Proposition B. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0$ and let
$ A\xi=\alpha\xi$ . If $AX=\lambda X$ for $ X\perp\xi$ , then we have $A\phi X=(\alpha\lambda+2c)/(2\lambda-$

$\alpha)\phi X$ .
For the case $c=1$ in $M_{n}(c)$ Y. Maeda [9], and Ki and Suh [4] proved

the Propositions A and B. By using their methods we can simply obtain
the above Propositions.

2. Suppliement theorems in $M_{n}(c)$

In this section, we will use later on the following lemma 2.1 that has
been proved by Y. Maeda [9], Ki and Suh [4].

Lemma 2.1. There eanst no open sets $O$ in $M$ of $M_{n}(c),$ $c\neq 0$ such that
$\phi A+A\phi=0$ at any point of $O$ .

Now we assume that a real hypersurface $M$ of $M_{n}(c)$ satisfies

(2.1) $\nabla_{X}A(Y)=-\{g(\phi X, Y)\xi+\eta(Y)\phi X\}$

for any vector fields $X$ and $Y$ tangent to $M$ . Using the Ricci identity for
(2.1) and making use of (1.2) we find

(2.2) $g(AY, W)g(LY, W)+g(AY, Z)g(LX, W)$

$-g(AX, W)g(LY, Z)-g(AX, Z)g(LY, W)$

$+g(\phi Y, W)g(BX, Z)+g(\phi Y, Z)g(BX, W)$

$-g(\phi Y, W)g(BY, Z)-g(\phi X, Z)g(BY, W)-2g(\phi X,Y)g(BW, Z)=0$ ,

where $L$ and $B$ are $(1,1)type$ tensor fields defined by the following:

(2.3) $LX=cX-c\eta(X)\xi-A^{2}X$ , $BX=c(\phi A-A\phi)X$ .
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Therefore $L$ and $B$ are symmetric operators. If $B=0$ , then $\phi A=A\phi$ .
Let $e_{1},$ $\cdots$ , $e_{2n-1}$ be local vector fields of orthonormal frames on $M$

and contract (2.2) with $X$ and $W$ , we find

(2.4) $(trA)g(LY, Z)-\{(2n+2)c-trA^{2}\}g(AY, Z)$

+2$c\eta(AY)\eta(Z)+2c\eta(AZ)\eta(Y)-4cg(\phi A\phi Y, Z)=0$ .
${\rm Re} placingY$ by $\xi$ in (2.4) and using (1.1), we have

(2.5) $(trA)\eta(A^{2}X)=2c\alpha\eta(X)-(2nc-trA^{2})\eta(AX)$ ,

where $\alpha=\eta(A\xi)$ .
On the other hand, putting $ X=Z=\xi$ in (2.2) and exchanging $Y$ and

$W$ , we get by taking skew symmetric parts

(2.6) $\eta(AY)\eta(A^{2}W)=\eta(AW)\eta(A^{2}Y)$ ,

from which implies, for some scalar $a$ ,

(2.7) $g(A^{2}X,\xi)=ag(AX,\xi)$ ,

where we have used Schwarz’s inequality. From (2.4) and (2.7) we have

(2.8) $b\eta(AX)=2c\alpha\eta(X)$ ,

where b=2nc+atrA–trA2.

Lemma 2.2. The structure vector $\xi i8$ a principal curvature vector for
any point in a real hypersurface $M$ of $M_{n}(c)$ safisfying (2.1).

Proof. If $b\neq 0$ , then $\xi$ is a principal curvature vector by (2.8). If $b=0$ ,
then $\alpha=\eta(A\xi)=0$ . Putting $Y=\xi$ in (2.6), we get $A\xi=0$ . $\square $

Lemma 2.3. Let $M$ be a realhypersurface of $M_{n}(c)sati8hing(2.1)$ . Then
$\phi$ and $A$ are commutative.

Prvof. Lemma 2.2 shows that we can put $ A\xi=\alpha\xi$ for any point in $M$ .
Then by Proposition A we see that $\alpha$ is constant. Differentiating this
equation and using (2.1), we get

(2.9) $\alpha g(\phi AX, Y)=-cg(\phi X, Y)+g(A\phi AX, Y)$ .
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Exchanging $X$ and $Y$ in (2.9), we have $\alpha g((\phi A-A\phi)X, Y)=0$ . If
$\alpha\neq 0$ , it is clear. If $\alpha=0$ , we replace $W$ by $\phi W$ in (2.2) and contract $X$

and $W$ . Then we have

(2.10) $(2n-2)g(BY, Z)+g(\phi AY, LZ)+G(\phi aZ, LY)$

$-g(\phi^{2}Y, BZ)-g(\phi^{2}Z, BY)=0$ .

Substituting (2.3) into (2.10), we find

$(2n+1)g(BY, Z)-g(\phi AY,A^{2}Z)-g(\phi AZ,A^{2}Y)=0$ ,

from which implies

(2.11) $g(\{(2n+1)c(\phi A-A\phi)+A(\phi A-A\phi)A\}Y, Z)=0$

for any $Y,$ $Z\in TM$ . This means $\phi A=A\phi$ because of $(2.9).$

Ftom Lemma 2.3 and Theorem $B$ we have the following supplement
Theorem of Theorem F.

Theorem 2.1. Let $M$ be a real hypersurface of $M_{n}(c),$ $n\geq 3$ . Then the
following are equivalent:

(a) $M$ is locally congruent to one of type $A_{1}$ and $A_{2}$ when $c>0$ and
of $A_{0},$ $A_{1}$ and $A_{2}$ when $c<0$ ,

(b) $\nabla_{X}A(Y)=-c\{g(\phi X, Y)\xi+\eta(Y)\phi X\}$ for any $X,$ $Y\in TM$ .
Remark. We can prove Theorem 2.1 by using the condition of cyclic Ryan
(cf. [3]) that is given by Ki, Nakagawa and Suh. The Rieman\’eian mani-
fold $M$ is said to be cyclic Ryan if it satisfies $S(R(X, Y)S)(Z)=0$ for
any vector fields, where $R,$ $S$ and 6 denote the Riemannian curvature
tensor, the Ricci tensor and the cyclic sum with respect to $X,$ $Y$ and $Z$ ,
respectively.

Now we prove the folowing supplement Theorem of Theorem $G$ :

Theorem 2.2. Let $M$ be a real hypersurface of $M_{n}(c),$ $n\geq 3$ . Then the
following are equivalent:

(c) $M$ is locally congruent to type $A_{1}$ when $c>0$ , and one of type $A_{0}$

and $A_{1}$ when $c<0$

(d) $\nabla_{X}S(Y)=k\{g(\phi X,Y)\xi+\eta(Y)\phi X\}$ for any $X,Y\in TM$ , where
$k$ is locally non-zero constant.
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Proof. Suppose that the condition (d) holds. From this condition (d) and
(1.2) we have

(2.12) $\nabla_{W}(\nabla_{X}S)(Y)-\nabla_{\nabla_{W}X}S(Y)$

$=k\{\eta(X)g(AW, Y)\xi-2\eta(Y)g(AW,X)\xi+g(\phi X,Y)\phi AW$

$+g(\phi AW, Y)\phi X+\eta(X)\eta(Y)AW\}$ ,

ffom which yields

(2.13) $(R(W, X)S)Y=k\{\eta(X)g(AW, Y)\xi-\eta(W)g(AX, Y)\xi$

$+g(\phi X, Y)\phi AW-g(\phi W, Y)\phi AX+g(\phi AW, Y)\phi X$

$-g(\phi AX,Y)\phi W+\eta(Y)(\eta(X)AW-\eta(W)AX)\}$ .
Let $e_{1},$ $\cdots$ , $e_{2n-1}$ be local vector fields of orthonormal ham\’e on $M$ .

From (1.1) and (2.13) we find

(2.14) $\sum g((R(e_{i}, X)S)Y,$ $e_{i}$ ) $=k\{\eta(X)\eta(AY)$

$-2\eta(Y)\eta(AX)-g(A\phi Y, \phi X)+(trA)\eta(X)\eta(Y)\}$ .
Since the left hand side of (2.14) is symmetric with respective to $X$ and

$Y$ , the equation (2.14) implies

$k\{\eta(X)\eta(AY)-2\eta(Y)\eta(AX)\}=k\{\eta(Y)\eta(AX)-2\eta(X)\eta(AY)\}$ .

Since $k(\neq 0)$ is constant, the above equation shows that

(2.15) $\eta(X)\eta(AY)=\eta(Y)\eta(AX)$

for any $X,$ $Y\in TM$ . The equation (2.15) tel us that $\xi$ is principal.
Moreover, the condition (d) shows that the Ricci tensor $S$ of our real
hypersurface $M$ is pseudo-parallel. Therefore Theorem $E$ assert that $M$

is localy congruent to one of type $A_{1},$ $A_{2}$ and $B$ when $c>0$ and of type
$A_{0},$ $A_{1},$ $A_{2}$ and $B$ when $c<0$ .

Conversely, we must to check the condition (d) one by one for the above
model spaces. But Kimura and Maeda [7] checked for the case $c>0$. So,
the rest of the proof is to check for the case $c<0$ .

Let $M$ be of type $A_{0}$ in $H_{n}C$ . In this case $M$ has two distinct constant
principal curvatures $\alpha=2$ with multiplicity 1 and $\lambda=1$ with multiplicity
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$2n-2$ . Let $X$ be a principal curvature unit vector orthogonal to $\xi$ with
principal curvature $\lambda$ . So that the shape operator $A$ can be defined by

(2.16) $ AX=X+\eta(X)\xi$

for $X\in TM$ . Substituting the condition (b) of Theorem 2.1 and (2.16)
into (1.6), it is easily seen that $M$ satisfies the condition (d) of Theorm
2.2, that is,

(2.17) $\nabla_{X}S(Y)=-2nc\{g(\phi X, Y)\xi+\eta(Y)\phi X\}$ .

Let $M$ be of type $A_{1}$ in $H_{n}C$ . Then $M$ has two distinct constant
principal curvatures $\alpha=2coth(2r)$ and $\lambda=tanh(r)$ if $0<\lambda<1$ or $\lambda=$

$coth(r)$ if $\lambda>1$ . Let $X$ be a principal curvature unit vector orthogonal to
$\xi$ with principal curvature $\lambda$ . So that $A$ can be expressed by (cf. Takagi
[15])

(2.18) $ AX=\lambda X+\frac{1}{\lambda}\eta(X)\xi$

for $X\in TM$ . Substituting the condition (b) of Theorem 2.1 and (2.18)
into (1.6), we find

(2.19) $\nabla_{X}S(Y)=-2nctanh(r)\{g(\phi X, Y)\xi+\eta(Y)\phi X\}$ .

Therefore $M$ of type $A_{1}$ satisfies the condition (d) of Theorem 2.2.
Let $M$ be of type $A_{2}$ in $H_{n}C$ . Then $M$ has three distinct constant

principal curvatures $\alpha=2coth(2r)$ with multiplicity 1, $\lambda=tanh(r)$ with
multiplicity $2p$ and $\mu=coth(r)$ with multiplicity $2(n-p-1)$ , where
$1\leq p\leq n-1,0<\lambda<1$ (cf. Berndt [1]). Let $X$ be a principal curvature
unit vector orthogonal to $\xi$ with principal curvature $\lambda$ . We note that
$\phi X\in V_{\lambda}$ because of Proposition A. From (1.6) and the condition (b) of
Theorem 2.1, we obtain

(2.20) $\nabla_{X}S(\phi X)=-2c\{(p+1)tanh(r)+(n-p-1)coth(r)\}\xi$ .

Now let $Y$ be a principal curvature unit vector orthogonal to $\xi$ with prin-
cipal curvature $\mu=coth(r)$ . By the similar computation we have

(2.21) $\nabla_{Y}S(\phi Y)=-2c\{ptanh(r)+(n-p)coth(r)\}\xi$ .
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From (2.20) and (2.21), it is easily seen that $M$ of type $A_{2}$ does not $satis\Phi$

the condition (d) in Theorem 2.2.
Let $M$ be of type $B$ in $H_{n}C$ . Then $M$ has three distinct constant

principal curvatures $\alpha=2tanh(2r)$ with multiplicity 1, $\lambda=tanh(r)$ with
multiplicity $n-1$ and $\mu=coth(r)$ with multiplicity $n-1$ (cf. Berndt [1]).
Let $X$ be a principal curvature unit vector orthogonal to $\xi$ with principal
curvataure $\lambda$ . Then we note that $\phi X\in V_{\mu}$ because of Proposition $B$ and
$T_{p}M=V_{\lambda}\oplus V_{\mu}\oplus\{\xi\}_{R}$ at any point $p$ in $M$ .

Now we choose a local vector field $\{e_{1}, \cdots , e_{n-1},\phi e_{1}, \cdots , \phi e_{n-1},\xi\}$ of
orthonormal frames around a fixed point $p$ in $M$ such that $e_{1},$ $\cdots$ , $e_{n-1}$

(resp. $\phi e_{1},$ $\cdots$ , $\phi e_{n-1}$ ) is an orthonormal basis of $V_{\lambda}$ (resp. $V_{\mu}$ ). From
the Codazzi equation (1.4) we get

(2.22) $\nabla_{\phi e}:A(e_{j})-\nabla_{e_{j}}A(\phi e_{i})=2c\delta_{ij}\xi$ .
On the other hand, we have

(2.23) $\nabla_{\phi e_{i}}A(e_{j})-\nabla_{e_{j}}A(\phi e_{i})$

$=\nabla_{\phi e}(Ae_{j})-A\nabla_{\phi e_{i}}e_{j}-\nabla_{e_{j}}(A\phi e_{i})+A\nabla_{e_{\dot{f}}}(\phi e_{i})$

$=(\lambda I-A)\nabla_{\phi e}:e_{j}-(\mu I-A)\nabla_{e_{j}}(\phi e_{i})$ .
Then ffom (2.22) and (2.23) we obtain

$g((\lambda I-A)\nabla_{\phi e}:e_{j},e_{k})-g((\mu I-A)\nabla_{e_{j}}(\phi e_{i}), e_{k})$

$=(\lambda-\mu)g(\nabla_{e_{j}}(\phi e_{i}), e_{k})=0$ .
Thus we have

$g(\nabla_{e_{j}}(\phi e_{i}),e_{k})=0$

for $1\leq i,j,$ $k\leq n-1$ , which implies

(2.24) $g(\nabla_{e_{j}}A(\phi e_{i}),e_{k})=g((\mu I-A)\nabla_{e_{\dot{f}}}(\phi e_{i}),e_{k})$

$=(\mu-\lambda)g(\nabla_{e_{j}}(\phi e_{i}), e_{k})=0$ .
Moreover, we find

(2.25) $g(\nabla_{e_{j}}A(\phi e_{i}),\xi)=g((\mu I-A)\nabla_{\epsilon_{j}}(\phi e_{i}),\xi)$

$=(\mu-\alpha)g(\nabla_{e_{j}}(\phi e_{i}),\xi$

$=\lambda(\alpha-\mu)g(\phi e_{i}, \phi e_{j})$ .
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Therefore from (2.24) and (2.25) we have

(2.26) $\nabla_{e_{j}}A(\phi e_{i})=\lambda(\alpha-\mu)\delta;j\xi$

for $1\leq i,j\leq n-1$ . By the similar computation,

(2.27) $\nabla_{\phi e:}A(e_{j})=\mu(\lambda-\alpha)\delta_{ij}\xi$

for $1\leq i,j\leq n-1$ . From (1.6) and (2.26) we find

(2.28) $\nabla_{X}S(\phi X)=[-3c\lambda+\{(n-1)(\lambda+\mu)-\mu\}\lambda(\alpha-\mu)]\xi$ .
Next let $Y$ be a principal curvature unit vector orthogonal to $\xi$ with
principal curvature $\mu$ . Using the similar computation we get, from (1.6)
and (2.27),

(2.29) $\nabla_{Y}S(\phi Y)=[-3c\mu+\{(n-1)(\lambda+\mu)-\lambda\}\mu(\alpha-\lambda)]\xi$ .

Therefore we get $\nabla_{X}S(\phi X)\neq\nabla_{Y}S(\phi Y)$ . In fact, if we assume that the
equations (2.28) and (2.29) have the same coefficients of $\xi$ , that is,

$\{-3c+(n-1)(\lambda+\mu)\alpha-\lambda\mu\}(\lambda-\mu)=0$ ,

then we have
$-3c+2(n-1)(1-c)=1$ or $\lambda=\mu$ ,

because of $\lambda\mu=1$ and $\lambda+\mu=2(1-c)/\alpha$ . This contradicts. Thus $M$

does not satisfy the condition (d) of Theorem 2.2.0

3. Real hypersurfaces in terms of Ricci tensor and curvature
operator

In this section, we are concerned with the condition about the covariant
derivative of the Ricci tensor in $M_{n}(c)$ . Next we consider the curvature
operator $R(X, Y)$ in $M_{n}(c)$ . First of all we introduce the folowing.

Theorem 3.1. Let $M$ be a real hypersurface of $M_{n}(c),$ $n\geq 3$ . Then $M$

satisfies

(3.1) $\nabla_{X}S(Y)=\kappa\{g(\phi X, Y)\xi+\eta(Y)\phi X\}$
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for any $X,Y\in TM$ , where $\kappa$ is a fimction on $M$ if and only if $M$ is locally
congruent to a geodesic hypersphere in $P_{n}C$ , and $M$ is locally congruent to
a horosphere, a geodesic hypersphere, or a complex hwerbolic hype$rp$lane
in $H_{n}C$ .
Proof. For the real hypersurface $M$ of $P_{n}C$ , Kimura and Maeda ([6], [7])
proved this Theorem under the same condition by using the Ricci identity.
If we use the same method in $M_{n}(c)$ as used by them, we can also obtain
this Theorem 3.1. Thus we omit the proof.

Moreover, by $Th\infty rem3.1$ we find the folowing.
Proposition 3.2. Let $M$ be $a$ real hypersurface of $M_{n}(c),$ $n\geq 3$ . Then
the Ricci tensor $S$ satisfies
(3.2) $\Vert\nabla S\Vert^{2}\geq\frac{1}{n-1}\{2nc(h-\eta(A\xi))+\phi A\xi h-tr(\phi A\nabla_{\xi}A)\}^{2}$ .
Moreover, the equality of (3.2) holds if and only if $Mi8$ locally congruent
to type $A_{1}$ when $c>0$ , and one of type $A_{0}$ or $A_{1}$ when $c<0$ .
Proof. We define the tensor $T$ on $M$ as

$T(X, Y)=\nabla_{X}S(Y)-\kappa g(\phi X, Y)\xi-\kappa\eta(Y)\phi X$,
where $\kappa$ is a function on $M$ . Here we choose a local vector field $\{e_{i}\}$ of
orthonormal frames of $M$ . Calculating the length of $T$ we have

(3.3) $0\leq\Vert T||^{2}=||\nabla S||^{2}-4\kappa\sum g(\nabla_{e}:S(\xi), \phi e_{i})+4(n-1)\kappa^{2}$ .
Since (3.3) is an inequality for any real number $\kappa$ , taking the discriminant
of (3.3) we have

(3.4) $||\nabla S||^{2}\geq\frac{1}{n-1}\{\sum g(\nabla_{\epsilon}:S(\xi), \phi e_{i})\}^{2}$ .
On the other hand, from (1.1) and (1.6) we have

$\sum g(\nabla_{e}:S(\xi), \phi e_{i})=\sum g(-3c\phi Ae_{i}+(e_{i}h)A\xi$

$+(hI-A)\nabla_{e}:A(\xi)-\nabla_{e}:A(A\xi),\phi e_{i})$ .
Using the Codazzi equation (1.4), the above equation becomes

(3.5) $\sum g(\nabla_{e}:S(\xi), \phi e_{i})=-2nc(h-\eta(A\xi))-\phi A\xi h+tr(\phi A\nabla_{\xi}A)$ .
Thus the equations (3.4) and (3.5) show that (3.2) holds. $\square $

Now we consider the curvature operator $R(X, Y)$ in the complex space
form $M_{n}(c)$ . Here we shal prove the folowing.
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Theorem 3.3. Let $M$ be a real hypersurface in $M_{n}(c),$ $n\geq 3$ . If $M$

satisfies
(3.6) $(R(W, X)S)Y=\kappa\{\eta(X)(g(W, Y)\xi+\eta(Y)W$

$-\eta(W)(g(X, Y)\xi+\eta(Y)X)\}$ ,

where $\kappa$ is a function on $M$ and $W,X,$ $Y\in TM$ . Then $M$ is locally
congruent to a tube of radius $r$ over the following Kaehle $r\dot{\tau}an$ submanifolds:

In case $c>0$ ([7]),
(1) hyperplane $P_{n-1}C$ , where $0<r<\frac{\pi}{2}$ ,
(2) totally geodesic $P_{(n-1)/2}C$ , when $r=\frac{\pi}{4}$ .

In case $c<0$ ,
(1) horosphere in $H_{n}C$ ,
(2) geodesic hypersphere or complex hyperbolic hyperplane in $H_{n}C$ .

Proof. For the case $P_{n}C$ , Theorem 3.3. was proved by Kimura and Maeda
[7]. Here we shall prove this Theorem in the case $H_{n}C$ . Since $M$ of
Theorem 3.3 is a cyclic Ryan (cf. [3]), Our real hypersurface $M$ must
be pseudo-Einstein because of Theorem D. And hence Theorem $C$ shows
that $M$ is locally congruent to one of type $A_{0}$ and $A_{1}$ when $c<0$ .

Conversely, let $M$ be one of type $A_{0}$ and $A_{1}$ . Theorem 3.1 asserts that
$M$ satisfies the condition (b). By making use of the Ricci identity and
using (1.2), we find that $M$ satisfies the equation (2.13) in the proof of
Theorem 2.2.

Now let $M$ be of type $A_{0}$ in $H_{n}C$ . Then $M$ has two distinct constant
principal curvatures $\alpha=2$ and $\lambda=1$ . Thus the shape operator $A$ of $M$

can be expressed as (2.16). Substituting (2.16) nto (2.13), we get (3.6).
Next let $M$ be of type $A_{1}$ in $H_{n}C$ . Then $M$ has two distinct constant

principal curvatures $\alpha=2coth(2r)$ and $\lambda=tanh(r)$ (or coth $(r)$ ). Thus
the shape operator $A$ can be defined by (2.18). Substituting (2.18) into
(2.13), we have (3.6). $\square $

Now we put the tensor $T$ on $M$ of $M_{n}(c)$ as the folowing:

$T(W, X, Y)=(R(W, X)S)Y-\kappa\{\eta(X)(g(W, Y)\xi+\eta(Y)W)$

$-\eta(W)(g(X<Y)\xi+\eta(Y)X)\}$ ,

where $\kappa$ is a function on $M$ . By the same computation as in Proposition
3.2 where we have used the equations (1.1), (1.3), (1.5) and (1.6), we find
the length of the curvature tensor for the Ricci tensor as the following.
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Proposition 3.4. Let $M$ be a red hypersurface of $M_{n}(c),n\geq 3$ . Then
the curvature tensor satisfies

(3.7) $\Vert RS||^{2}\geq\frac{2}{n-1}\{\Vert S\xi||^{2}-c\rho+c\eta(S\xi)-\eta(A\xi)tr(AS)+\eta(ASA\xi)\}^{2}$ ,

where $\rho$ is the scalar curvature $ofM$ . Moerover, the equality of (3.7) holdS
if and only if $M$ is locdly congruent to one of $tweA_{1}$ and totally geodesic
$P_{(n-1)/2}C,r=\frac{\pi}{4}$ when $c>0$ , and of type $A_{0}$ or $A_{1}$ when $c<0$ .
Theorem 3.5. Let $M$ be a real hypersurface of $M_{n}(c),n\geq 2$ . If $M$

satisfies
(3.8) $(R(X,Y)A)Z+(R(Y, Z)A)X+(R(Z,X)A)Y=0$ .
Then $M$ is loeal $lycong uent$ to type $A_{1},$ $n\geq 3$ , and a real hwersurfaoe in
$P_{2}C$ on which $\xi$ is $p$rincipal when $c>0$ , and of type $A_{0},A_{1}$ and $a$ real
hypersurface in $H_{2}C$ on which $\xi$ is principal when $c<0$ .
Proof. From (1.2), (1.3) and (3.8) we find

(3.9) $g((\phi A+A\phi)X,Y)\phi Z+g((\phi A+A\phi)Y, Z)\phi X$

$+g((\phi A+A\phi)Z,X)\phi Y-2g(\phi X,Y)\phi AZ$

$-2g(\phi Y, Z)\phi AX-2g(\phi Z,X)\phi AY=0$ ,

because of constant $c\neq 0$ . Putting $X=e_{i},$ $Y=\phi e_{i}$ , we have

(3.10) $(h-\eta(A\xi))\phi Z-(2n-3)\phi AZ-A\phi W+\eta(A\phi Z)\xi-2\eta(Z)\phi A\xi=0$ .
Replacing $Z$ by $\xi$ in (3.10) we get $\phi A\xi=0$ , which is that $\xi$ is principal.
Hence the equation (3.10) becomes

(3.11) $(h-\eta(A\xi))\phi Z-(2n-3)\phi AZ-A\phi Z=0$ .
For any $X,$ $Y\in TM$ , the equation (3.11) yields

(3.12) $(h-\eta(A\xi))g(\phi X,Y)-(2n-3)g(\phi AX,Y)-g(A\phi X,Y)=0$ .
Exchanging the role of $X$ and $Y$ , we have also

(3.13) $(h-\eta(A\xi))g(\phi Y,X)-(2n-3)g(\phi AY,X)-g(A\phi Y,X)=0$ .
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From (3.12) and (3.13) we have

$(2n-4)g((\phi A-A\phi)X, Y)=0$ .
Hence we have $\phi A=A\phi$ in the case of $n\geq 3$ . Thus, in the case of $n\geq 3$ ,
by virtue of Theorem $B$ our real hypersurface $M$ is locally congruent to
one of type $A_{1}$ and $A_{2}$ when $c>0$ , and of type $A_{0},$ $A_{1}$ and $A_{2}$ when $c<0$ .

Conversely, we must check the equation (3.8) for the above model
spaces. But in case $c>0$ Kimura and Maeda [7] have checked. So,
let us check (3.8) for the three model spaces of type $A_{0},$ $A_{1}$ and $A_{2}$ one
by one in case $c<0$ .

Let $M$ be of type $A_{0}$ in $H_{n}C$ . Ftom (1.3) and (2.16) we find

(3.14) $(R(W, X)A)Y=(2+c)\{\eta(X)\eta(Y)W$

$+\eta(X)g(W, Y)\eta-\eta(W)\eta(Y)X-\eta(W)g(X, Y)\xi\}$ ,

$hom$ which satisfies (3.8).
Let $M$ be of type $A_{1}$ in $H_{n}C$ . Rom (1.3) and (2.18) we find

(3.15) $(R(W, X)A)Y=(\lambda+\frac{1}{\lambda}+\frac{c}{\lambda})\{\eta(Y)(\eta(Z)X+g(Z, X)\xi)$

$-\eta(X)(\eta(Z)Y+g(Z, Y)\xi)\}$ .
This equation (3.15) satisfies (3.8).

Let $M$ be of type $A_{2}$ in $H_{n}C$ . Set $X\in V_{\lambda},$ $Y\in V_{\mu}$ and $\Vert X||=||Y||=1$ .
We note that $\phi X\in V_{\lambda}$ because of Proposition B. Hence from the Gauss
equation (1.3) we find

$(R(X, \phi X)A)Y+(R(\phi X, Y)A)X+(R(Y, X)A)\phi X=2c(\lambda-\mu)\phi Y\neq 0$ .
Therefore in case $n\geq 3$ we assert that $M$ satisfying (3.8) must be of

one of type $A_{0}$ and $A_{1}$ .
In case $n=2$ , let $ A\xi=\alpha\xi$ and $X$ be a principal curvature vector

orthogonal to $\xi$ with principal curvature $r$ in $M_{n}(c)$ . Rom.(1.3) and
Proposition $B$ we find

$(R(X,\xi)A)\phi X+(R(\xi, \phi X)A)X+(R(\phi X,X)A)\xi$

$=\frac{r\alpha+2c}{2r-\alpha}R(X,\xi)\phi X+rR(\xi, \phi X)X+\alpha R(\phi X, X)\xi=0$ .

Thus the equation (3.8) is equivalent to the condition that $\xi$ is principal.
So, this proof is completed. $\square $
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Theorem 3.6. Let $M$ be a real hypersurface of $M_{n}(c),n\geq 2$ . If $M$

satisfies

(3.16) $(R(W,X)A)Y=\kappa\{\eta(W)(\eta(Y)X+g(X,Y)\xi)$

$-\eta(X)(\eta(Y)W+g(W, Y)\xi)\}$ ,

where $\kappa$ is a flnction on $M$ and $W,X,Y\in TM$ . Then $M$ is locally
congruent to type $A_{1}$ when $c>0$ , and one of type $A_{0}$ and $A_{1}$ when $c<0$ .
Prvof. First we note that (3.16) satisfies (3.8). Therefore, in case $n\geq 3$ ,
our real hypersurface $M$ satisfying (3.18) must be of type $A_{1}$ because of
Theorem 3.5. So, the rest of the proof is to study in case $n=2$ . Now we
shall show that $M$ must be homogeneous in $M_{n}(c)$ . Let $A\xi=\alpha\xi(see$ Proof
of Theorem 3.5) and $X$ be a principal curvature unit vector orthogonal to
$\xi$ with principal curvature $\lambda$ . Then the Gauss equation (1.3) gives

(3.17) $g((R(X,\xi)A)\xi,X)=c\alpha+\alpha^{2}\lambda-c\lambda-\alpha\lambda^{2}$ ,

(3.18) $g((R(\phi X,\xi)A)\xi,$ $\phi X$)

$=c\alpha+\alpha^{2}\frac{\alpha\lambda+2c}{2\lambda-\alpha}-c\frac{\alpha\lambda+2c}{2\lambda-\alpha}-\alpha(\frac{\alpha\lambda+2c}{2\lambda-\alpha})^{2}$ .

On the other hand, (3.16) implies

(3.19) $g((R(X,\xi)A)\xi,X)=g((R(\phi X,\xi)A)\xi,$ $\phi X$) $=-\kappa$ .

From (3.17), (3.18) and (3.19) we have

$\alpha^{2}\lambda-c\lambda-\alpha\alpha^{2}=\alpha^{2}\frac{\alpha\lambda+2c}{2\lambda-\alpha}-c\frac{\alpha\lambda+2c}{2\lambda-\alpha}-\alpha(\frac{\alpha\lambda+2c}{2\lambda-\alpha})^{2}$ ,

from which implies

(3.20) $(\lambda^{2}-\alpha\lambda-c)\{2\alpha\lambda^{2}-2(\alpha^{2}-c)\lambda+\alpha(\alpha^{2}+c)\}=0$ .

By virtue of Proposition A and (3.20) it is easily seen that $\lambda$ is constant.
Hence our real hypersurface $M$ must be homogeneous in $M_{n}(c)$ because
of Theorem F. So, we have only to prove that $M$ of type $B$ in $H_{n}C$ does
not satisfy (3.20). If $M$ of type $B$ is a tube of radius $r$ over $H_{2}R$ , then
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$T$ has three distinct constant principal curvatures $\alpha=2tanh(2r),$ $\lambda_{1}=$

$tanh(r)$ and $\lambda_{2}=coth(r)$ . It follows from these principal curvatures that
$\lambda_{1}+\lambda_{2}=4/\alpha$ , which implies that the quadratic equation $\lambda^{2}-\alpha\lambda-c=0$

does not have solutions $\lambda_{1}$ and $\lambda_{2}$ . Moreover, the quadratic equation
$2\alpha\lambda^{2}-2(\alpha^{2}-c)\lambda+\alpha(\alpha^{2}+c)=0$ does not have the solutions $\lambda_{1}$ and $\lambda_{2}$ .
In fact, we assume that $\lambda_{1}$ and $\lambda_{2}$ are solutions of this equation. Then
this equation shows that

(3.21) $\lambda_{1}+\lambda_{2}=(\alpha^{2}-c)/\alpha,$ $\lambda_{1}\lambda_{2}=(\alpha^{2}+c)/2$ .
On the other hand, it follows $hom$ the principal curvatures $\lambda_{1}$ and $\lambda_{2}$

that

(3.22) $\lambda_{1}+\lambda_{2}=tanh(r)+coth(r)=4/\alpha$ , $\lambda_{1}\lambda_{2}=tanh(r)coth(r)=1$ .

From (3.21) and (3.22) we have $c=\alpha^{2}-4$ and $c=\alpha^{2}-2$ . We get a
contradiction. This means that there is no real hypersurface $M$ of type $B$

in $H_{2}$C. $\square $

Now we define the tensor $T$ on $M$ as:

$T(W, X, Y)=(R(W, X)A)Y-\kappa\{\eta(W)(\eta(Y)X+g(X, Y)\xi)$

$-\eta(X)(\eta(Y)W+g(W, Y)\xi)\}$ .

By the same discussion as Proposition 3.2 we find the following:

Proposition 3.7. Let $M$ be a real hypersurface of $M_{n}(c),$ $n\geq 2$ . Then
we have

(3.23) $||RA\Vert^{2}\geq\frac{2}{n-1}\{(2nc-c-trA^{2})\eta(A\xi)+h(\Vert A\xi||^{2}-c)\}^{2}$ .

Moreover, the equality of (3.23) holds if and only if $M$ is locally congruent
to type $A_{1}$ when $c>0$ , and one of type $A_{0}$ and $A_{1}$ when $c<0$ .
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