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Abstract
We precisely study the structure of the orbit of critical point 1/2 and periodic

points for $f_{a}=ax(1-x),$ $(0<a<3.5699\ldots)$ on $[0,1]$ and as an application give the
classification of those functions by topological conjugacy.

1 Introduction

Let $f_{a}$ be a quadratic map of $[0,1]$ into itself defined by $f_{a}(x)=ax(1-x)$ for $x$ in
$[0,1]$ , where $a$ is a real number in $(0,4$]. We have already well known that the family
$\{f_{a} : 0<a\leq 4\}$ has a series of period-doubling bifurcations within the interval $[1, a(2^{\infty})]$ ,
where $a(2^{\infty})=$ 3.5699 . . . $(cf.[3])$ . Namely there is a sequence $\{a_{\mathfrak{n}}\}_{\mathfrak{n}=0}^{\infty}$ in $[1, a(2^{\infty})]$ such
that

(1) periodic points $P(2^{n})s$ of prime period $2^{n}$ (a non-zero fixed point when $n=0$ ) appear
after $a$ passes through $a_{n}(a>a_{n})$ , together with

(2) periodic points $P(2^{n-1})s$ of prime period $2^{n-1}$ (the fixed point $0$ when $n=0$ ) change
from attractive to repelling periodic points.

The set of real numbers $\{a_{n}\}_{n=0}^{\infty}$ is a monotone increasing sequence such that $a_{0}=1,$ $a_{1}=$

$3,$ $a_{2}=1+\sqrt{6},$
$\ldots$ and it’s limit point is $a(2^{\infty})$ . Let $b_{n}$ be the number in $[0, a(2^{\infty})]$ such

that the critical point 1/2 becomes the periodic point of prime period $2^{n}$ for $f_{b_{n}}$ . Then the
numbers $\{b_{n}\}_{n=0}^{\infty}$ is an increasing sequence such that $b_{0}=2,$ $b_{1}=1+\sqrt{5},$ $ b_{2}=3.499\ldots$ and
we have

$0<a_{0}<b_{0}<a_{1}<\ldots<a_{n}<b_{n}<a_{n+1}<\ldots<a(2^{\infty})$ .
Here, for the sake of convenience, we put $b_{-1}=0$ .

Now our purpose is to analyze the behavior of the orbit of critical point 1/2 for $f_{a}$ and
the periodic orbits when $a$ passes through $a_{n}$ or $b_{n}$ . Especially we study the accurate order
of those points in $[0,1]$ . Therefore, as an application, we can obtain an exact proof of the
classification of the family $\{f_{a} : 0<a<a(2^{\infty})\}$ by topological conjugacy.
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2Bifurcations of periodic points and the orbit of the
critical point

Considering the usual order in $[0,1]$ , we denote by $P(2^{n})_{1}$ the largest periodic point of
prime period 2“ for $f_{a}$ and put $P(2^{\mathfrak{n}})_{k}=f_{a}^{k-1}(P(2^{\mathfrak{n}})_{1})$ for $k=1,2,$ $\ldots,$

$2^{n}$ , where $f^{k}$ means
the k-fold composition of $f$ with itself. Moreover we put $x_{0}=1/2$ and $x_{k}=f_{a}^{k}(1/2)$ for
$k=1,2,$ $\ldots$ .

2.1 Position of the points $P(2^{n})_{k}s$ and $x_{k}’ s$

First we show the order of those points in $[0,1]$ for the initial 7 cases.

Case 1: $(0=b_{-1}<a\leq a_{0}=1)$

$0<\cdots<x_{n}<\cdots<x_{0}<1$ .

Case 2: $(1=a_{0}<a<b_{0}=2)$

$0<P(1)_{1}<\cdots<x_{\mathfrak{n}}<\cdots<x_{0}<1$ .

Case 3: $(a=b_{0}=2)$

$0<x_{0}=P(1)_{1}<1$ .

Case 4: $(2=b_{0}<a\leq a_{1}=3)$

$0<x_{0}<x_{2}<\cdots<x_{2n}<\cdots<P(1)_{1}<\cdots<x_{2n+1}<\cdots<x_{3}<x_{1}<1$ .

Case 5: $(3=a_{1}<a<b_{1}=1+\sqrt{5})$

$0<x_{0}<x_{2}<\cdots<x_{2n}<\cdots<P(2)_{2}<P(1)_{1}<P(2)_{1}<\cdots<x_{2n+1}<\cdots<$

$x_{3}<x_{1}<1$ .

Case 6: $(a=b_{1}=1+\sqrt{5})$

$0<x_{0}=x_{2}=x_{2n}=P(2)_{2}<P(1)_{1}<P(2)_{1}=x_{2\mathfrak{n}+1}=x_{3}=x_{1}=1$ .

Case 7: $(1+\sqrt{5}=b_{1}<a\leq a_{2}=1+\sqrt{6})$

$0<x_{2}<x_{6}<P(2)_{2}<x_{8}<x_{4}<x_{0}<P(1)_{1}<x_{3}<x_{7}<P(2)_{1}<x_{5}<x_{1}<1$ .

In general we can see inductively the bifurcations of $P(2^{\mathfrak{n}})_{k}s$ and $x_{k}’ s$ as follows. For
$n=0,1,2,$ $\ldots$ and $k=1,2,$ $\ldots,$

$2^{\mathfrak{n}}$ , let $r.(k)$ and $s.(k)$ be the indexes defined by

$x_{r_{n}(k)}=\min\{x_{k,k+2^{n}}x\}$ and $x_{s_{n}(k)}=\max\{x_{k,k+2^{n}}x\}$ .

We note that $s_{\mathfrak{n}}(1)=1,$ $r_{\mathfrak{n}}(2)=2$ for every $n$ . We begin induction with case of $(b_{n}, a_{n+1}$ ].
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(1) Now we suppose that for $a$ in $(b_{n}, a_{n+1}$ ] it follows that

$x_{r_{n}(k)}<x_{r_{n}(k)+2^{n+1}}<\cdots<P(2^{n})_{k}<\cdots<x_{s_{n}(k)+2^{n+1}}<x_{s_{\hslash}(k)}$ (2.1.1).

where each sequence in the left or right hand side converges to $P(2^{n})_{k}$ and there are no
$x_{k}(k\geq 1)$ outside the union $\bigcup_{k=1}^{2^{n}}[x_{r_{n}(k)}, x_{s_{n}(k)}]$ . When $n=0$ , it is Case 4.

(2) When $a$ moves into the open interval $(a_{n+1}, b_{n+1})$ the periodic points { $P(2^{\mathfrak{n}+1})_{k}$ : $k=$

$1,2,$ $\cdots,$
$2^{\mathfrak{n}+1}$ } are born from $\{P(2^{n})_{k} : k=1,2, \cdots , 2^{n}\}$ and the order is as follows:

$x_{r_{n}(k)}<x_{r_{n}(k)+2^{\mathfrak{n}+1}}<\cdots<P(2^{\mathfrak{n}+1})_{r_{\hslash}(k)}<P(2^{\mathfrak{n}})_{k}<P(2^{\mathfrak{n}+1})_{s_{\hslash}(k)}<$

.. . $<x_{s_{\hslash}(k)+2^{\hslash+1}}<x_{s_{\hslash}(k)}$ (2.1.2),

where each sequence in the left and right hand side converges to $P(2^{n+1})_{r_{n}(k)}$ and $P(2^{n+1})_{s.(k)}$

respectively and there are no $x_{k}(k\geq 1)$ outside the union

$\bigcup_{k=1}^{2^{n}}([x_{r_{n}(k)}, P(2^{n+1})_{r_{n}(k)}]\cup[P(2^{n+1})_{s_{n}(k)}, x_{s_{n}(k)}])$ .

Here we remark that the order of $\{x_{k}\}_{k=0}^{\infty}$ does not change.

(3) When $a=b_{n+1},$ $x_{r_{\hslash}}(k)$ and $x_{s_{\hslash}}(k)$ coincide with $P(2^{n+1})_{r.(k)}$ and $P(2^{n+1})_{s.(k)}$ re-
spectively and the order is shown as follows:

$x_{r_{n}(k)}=P(2^{n+1})_{r_{\mathfrak{n}}(k)}<P(2^{n})_{k}<P(2^{n+1})_{s_{\mathfrak{n}}(k)}=x_{s_{\mathfrak{n}}(k)}$ .

(4) When $a$ moves into the semi-open interval $(b_{n+1}, a_{n+2}$ ], though the order of position
of $\{P(2^{n+1})_{k} : k=1,2, \ldots, 2^{n+1}\}$ does not change, $\{x_{r_{n}(k)+2^{n+1}}\}$ and $\{x_{s_{n}(k)+2^{\mathfrak{n}+1}}\}$ change
the order of their position as follows:

$x_{r_{\hslash}(k)}<P(2^{n+1})_{r_{n}(k)}<x_{r_{n}(k)+2^{n+1}}<P(2^{n})_{k}<x_{s_{n}(k)+2^{n+1}}<P(2^{n+1})_{s_{n}(k)}<x_{s_{\hslash}(k)}$ .

This is rewritten as follows:

$x_{r}\hslash<X_{r_{\mathfrak{n}+1}}n+2<\ldots<P(2^{n+1})_{r_{n}(k)}<\cdots<x_{s_{n}+1(r_{\hslash}(k)+2^{n+2})}<$

$x_{s_{\hslash}+1(r_{\hslash}(k))}<P(2^{n})_{k}<x_{r_{n+\iota(s_{\hslash}(k))}}<x_{r_{n}+1(s_{n}(k)+2^{\mathfrak{n}+2})}<\cdots<$

$P(2^{n+1})_{s_{n}(k)}<\cdots<x_{s_{n+1(s_{n}(k)+2^{\mathfrak{n}+2})}}<x_{s_{\mathfrak{n}}+1(s_{n}(k))}$ .

This phenomenon: $x_{r_{n}+\iota(j)}<P(2^{n+1})_{j}<x_{s_{\hslash}+1(j)}$ corressponds to (2.1.1) in case of $(b_{n+1}, a_{n+2}$],
and these bifurcations occur repeatedly. Thus for every $n\geq 0$ we have (2.1.1) and (2.1.2)
for $a$ in $(b_{n}, a_{n+1}$ ] and $a$ in $(a_{n+1}, b_{n+1})$ respectively.
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2.2 Positions of the periodic points $\{P(2^{m})_{k} : 1\leq k\leq 2^{m}\}$

From Section 2.1 we can see the following.

(2.2.1) For $k$ and $j$ with $0<k,$ $j<2^{m}$ , it follows that

$\max\{P(2^{m+1})_{k}, P(2^{m.+1})_{k+2^{m}}\}<\min\{P(2^{m+1})_{j}, P(2^{m+1})_{j+2^{m}}\}$

if and only if $P(2^{m})_{k}<P(2^{m})_{j}$ .

(2.2.2) For $k$ with $0<k<2^{m}$ , it folows that

$P(2^{m+1})_{k}<P(2^{m+1})_{k+2^{m}}$ if and only if $P(2^{m})_{k}<P(2^{m})_{k_{1}}$

where $k_{1}\neq k$ but $k_{1}\equiv k(mod 2^{m-1})$ .

Statements (2.2.1) and (2.2.2) mean the folowing transition of bifurcations from the case:
$a_{0}<a<a_{1}$ to the case: $a_{3}<a<a_{4}$ and so on.

$P(1)_{1}$

$P(2)_{2}<P(2)_{1}$

$P(4)_{2}<P(4)_{4}<P(4)_{3}<P(4)_{1}$

$P(8)_{2}<P(8)_{6}<P(8)_{8}<P(8)_{4}<P(8)_{3}<P(8)_{7}<P(8)_{5}<P(8)_{1}$ .
....... .... . .. ... ..

2.3 Position of the points $\{x_{k} : 1 \leq k\leq 2^{n}\}$ and { $P(2^{m})_{k}$ : $ 0\leq m\leq$

$n-1,1\leq k\leq 2^{m}\}$

By the preceding discussion, the order of those points is fixed for al $a>b_{\mathfrak{n}}$ . In fact,
the order of the orbit $\{x_{k} : 1 \leq k\leq 2^{n}\}$ and the periodic points of prime period $ 2^{m}(0\leq$

$m\leq n-1)$ does not change when $a$ increases in $(b_{n}, a(2^{\infty}))$ , and the order is expressed as
follows. Suppose that $a$ is in $(b_{\mathfrak{n}}, b_{n+1})$ . For $m=0,1,2,$ $\ldots,$

$n-1$ and $k=1,2,$
$\ldots,$

$2^{m}$ , let

$x_{r(m,k)}=\min\{x_{2^{m+1}+k}, x_{2^{m+1}+k+2^{m}}\}$ and $x_{s(m,k)}=\max\{x_{2^{m+1}+k}, x_{2^{m+1}+k+2^{m}}\}$

Here we note that $2^{m+1}+k=2\cdot 2^{m}+k$ and $2^{m+1}+k+2^{m}=3\cdot 2^{m}+k$ . Then it follows
that

$x_{r(m,k)}<P(2^{m})_{k}<x_{s(m,k)}$ (2.3.1)

and each open interval $(x_{r(m,k)}, x_{s(m,k)})$ contains no points of $\{x_{k} : k\geq 1\}$ .
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2.4 Position of $x_{0}$ among the orbit $\{x_{n}\}$

Though the set $\{x_{k} : 1 \leq k\leq 2^{n}\}$ keeps their order for any $a\geq a_{n}$ , the position of
$x_{0}$ among $\{x_{n}\}$ changes as follows. Suppose that $a$ is in $(b_{n}, b_{n+1})$ . Then we obtain the
following.

(1) If $n=0$ , then we have
$x_{0}<x_{2}<P(1)_{1}<x_{3}$ .

(2) If $n$ is an odd number, we have

$x_{4\cdot 2^{n-1}}<x_{0}<P(2^{n-1})_{2^{n-1}}<x_{3\cdot 2^{\mathfrak{n}-1}}$ (2.4.1).

(3) If $n(>0)$ is an even number, we have

$x_{3\cdot 2^{n-1}}<P(2^{\mathfrak{n}-1})_{2^{\mathfrak{n}-1}}<x_{0}<x_{4\cdot 2^{n-1}}$ (2.4.2).

(4) There are no points of $\{x_{k} : k\geq 1\}$ between two points $x_{3\cdot 2^{n-1}}$ and $x_{4\cdot 2^{n-1}}$ .

The change of position of $x_{0}$ from (2) to (3) can be recognized by the folowing inductive
observation.

When $n=1$ , we have

$x_{2}<P(2)_{2}<x_{4}<x_{0}<P(1)_{1}<x_{3}$ (cf. Case 7 in 2.1).

Next we suppose that, for an odd number $n$ and $a$ in $(b_{n}, b_{n+1})$ ,

$x_{2^{n}}<P(2^{n})_{2^{n}}<x_{4\cdot 2^{n-1}}<x_{0}<P(2^{n-1})_{2^{n-1}}<x_{3\cdot 2^{n-1}}$ .

When $a$ is in $(a_{n+1}, b_{\mathfrak{n}+1}),$ $f_{a}$ has the periodic points $P(2^{n+1})_{2^{\mathfrak{n}+1}}s$ and the order is as
follows:

$x_{2^{n}}<P(2^{n+1})_{2^{n}}<P(2^{n})_{2^{n}}<P(2^{n+1})_{2^{n+1}}<x_{2^{n+1}}<x_{0}<x_{3\cdot 2^{n-1}}$ .

When $a$ reaches to $b_{n+1}$ , the order changes as follows:

$x_{2^{\mathfrak{n}}}=P(2^{n+1})_{2^{n}}<P(2^{n})_{2^{n}}<P(2^{\mathfrak{n}+1})_{2^{n+1}}=x_{2^{\mathfrak{n}+1}}=x_{0}<x_{3\cdot 2^{\mathfrak{n}-1}}$ .

Moreover when $a$ moves into $(b_{n+1}, a_{n+2})$ , we have

$x_{2^{\mathfrak{n}}}<P(2^{n+1})_{2^{n}}<x_{2^{n}+2^{n+1}}<P(2^{n})_{2^{n}}<x_{0}<x_{2^{n+1}}+2^{n+1}<P(2^{n+1})_{2^{n+1}}<x_{2^{n+1}}<x_{3\cdot 2^{n-1}}$ .

This is rewritten as follows:

$x_{3\cdot 2^{\mathfrak{n}}}<P(2^{n})_{2^{n}}<x_{0}<x_{4\cdot 2^{n}}<P(2^{n+1})_{2^{n+1}}<x_{2^{n+1}}$ .

The change from (3) to (2) can be recognized in the same fashion. Thus we have Statements
(1) $\sim(4)$ for $n>0$ .
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3 Applications

3.1 Conjugate classes

Two maps $f$ and $g$ on $[a, b]$ are said to be topologicaly conjugate if there exists a
homeomorphism $h:[a, b]\rightarrow[a, b]$ such that $hof=goh$ , and $h$ is said to be a conjugacy for
$f$ and $g$ . Suppose that two quadratic maps $f_{a}$ and $f_{b}$ on $[0,1]$ are topologically conjugate by
a conjugacy $h$ . Since the critical point 1/2 for $f_{a}$ and $f_{b}$ is invariant for $h$ , the forward orbits
of 1/2 for $f_{a}$ and $f_{b}$ have the same order in $[0,1]$ . In addition, these are combinatorialy
equivalent, namely the backward orbits for two maps have the same order, too [3: Chap.II.
Theorem 3.1].

Now we put $F_{n}=\{f_{a} ; a_{n}<a<b_{\mathfrak{n}}\},$ $G_{n}=\{f_{a} ; a=b_{\mathfrak{n}}\}$ and $H_{\mathfrak{n}}=\{f_{a} ; b_{n}<a\leq a_{\mathfrak{n}+1}\}$ .
Then the results shown in the preceding section mean that distinct two maps are combina-
torially equivalent if and only if the maps belong to $H_{n}\cup F_{\mathfrak{n}+1}$ for some $n\geq-1$ . Moreover,
each map in $F_{\mathfrak{n}}\cup G_{n}\cup H_{n}$ has a periodic orbit of prime period $2^{n}$ . Thus, if $f_{a}$ and $f_{b}$ are
topologicaly conjugate then the two maps belong to the same family. In this section we
prove that the converse statement is valid. Namely we have the following theorem.

Theorem 3.1. Each family in $\{F_{n}, G_{n}, H_{n-1} ; n\geq 0\}$ is a topologically conjugate class.

Now, at first we consider cases of $H_{-1}$ and $F_{0}$ . Suppose that $f_{a}$ and $f_{b}$ are in $H_{-1}$ .
Let $x_{n}=f_{a}^{\mathfrak{n}}(1/2)$ and $y_{n}=f_{b^{\hslash}}(1/2)$ . Seeing the order of $\{x_{n}\}$ and $\{y_{\mathfrak{n}}\}$ (cf. Section 2.1,
Case 1), we can take a monotone increasing homeomorphism $h_{0}$ of $[x_{1}, y_{0}]$ onto $[y_{1}, y_{0}]$ .
Since $f_{a}([x_{\mathfrak{n}+1}, x_{n}])=[x_{n+2}, x_{\mathfrak{n}+1}],$ $f_{a}([x_{0},1])=[0, x_{1}]$ and $f_{b}([y_{\mathfrak{n}+1}, y_{n}])=[y_{n+2}, y_{\mathfrak{n}+1}]$ ,
$f_{a}([y_{0},1])=[0, y_{1}]$ respectively, $h_{0}$ can be extended to a homeomorphism of $[0,1]$ onto itself
with $hof_{a}=f_{b}oh$ . In the case where $f_{a}$ and $f_{b}$ are in $F_{0}$ , two homeomorphisms

$h_{0}$ : $[x_{1}, x_{0}]\rightarrow[y_{1}, y_{0}]$ and $k_{0}$ : $[z_{0}, z_{1}]\rightarrow[w_{0}, w_{1}]$ ,

can be extended to a conjugacy for $f_{a}$ and $f_{b}$ , where $0<z_{0}<\lim_{\mathfrak{n}\rightarrow\infty}x_{\mathfrak{n}},$ $z_{1}=f_{a}(z_{0})$ and
$0<w_{0}<\lim_{n\rightarrow\infty}y_{n},$ $w_{1}=f_{b}(w_{0})$ (cf. Section 2.1, Case 2).

For other cases we can obtain a conjugacy for $f_{a}$ and $f_{b}$ in the same family similarly
to the cases above, though we have to check more complex phenomena shown in Section
3. However in this note we show that two maps in the same family in $\{F_{n}, G_{n}\}$ satisfy a
condition for those maps to be topologically conjugate. Such conditions are mentioned in
[4:Chap.II, Theorem 3.1] and [$1:Theorem$ II.6.3]. Here we use the latter condition since it is
more useful directly in our case. First we confirm the definition of kneading sequence used
in [1]. The kneading sequence $I_{a}(1/2)$ is a sequence consisting of three alphabets $R,$ $C$ ,
and $L$ , where $j(\geq 1)$-th element of $I_{a}(1/2)$ is $R,$ $C$ , or $L$ if $x_{j}>1/2,$ $x_{j}=1/2$ or $x_{j}<1/2$

respectively, where $x_{n}$ is n-th image of critical (turning) point 1/2. Then by the results in
Section 2, we have the following.
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(1) $I_{a}(1/2)$ is invariant for $f_{a}$ in $H_{n}\cup F_{n+1}$ .

(2) For $f_{a}$ in $F_{\mathfrak{n}}$ (resp. $H_{n}$), $I_{a}(1/2)=D^{\infty}$ ( $=the$ infinite repeat of $D$ )) where $D$ is a finite
sequence with period $2^{n-1}$ (resp. $2^{n}$ ) and consists of two kinds of letters $R$ and $L$ ,
where each number is odd.

(3) For $f_{a}$ in $F_{n}\cup G_{n}\cup H_{n}$ , the stable orbit of $f_{a}$ is the set $\{P(2^{n})_{k} : 1 \leq k\leq 2^{n}\}$ of
periodic points with prime period $2^{n}$ .

Especially we note that Section 2.4 implies that for $a$ in $(b_{n}, b_{n+1})$ , the number $d_{n}$ of $R’ s$

in (2) in the statements above is determined as folows:

$d_{0}=1$ and $d_{n}=\{$
2$d_{n-1}-1$ if $n$ is odd,
$2d_{n-1}+1$ if $n$ is even.

Now the family $f_{a}(x)=ax(1-x)$ on $[1-x_{1}, x_{1}](2<a\leq 4)$ corresponds to those functions
$f_{\mu}(x)=1-\mu x^{2}(0<\mu=a^{2}/4-a/2\leq 2)$ which belong to a family of functions discussed in
[$1:Theorem$ II.6.3]. Thus by 2.a of Theorem II.6.3, it follows that two maps $f_{a}$ and $f_{b}$ in the
same family, $F_{n}$ or $H_{n}$ , are topologically conjugate as functions on $[f_{a}^{2}(1/2), f_{a}(1/2)]$ and
$[f_{b}^{2}(1/2), f_{b}(1/2)]$ . From this we can easily drive that $f_{a}$ and $f_{b}$ are topologicaly conjugate
as functions on $[0,1]$ in the same way as in case of $H_{-1}$ . Consequently we complete the
proof.

3.2 Covariant representation of topological dynamics

We consider that the topological dynamical systems $([0,1], f_{a})$ have fruitful non-commutative
structure as well as the case of homeomorphisms (cf. [5]). The non-commutative structure
would be represented as covariant representation. Those representations of $([0,1], f_{a})$ are
studied in [2] and the orbit structure described in Section 2 of this paper plays an important
role.

Acknowledgement
The authors wish to thank Dr. M. Tsujii (Tokyo Institute of Technology) for useful

discussion with him about topological conjugacy related to Theorem 3.1. Moreover they
wish to thank graduate students of our department for helping us with the calculation by
computer.

–193–



References

[1] P.Collet and J.P.Eckmann, Iterated maps on the intervals as dynamical systems, Birkh\"auser,
Boston, 1980.

[2] S. Kawamura, Covariant representations of one-dimensional unimodal maps (in prepa-
ration).

[3] R.M.May, Simple mathematical models with very complicated dynamics, Nature,
261(1976), 459-467.

[4] W. de Melo and S. van Strien, One-dimensional dynamics, Ergebnisse der Mathematik
und ihrer Grenzgebiete 25, Springer, Berlin, 1993.

[5] J. Tomiyama, Invitation to $C^{*}$-algebras and topological dynamics, World Scientific,
Singapore, 1987.

Shinzo KAWAMURA and Takamichi NAKANO
Department of Mathematics
Faculty of Science
Yamagata University
Yamagata 990, Japan

Received August 31, 1994, Revised October 3, 1994

–194–


