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Holomorphic Solutions of Some Functional Equations

Mami Suzuki

1. Introduction

Let $X(x, y)$ and $Y(x, g)$ be holomorphic functions in $|x|<t,$ $|y|<t$ ,

which are expanded there as

(1. 1) $\left\{\begin{array}{ll}X(x, y)=\lambda x & +\sum_{n\cdot+n\geqq 2}p_{n n}x^{n}y^{n}=\lambda\chi+X_{1}(x, y)\\Y(x, y)=\mu y & +\prime\prime\prime*\sum_{*\geqq 2}q_{nn}x^{n}y^{\hslash}=\mu y +Y_{1}(x, g).\end{array}\right.$

We suppose that $\lambda\neq 0$ . 0ur aim in this note is to show the following theorems.

Theorem 1. Suppose that 1 $\lambda|>1$ and $\lambda^{n}\neq\mu$ for any $n\in N$ . Then there

exists uniquely a function $\psi(x)$ , which is holomorphic in some disc $|x|<\delta$

and satisfies the equation

(1. 2) $\psi(X(x, \psi(x)))=Y(x, \psi(x))$ .

Theorem 2. Suppose that $0<|\lambda|<1$ and $\mu\neq 0$ in (1. 1). Further we suppose

that $\lambda^{n}\neq\mu$ for $n\in N$ . Then there exists uniquely a function $\psi(x)$ , which is

holomorphic in some disc $|x|<\delta$ and satisfies the equation (1. 2).
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Now we will consider the meaning of the equation (1. 2).

Consider a simultaneous system of difference equations:

(1. 4) $\left\{\begin{array}{ll}x(t+1) & =X(x(t), y(t)),\\y(t+1) & =Y(x(t), y(t)).\end{array}\right.$

Suppose (1. 4) admits a solution $(x(t), y(t))$ . If there is a function V $(x)$

such that $y(t)=\psi(x(t))$ for all $t$ . Then $\phi(x)$ satisfies the equation

(1. 2). Conversely, suppose $\psi(x)$ satisfies (1. 2). If $x(t)$ is a solution of

(1. 5) $x(t+1)=X(x(t), \psi(x(t)))$ ,

then $(x(t), y(t))$ , where $y(t)=V(x(t))$ , is a solution of (1. 4).

A system of differential equations corresponding to (1. 4) is

(1. 4’) $\left\{\begin{array}{ll}x(t) & =X(x(t), y(t)),\\y(t) & =Y(x(t), y(t)).\end{array}\right.$

The system (1. 4’) is equivalent to the equation

(1. 6) $\psi^{\prime}(x)X(x, y)=Y(x, y)$ ,

or

(1. 6’) $\frac{dy}{dx}=\frac{Y(x,,y)}{X(xy)}$

Thus we know that (1. 2) is the equation corresponding to (1. 6) for the systen

of differential equations.

Applications of theorems 1, 2 will appear in our forthcoming papers.

2. Proof of Theorem 1.

From the assune of $\lambda^{n}\neq\mu$ for any $n\in N$ , we can determine fornal power

series $\psi(x)=\sum_{n*1}^{\infty}a_{n}x^{n}$ by (1. 2) such as

$\left\{\begin{array}{ll}a 1= & \\a_{n}= & \frac{f_{n}(\lambda,a_{i}.p_{i,i},q_{i,j})}{(\lambda^{n}-\mu)} n\geqq 2\end{array}\right.$
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where $f_{n}$ is a polynomial in $\lambda$ , a $i$ , $p_{i,j}$ , $q_{i,j}$ $(i\leqq n-1, i+i\leqq n)$ .
Hence the solution $\psi(x)$ is unique if it exists.

Take an integer $N$ so large that $|\frac{\mu}{\lambda^{N}}|<\frac{1}{2}$ . Put $ g_{N}(x)=a_{2}x^{2}+\cdots$

$+a_{N}x^{v}$ and define the family $F$ to be

$F=$ { $\phi(x)$ ; holomrphic and $|\phi(x)|\leqq K|x|^{N+\downarrow}$ in $|x|\leqq\delta$ }

where $\delta$ and $K$ are to be determined later.

Take $\phi(x)\in F$ and put

(2. 1) $u=\lambda x+X_{1}(x, g_{N}(x)+\phi(x))=X(x, g_{A^{L}}(x)+\phi(x))$ .

We have that $|X_{1}(x, g_{N}(x)+\phi(x))|<\frac{|x|}{2}$ if $\delta$ is small, where $\delta$ can be

chosen independently of $\phi(x)$ . Thus we obtain inverse function $ x=\eta(u\rangle$ for
$|u|<\delta$ where $\delta$ can be chosen independently of $\phi(x)$ . We also have that
(2. 2) $|u|\geqq|\lambda x|-|X_{1}(x, g_{N}(x)+\phi(x))|>\lambda^{\prime}|x|$

for a $\lambda$

‘
$ 1<\lambda$ $’<|\lambda|$ . Thus $\phi(\eta(u))$ is defined if $\phi(u)$ is defined for

$|u|\leqq\delta$

We may also assume that $a=\frac{|\mu|}{\lambda N}<1$ .

For $\phi(x)\in F$ , we put

(2. 3) $T[\phi](u)=Y(\eta(u), g_{N}(\eta(u))+\phi(\eta(u)))-$ $g_{N}(u)$

$=\{Y(x, g_{N}(x)+\phi(x))-Y(x, g_{N}(x))\}$

$+\{Y(x, g_{N}(x))-g_{N}(X(x, g_{N}(x))\}$

$+\{g_{N}(X(x, g_{N}(x))- g_{N}(u)\}$

$=$ $U+V+W$ .

We have $|V|\leqq K_{1}$
’

$|x|^{N+1}\leqq K_{1}|u|^{N+1}$ for a constant $K_{1}$ .

$|W|=|1_{0}^{\phi(x)}$ $\frac{d}{ds}(g_{N}(X(x, g_{N}(x)+s))$ $ds|$

$\leqq K_{2}^{\prime}|x|\cdot|\phi(x)|$

$\leqq K_{2}|u|\cdot K|.u|^{N+\downarrow}$
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for a constant $K_{2}$ , since $a$ $1=0$ as noted above. On the other hand,

$U=$ $\mu\phi(x)+Y_{1}(x, g_{N}(x)+\phi(x))-Y_{1}(x, g_{N}(x))$ ,

in which

$|\mu\phi(x)|\leqq|\mu|\cdot K|x|^{N+1}\leqq aK|u|^{N+1}$

and

$|Y_{1}(x, g_{N}(x)+\phi(x))-Y_{I}(x, g_{N}(x))|\leqq K_{3}|u|\cdot K|u|^{N+1}$

for constant $K_{3}$ , which is seen as in the estimation of $W$ .
$\delta$ is so small that $a+(K_{2}+K_{3})\delta=A<1$ . Take $K$ so large that

$\frac{K_{1}}{1-A}<K$ ,

and $\delta$ is taken as $\delta\leqq\delta$
’ and further small if necessary.

Thus the family $F$ is obtained, and we get that the operator $T$ defined in

(2. 4) maps $F$ into F. $F$ is clearly convex, and a normal family by the theoren

of Montel. Since $T$ is obviously continuous, we get a fixed point $\phi_{N}(x)$ by

the theorem of Tychonoff. see [1] and [2].

Then $\psi(x)=g_{N}(x)+\phi_{N}(x)$ obviously satisfies (1. 2). Q. E. D.

3. Proof of Theorem 2.

Formal power series $\psi(x)=\sum_{n=2}^{\infty}a_{n}x$ “ is determined as in \S 2.

Put $u=Y(x, y)=\mu y+Y_{1}(x , y)$ . Since $\mu\neq 0$ , we have

$y=H(x, u)=$ $(\frac{1}{\mu})u+H_{1}(x, u)$ .

Thus the equation (1. 2) is equivalent to

(3. 1) $\psi(x)=H(x, V(X(x, V(x))))$ .

Take integer $N$ so large that $|\frac{\lambda^{N}}{\mu}|<$ $\frac{1}{2}$ define $g_{N}(x)$ , and put
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$F=$ { $\phi(x)$ ; holomorphic and $|\phi(x)|\leqq K|x|^{N+}$ in $|x|\leqq\delta$ }

where $\delta$ and $K$ are to be determined later.

For $\phi(x)\in F$ . we get

$|X(x, g_{N}(x)+\phi(x))|\leqq|\lambda x|+|X_{1}(x, g_{N}(x)+\phi(x))|\leqq\lambda$ $|x|$

with $|\lambda|<\lambda$ $’<1$ .

We may assume that $a=\frac{\lambda^{\prime}N}{|\mu|}<1$ .

Take $\phi(x)\in F$ and put

(3. 2) $T[\phi](x)=H(x, g_{N}(X(x, g_{N}(x)+\phi(x)))+\phi(X(x, g_{N}(x)+\phi(x))))$

$-$ $g_{N}(x)$

$=$ $\{H(x, g_{N}(X(x, g_{N}(x)+\phi(x)))+\phi(X(x, g_{N}(x)+\phi(x))))$

$-H(x, g_{N}(X(x, g_{N}(x)+\phi(x))))\}$

$+\{H(x, g_{N}(X(x, g_{N}(x)+\phi(x))))-H(x , g_{N}(X(x, g_{N}(x))))\}$

$+\{H(x, g_{N}(X(x, g_{N}(x))))- g_{N}(x)\}$

$=$ $U+V$ $+W$ .
0bviously we have

$|W|\leqq K_{1}|x|^{N+1}$ for a constant $K_{1}$ .
As in the proof of Theorem 1, we have, with a constant $K_{2}$ ,

$|V|=|I_{0}^{\phi(x)}$ $\frac{d}{ds}(H(x, g_{N}(X(x, g_{N}(x)+s))))ds|$

$\leqq K_{2}|x|\cdot|\phi(x)|$

$\leqq K_{2}|x|\cdot K|x|^{N+1}$ .

$|U|=|\mu|^{-1}|\phi(X(x, g_{N}(x)+\phi(x))))|$

$+|H_{1}(x, g_{N}(X(x, g_{N}(x)+\phi(x)))+\phi(X(x, g_{N}(x)+\phi(x))))$

$-H(x, g_{N}(X(x, g_{N}(x)+\phi(x))))\}|$

$=$ $U_{1}+U_{2}$

in which

–113–



$U_{1}\leqq|\mu|^{-1}|\phi(X(\chi, g_{N}(x)+\phi(x))))|$

$U_{2}\leqq K_{3}|x|\cdot K|x|^{N+}’.$

Thus, if $\delta$ is so small that

$ A=a+(K_{2}+K_{3})\delta$ $<1$

and $K$ is taken so large that $\frac{K_{1}}{1-A}<K$ , then the operator $T$ in (2. 6) maps

$F$ into $F$ , and we know the existence of the fixed point as in the proof of

Theorem 1. Q. E. D.
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