Holomorphic Solutions of Some Functional Equations

Mami Suzuki

1. Introduction

Let $X(x, y)$ and $Y(x, y)$ be holomorphic functions in $|x|<t,|y|<t$, which are expanded there as
(1.1) $\quad\left\{\begin{array}{l}X(x, y)=\lambda x+\sum_{m+n \geq 2} p_{m n} x^{m} y^{n}=\lambda x+X_{1}(x, y) \\ Y(x, y)=\mu y+\sum_{m+n \geq 2} q_{m n} x^{m} y^{n}=\mu y+Y_{1}(x, y) .\end{array}\right.$

We suppose that $\lambda \neq 0$. Our aim in this note is to show the following theorems.

Theorem 1. Suppose that $|\lambda|>1$ and $\lambda^{n} \neq \mu$ for any $n \in N$. Then there exists uniquely a function $\psi(x)$, which is holomorphic in some disc $|x|<\delta$ and satisfies the equation

$$
\begin{equation*}
\psi(X(x, \psi(x)))=Y(x, \psi(x)) \tag{1.2}
\end{equation*}
$$

Theorem 2. Suppose that $0<|\lambda|<1$ and $\mu \neq 0$ in (1.1). Further we suppose that $\lambda^{n} \neq \mu$ for $n \in N$. Then there exists uniquely a function $\psi(x)$, which is holomorphic in some disc $|x|<\delta$ and satisfies the equation (1.2).

Now we will consider the meaning of the equation (1.2).
Consider a simultaneous system of difference equations:
(1.4) $\quad\left\{\begin{array}{l}x(t+1)=X(x(t), y(t)), \\ y(t+1)=Y(x(t), y(t)) .\end{array}\right.$

Suppose (1.4) admits a solution $(x(t), y(t)$). If there is a function $\psi(x)$ such that $y(t)=\psi(x(t))$ for all t. Then $\psi(x)$ satisfies the equation (1.2). Conversely, suppose $\psi(x)$ satisfies (1.2). If $x(t)$ is a solution of

$$
\begin{equation*}
x(t+1)=X(x(t), \psi(x(t))) \tag{1.5}
\end{equation*}
$$

then $(x(t), y(t))$, where $y(t)=\psi(x(t))$, is a solution of (1.4).
A system of differential equations corresponding to (1.4) is
(1.4') $\left\{\begin{array}{l}\dot{x}(t)=X(x(t), y(t)), \\ \dot{y}(t)=Y(x(t), y(t)) .\end{array}\right.$

The system (1.4') is equivalent to the equation

$$
\begin{equation*}
\psi^{\prime}(x) X(x, y)=Y(x, y) \tag{1.6}
\end{equation*}
$$

or

$$
\frac{d y}{d x}=\frac{Y(x, y)}{X(x, y)}
$$

Thus we know that (1.2) is the equation corresponding to (1.6) for the system of differential equations.

Applications of theorems 1,2 will appear in our forthcoming papers.

2. Proof of Theorem 1 .

From the assume of $\lambda^{n} \neq \mu$ for any $n \in N$, we can determine formal power series $\psi(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$ by (1.2) such as

$$
\left\{\begin{array}{l}
a_{1}=0 \\
a_{n}=\frac{f_{n}\left(\lambda, a_{i}, p_{i}, j, q_{i, j}\right)}{\left(\lambda^{n}-\mu\right)}, n \geqq 2,
\end{array}\right.
$$

where f_{n} is a polynomial in $\lambda, a_{i}, p_{i, j}, q_{i, j}(i \leqq n-1, i+j \leqq n)$.
Hence the solution $\psi(x)$ is unique if it exists.
Take an integer N so large that $\left|\frac{\mu}{\lambda^{N}}\right|<\frac{1}{2}$. Put $g_{N}(x)=a_{2} x^{2}+\cdots$ $+a_{N} x^{.}$and define the family F to be

$$
F=\left\{\phi(x) ; \text { holomrphic and }|\phi(x)| \leqq K|x|^{N+1} \quad \text { in }|x| \leqq \delta\right\}
$$

where δ and K are to be determined later.
Take $\phi(x) \in F$ and put

$$
\begin{equation*}
u=\lambda x+X_{1}\left(x, g_{N}(x)+\phi(x)\right)=X\left(x, g_{N}(x)+\phi(x)\right) \tag{2.1}
\end{equation*}
$$

We have that $\left|X_{1}\left(x, g_{N}(x)+\phi(x)\right)\right|<\frac{|x|}{2}$ if δ is small, where δ can be chosen independently of $\phi(x)$. Thus we obtain inverse function $x=\eta(u)$ for $|u|<\delta^{\prime}$, where δ^{\prime} can be chosen independently of $\phi(x)$. We also have that

$$
\begin{equation*}
|u| \geqq|\lambda x|-\left|X_{1}\left(x, g_{N}(x)+\phi(x)\right)\right|>\lambda^{\prime}|x| \tag{2.2}
\end{equation*}
$$

for a $\lambda^{\prime}, 1<\lambda^{\prime}<|\lambda|$. Thus $\phi(\eta(u))$ is defined if $\phi(u)$ is defined for $|u| \leqq \delta^{\prime}$.
We may also assume that $\alpha=\frac{|\mu|}{\lambda^{\prime N}}<1$.
For $\phi(x) \in F$, we put
(2.3) $T[\phi](u)=Y\left(\eta(u), g_{N}(\eta(u))+\phi(\eta(u))\right)-g_{N}(u)$

$$
\begin{aligned}
&=\left\{Y\left(x, g_{N}(x)+\phi(x)\right)-Y\left(x, g_{N}(x)\right)\right\} \\
&+\left\{Y\left(x, g_{N}(x)\right)-g_{N}\left(X\left(x, g_{N}(x)\right)\right\}\right. \\
&+\left\{g_{N}\left(X\left(x, g_{N}(x)\right)-g_{N}(u)\right\}\right. \\
&=U+V+W .
\end{aligned}
$$

We have $|V| \leqq K_{1}^{\prime}|x|^{N+1} \leqq K_{1}|u|^{N+1}$ for a constant K_{1}.

$$
\begin{aligned}
|W| & =\left\lvert\, \int_{0}^{\phi(x)} \frac{d}{d s}\left(g_{N}\left(X\left(x, g_{N}(x)+s\right)\right) d s \mid\right.\right. \\
& \leqq K_{2}^{\prime}|x| \cdot|\phi(x)| \\
& \leqq K_{2}|u| \cdot K|u|^{N+1}
\end{aligned}
$$

for a constant K_{2}, since $a_{1}=0$ as noted above. On the other hand,

$$
U=\mu \phi(x)+Y_{1}\left(x, g_{N}(x)+\phi(x)\right)-Y_{1}\left(x, g_{N}(x)\right),
$$

in which

$$
|\mu \phi(x)| \leqq|\mu| \cdot K|x|^{N+1} \leqq \alpha K|u|^{N+1}
$$

and

$$
\left|Y_{1}\left(x, g_{N}(x)+\phi(x)\right)-Y_{1}\left(x, g_{N}(x)\right)\right| \leqq K_{3}|u| \cdot K|u|^{N+1}
$$

for constant K_{3}, which is seen as in the estimation of W.
δ^{\prime} is so small that $\alpha+\left(K_{2}+K_{3}\right) \delta^{\prime}=A<1$. Take K so large that

$$
\frac{K_{1}}{1-A}<K
$$

and δ is taken as $\delta \leqq \delta^{\prime}$ and further small if necessary.
Thus the family F is obtained, and we get that the operator T defined in (2.4) maps F into F. F is clearly convex, and a normal family by the theorem of Montel. Since T is obviously continuous, we get a fixed point $\phi_{N}(x)$ by the theorem of Tychonoff, see [1] and [2].

Then $\psi(x)=g_{N}(x)+\phi_{N}(x)$ obviously satisfies (1.2). Q.E.D.

3. Proof of Theorem 2.

Formal power series $\psi(x)=\sum_{n=2}^{\infty} a_{n} x^{n}$ is determined as in § 2.
Put $u=Y(x, y)=\mu y+Y_{1}(x, y)$. Since $\mu \neq 0$, we have

$$
y=H(x, u)=\left(\frac{1}{\mu}\right) u+H_{1}(x, u)
$$

Thus the equation (1.2) is equivalent to

$$
\begin{equation*}
\psi(x)=H(x, \psi(X(x, \psi(x)))) . \tag{3.1}
\end{equation*}
$$

Take integer N so large that $\left|\frac{\lambda^{N}}{\mu}\right|<\frac{1}{2}$, define $g_{N}(x)$, and put

where δ and K are to be determined later.
For $\phi(x) \in F$, we get

$$
\left|X\left(x, g_{N}(x)+\phi(x)\right)\right| \leqq|\lambda x|+\left|X_{1}\left(x, g_{N}(x)+\phi(x)\right)\right| \leqq \lambda^{\prime}|x|
$$

with $|\lambda|<\lambda^{\prime}<1$.
We may assume that $\alpha=\frac{\lambda^{\prime N}}{|\mu|}<1$.
Take $\phi(x) \in F$ and put
(3.2) $T[\phi](x)=H\left(x, g_{N}\left(X\left(x, g_{N}(x)+\phi(x)\right)\right)+\phi\left(X\left(x, g_{N}(x)+\phi(x)\right)\right)\right)$

$$
\begin{aligned}
&-g_{N}(x) \\
&=\left\{H\left(x, g_{N}\left(X\left(x, g_{N}(x)+\phi(x)\right)\right)+\phi\left(X\left(x, g_{N}(x)+\phi(x)\right)\right)\right)\right. \\
&\left.-H\left(x, g_{N}\left(X\left(x, g_{N}(x)+\phi(x)\right)\right)\right)\right\} \\
&+\left\{H\left(x, g_{N}\left(X\left(x, g_{N}(x)+\phi(x)\right)\right)\right)-H\left(x, g_{N}\left(X\left(x, g_{N}(x)\right)\right)\right)\right\} \\
&+\left\{H\left(x, g_{N}\left(X\left(x, g_{N}(x)\right)\right)\right)-g_{N}(x)\right\} \\
&= U+V+W .
\end{aligned}
$$

Obviously we have

$$
|W| \leqq K_{1}|x|^{N+1} \text { for a constant } K_{1} \text {. }
$$

As in the proof of Theorem 1, we have, with a constant K_{2},

$$
\begin{aligned}
|V|= & \left|\int_{0}^{\phi(x)} \frac{d}{d s}\left(H\left(x, g_{N}\left(X\left(x, g_{N}(x)+s\right)\right)\right)\right) d s\right| \\
\leqq & K_{2}|x| \cdot|\phi(x)| \\
\leqq & K_{2}|x| \cdot K|x|^{N+1} . \\
|U|= & \left.|\mu|^{-1} \mid \phi\left(X\left(x, g_{N}(x)+\phi(x)\right)\right)\right) \mid \\
& +\mid H_{1}\left(x, g_{N}\left(X\left(x, g_{N}(x)+\phi(x)\right)\right)+\phi\left(X\left(x, g_{N}(x)+\phi(x)\right)\right)\right) \\
& \left.\quad-H\left(x, g_{N}\left(X\left(x, g_{N}(x)+\phi(x)\right)\right)\right)\right\} \mid \\
= & U_{1}+U_{2},
\end{aligned}
$$

in which
$\left.U_{1} \leqq|\mu|^{-1} \mid \phi\left(X\left(x, g_{N}(x)+\phi(x)\right)\right)\right) \mid$
$U_{2} \leqq K_{3}|x| \cdot K|x|^{N+1}$.
Thus, if δ is so small that

$$
A=\alpha+\left(K_{2}+K_{3}\right) \delta<1
$$

and K is taken so large that $\frac{K_{1}}{1-A}<K$, then the operator T in (2.6) maps F into F, and we know the existence of the fixed point as in the proof of Theorem 1. Q.E.D.

Reference

[1]. D. R. Smart, "Fixed point theorems", Cambridge Univ. Press, (1974).
[2]. T. Kimura, "Ordinary differential equation", Kyouritu shuppan Press, (1974).

Department of Mathematics,
Faculty of Informatics,
Teikyo University of Technology,

Otani 2289-23, Uruido, Ichihara-shi,
Chiba, 290-01 Japan

Received April 20, 1994, Revised June 21, 1994

