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Holomorphic Solutions of Some Functional Equations

Mami Suzuki

1. Introduction

Let X(x, y) and Y (x, y) be holomorphic functions in |x|< t,|yi<t,
which are expanded there as
X(x,y)=24Ax + m§2¥pm,.x"‘y"=ﬂ. x + X (x,y)
1.1

Y(x,y)=uny +m;22qu”'y"=uy + Y.i(x, ).

We suppose that A #0. Our aim in this note is to show the following theorenms.

Theorem 1. Suppose that |A|>1 and A”+# ¢ for any » €EN. Then there

‘exists uniquely a function ¥ (x), which is holomorphic in some disc | x |< &

and satisfies the equation

(1.2 Y (X(x,¥(x))) = Y(x,v¥v(x)).
Theorem 2. Suppose that 0<|A|<1 and & #0 in (1.1). Further we suppose

that A™+# # for nEN. Then there exists uniquely a function ¥ (x), which is

holomorphic in some disc | x |< 0 and satisfies the equation (1.2).
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Now we will consider the meaning of the equation (1.2).
Consider a simultaneous system of difference equations:

{ x(t+l) = X(x(t), y(t)),
y(t+l) = Y(x(t), y(t)).

(1. 4)
Suppose (1.4) admits a solution (x(t), ¥ (¢)). If there is a function ¥ (x)
such that ¥ (2)=v%(x(t)) for all ¢t. Then ¥ (x) satisfies the equation
(1. 2). Con\;ersely, suppose ¥ (x) satisfies (1.2). If x(t) is a solution of
(1.5) x(t+1) = X(x (), ¥(x(t))),

then (x(t), y(t)), where ¥ (¢)=%(x(t)), is a solution of (1.4).

A system of differential equations corresponding to (1.4) is

Ad) x(t) = X(x(t), y(t)),

g(t) = Y(x(t), v(t)).

The system (1.4’ ) is equivalent to the equation

(1.6) ¥ (x)X(x,y) = Y(x,v).
or

, dy  Y(x,v)
(1.6 iz~ X(x.9)

Thus we know that (1.2) is the equation corresponding to (1.6) for the system

of differential equations.

Applications of theorems 1,2 will appear in our forthcoming papers.

2. Proof of Theorem 1.

From the assume of A”# u for any » €N, we can determine formal power

series W(x)=illa,.x" by (1.2) such as

a1=0
{ 2. = fa(A, a:, bivi, Qivi )
g (A"—u)
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where f. is a polynomial in A, a:, p:i.;, qi,; (i <n-—1, i+ 7=n).
Hence the solution ¥ (x) is unique if it exists.
-

1
% <-—. Put ga(x)=a,x2%+---

2

Take an integer N so large that

tawvx?V and define the family F to be
F={¢ (x); holomrphic and |¢ (x)|=K|x|""' in |x|=<6)
where  and K are to be determined later.
Take ¢ (x )EF and put
2.1 u=2x + Xi(x, gn(x)te(x))= X(x, gn(x)td(x)).

| x |

We have that | X ,(x, gn(x)+0 (x))]|< 5

if & is small, where & can be

chosen independently of ¢ (x). Thus we obtain inverse function x =7 () for
|« |< 6", where 6’ can be chosen independently of ¢ (x). We also have that
(2.2) lulzld x|—1X(x, gn(x)+a (x)|>2" | x|

fora 17, 1< A’ <|A|. Thus & (7 (%)) is defined if ¢ (u) is defined for

PAEY

Ve may also assume that a = —“il—<1.

1N
For ¢ (x)E F, we put
(2.3) Tle1(u)=Y(n(u), gx(n(uN+d(n (1)) — gun(u)
={Y(x, gn(x)+te(x))—Y (x, gn(x))}
t Y (x, gn(x)) = gn(X(x, gx(x))}
t {own(X(x, gn(2))— gn(u)}
=U+V +W.

We have |VI=K . |xI"'sK |« | for a constant K ,.

| rte(x) 4
IWI_I 80 ads

(9w(X(x, gux)+s) ) as

= K lxllo(x)]

= Kolul|-K|u|¥*!
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for a constant K;, since a =0 as noted above. On the other hand,

U= p¢(x)+Y (x, gn(x)td(x))—Y i(x, gn(x)),
in which

leop()islul-Klx|"'saK|u|"!
and

1Y 1 (x, gn(x)td(x))—Y (x, gn(x)DISKslul-K]|u|V*!
for constant K3, which is seen as in the estimation of W.

0’ is so small that a + (K;tK3)d = A<1. Take K so large that

K,
— <K,
1 — A
and & is taken as 6 <6’ and further small if necessary.
Thus the family F is obtained, and we get that the operator T defined in
(2.4) maps F into F. F 1is clearly convex, and a normal family by the theorem
of Montel. Since T is obviously continuous, we get a fixed point ¢ ~(x) by

the theorem of Tychonoff,see [1] and [2].

Then ¥ (x)=gn(x) + ¢n(x) obviously satisfies (1.2). Q.E.D.

3. Proof of Theorem 2.

- -]
Formal power series ‘¢r(x)=Zza,.x” is determined as in § 2.
n=

Put u=Y(x,v)=pxy + Y (x,y). Since u #0, we have

y=H(x,u)= (—u—l—)u + Hi(x, u).

Thus the equation (1.2) is equivalent to

3.1 v (x)=H(x,¥v(X(x,¥(x)))).

N

Take integer N so large that

1 .
< - define gw~(x), and put
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F={¢ (x); holomorphic and | ¢ (x)|<K|x|¥"! in |x|= 6}
where & and K are to be determined later.
For ¢ (x)EF, we get
1% (x, ga(x)td(xDIsIA x| + X (x, gu(x)+d (xS 2" | x|

with |1 ]|< A’ <1,

'N

¥e may assume that a = <1.

| 2 |
Take ¢ (x)E F and put
B.2) Tlol(x)=H(x, gn(X(x, gx(x)td (xIN+d (X (x, gn(x)+d (x))))
— gn(x) A
= {H(x., gn(X(x, gn(x)+d ()4 (X (x, gna(x)+6 (2))))
~H(x, gn(X(x, gn(x)+e (x))N}
t{H(x, gn(X(x, gn(x)+0(x)))) —H(x, gn(X(x, gx(x)))))
bH(x, 9 w(X (2, gn(2)))) — ga(x))
= U+ V + Wﬁ’
Obviously we have
IW|=K | x|"' for a constant K.

As in the proof of Theorem 1, we have, with a constant K,

1= (2% L (g (x, gutrrs)) ) as

= Kalxllg(x)]
S Kaolx|K|x|¥!,
lUl=lul""¢(X(x, gn(x)+d (x|
HHE (x, gn(X(x, gn(x)td (xIN+d (X (x, 9x(x)+6 (x))))
—H(x, gn(X(x, gn(x)t¢ (x)N}|
= U, +U,,

in which
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Uislul e (X (x, gn(x)te (x)DN]
U= Kalx|<K| x|V,
Thus, if & is so small that

A=a + (K; + K3)6 < 1

and A is taken so large that <K, then the operator T in (2.6) maps

1- A
~ F into F, and we know the existence of the fixed point as in the proof of

Theorem 1. Q.E.D.
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