Holomorphic Solutions of Some Functional Equations

Mami Suzuki

1. Introduction

Let X(x, y) and Y(x, y) be holomorphic functions in |x| < t, |y| < t, which are expanded there as

(1.1)
$$\begin{cases} X(x, y) = \lambda x + \sum_{m+n \ge 2} p_{mn} x^m y^n = \lambda x + X_1(x, y) \\ Y(x, y) = \mu y + \sum_{m+n \ge 2} q_{mn} x^m y^n = \mu y + Y_1(x, y). \end{cases}$$

We suppose that $\lambda \neq 0$. Our aim in this note is to show the following theorems.

<u>Theorem 1.</u> Suppose that $|\lambda| > 1$ and $\lambda^n \neq \mu$ for any $n \in N$. Then there exists uniquely a function $\psi(x)$, which is holomorphic in some disc $|x| < \delta$ and satisfies the equation

(1.2)
$$\psi(X(x, \psi(x))) = Y(x, \psi(x)).$$

<u>Theorem 2.</u> Suppose that $0 < |\lambda| < 1$ and $\mu \neq 0$ in (1.1). Further we suppose that $\lambda^n \neq \mu$ for $n \in N$. Then there exists uniquely a function $\psi(x)$, which is holomorphic in some disc $|x| < \delta$ and satisfies the equation (1.2).

- 109 ---

Now we will consider the meaning of the equation (1.2).

Consider a simultaneous system of difference equations:

(1.4)
$$\begin{cases} x(t+1) = X(x(t), y(t)), \\ y(t+1) = Y(x(t), y(t)). \end{cases}$$

Suppose (1.4) admits a solution (x(t), y(t)). If there is a function $\psi(x)$ such that $y(t) = \psi(x(t))$ for all t. Then $\psi(x)$ satisfies the equation (1.2). Conversely, suppose $\psi(x)$ satisfies (1.2). If x(t) is a solution of (1.5) $x(t+1) = X(x(t), \psi(x(t)))$,

then (x(t), y(t)), where $y(t) = \psi(x(t))$, is a solution of (1.4).

A system of differential equations corresponding to (1.4) is

(1.4')
$$\begin{cases} \dot{x}(t) = X(x(t), y(t)), \\ \dot{y}(t) = Y(x(t), y(t)). \end{cases}$$

The system (1.4') is equivalent to the equation

(1.6)
$$\psi'(x)X(x, y) = Y(x, y),$$

or

(1.6')
$$\frac{d y}{d x} = \frac{Y(x, y)}{X(x, y)}$$

Thus we know that (1.2) is the equation corresponding to (1.6) for the system of differential equations.

Applications of theorems 1, 2 will appear in our forthcoming papers.

2. Proof of Theorem 1.

From the assume of $\lambda^n \neq \mu$ for any $n \in N$, we can determine formal power series $\psi(x) = \sum_{n=1}^{\infty} a_n x^n$ by (1.2) such as $\begin{cases} a_1 = 0 \\ f_n(\lambda, a_i, P_{i,j}, q_{i,j}) \end{cases}$

$$a_n = \frac{f_n(\lambda, a_i, p_{i,j}, q_{i,j})}{(\lambda^n - \mu)} , n \ge 2$$

where f_n is a polynomial in λ , a_i , $p_{i,j}$, $q_{i,j}$ ($i \le n-1$, $i+j \le n$). Hence the solution $\psi(x)$ is unique if it exists.

Take an integer N so large that $\left|\frac{\mu}{\lambda^{N}}\right| < \frac{1}{2}$. Put $g_{N}(x) = a_{2}x^{2} + \cdots$ + $a_{N}x^{N}$ and define the family F to be

 $F = \{ \phi(x); \text{ holomrphic and } | \phi(x) | \leq K | x |^{N+1} \text{ in } | x | \leq \delta \}$ where δ and K are to be determined later.

Take $\phi(x) \in F$ and put

(2.1)
$$u = \lambda x + X_1(x, g_N(x) + \phi(x)) = X(x, g_N(x) + \phi(x)).$$

We have that $|X_1(x, g_N(x) + \phi(x))| < \frac{|x|}{2}$ if δ is small, where δ can be chosen independently of $\phi(x)$. Thus we obtain inverse function $x = \eta(u)$ for $|u| < \delta'$, where δ' can be chosen independently of $\phi(x)$. We also have that (2.2) $|u| \ge |\lambda x| - |X_1(x, g_N(x) + \phi(x))| > \lambda' |x|$

for a λ' , $1 < \lambda' < |\lambda|$. Thus $\phi(\eta(u))$ is defined if $\phi(u)$ is defined for $|u| \le \delta'$.

We may also assume that $\alpha = \frac{|\mu|}{\lambda'^{N}} < 1.$

For $\phi(x) \in F$, we put

$$(2.3) T [\phi](u) = Y(\eta(u), g_N(\eta(u)) + \phi(\eta(u))) - g_N(u)$$

= {Y(x, g_N(x) + \phi(x)) - Y(x, g_N(x))}
+ {Y(x, g_N(x)) - g_N(X(x, g_N(x)))}
+ {g_N(X(x, g_N(x)) - g_N(u))}
= U + V + W.

We have $|V| \leq K_1' |x|^{N+1} \leq K_1 |u|^{N+1}$ for a constant K_1 .

$$|W| = \left| \int_{0}^{\phi(x)} \frac{d}{ds} \left(g_{N}(X(x, g_{N}(x)+s)) \right) ds \right|$$

$$\leq K_{2}' |x| \cdot |\phi(x)|$$

$$\leq K_{2} |u| \cdot K |u|^{N+1}$$

-111 -

for a constant K_2 , since $a_1 = 0$ as noted above. On the other hand,

$$U = \mu \phi(x) + Y_{1}(x, g_{N}(x) + \phi(x)) - Y_{1}(x, g_{N}(x)),$$

in which

$$|\mu \phi(x)| \leq |\mu| \cdot K |x|^{N+1} \leq \alpha K |u|^{N+1}$$

and

$$|Y_{1}(x, g_{N}(x)+\phi(x))-Y_{1}(x, g_{N}(x))| \leq K_{3}|u|\cdot K|u|^{N+1}$$

for constant K_3 , which is seen as in the estimation of W.

 δ' is so small that $\alpha + (K_2+K_3)\delta' = A < 1$. Take K so large that

$$\frac{K_1}{1-A} < K,$$

and δ is taken as $\delta \leq \delta'$ and further small if necessary.

Thus the family F is obtained, and we get that the operator T defined in (2.4) maps F into F. F is clearly convex, and a normal family by the theorem of Montel. Since T is obviously continuous, we get a fixed point $\phi_N(x)$ by the theorem of Tychonoff, see [1] and [2].

Then $\psi(x) = g_N(x) + \phi_N(x)$ obviously satisfies (1.2). Q.E.D.

3. Proof of Theorem 2.

Formal power series $\psi(x) = \sum_{n=2}^{\infty} a_n x^n$ is determined as in § 2. Put $u = Y(x, y) = \mu y + Y_1(x, y)$. Since $\mu \neq 0$, we have

$$y = H(x, u) = \left(\frac{1}{\mu}\right)u + H_1(x, u).$$

Thus the equation (1.2) is equivalent to

(3.1)
$$\psi(x) = H(x, \psi(X(x, \psi(x)))).$$

Take integer N so large that $\left|\frac{\lambda^N}{\mu}\right| < \frac{1}{2}$, define $g_N(x)$, and put

 $F = \{ \phi(x); \text{ holomorphic and } | \phi(x) | \leq K | x |^{N+1} \text{ in } | x | \leq \delta \}$ where δ and K are to be determined later.

For $\phi(x) \in F$, we get

 $|X(x, g_N(x)+\phi(x))| \leq |\lambda x| + |X_1(x, g_N(x)+\phi(x))| \leq \lambda' |x|$ with $|\lambda| < \lambda' < 1$.

We may assume that $\alpha = \frac{\lambda'^{N}}{|\mu|} < 1.$

Take $\phi(x) \in F$ and put

 $(3.2) T [\phi](x) = H(x, g_N(X(x, g_N(x) + \phi(x))) + \phi(X(x, g_N(x) + \phi(x))))$ $- g_N(x)$ $= {H(x, g_N(X(x, g_N(x) + \phi(x))) + \phi(X(x, g_N(x) + \phi(x))))$ $- H(x, g_N(X(x, g_N(x) + \phi(x)))) + {H(x, g_N(X(x, g_N(x) + \phi(x))))}$ $+ {H(x, g_N(X(x, g_N(x) + \phi(x)))) - H(x, g_N(X(x, g_N(x))))}$ $+ {H(x, g_N(X(x, g_N(x)))) - g_N(x)}$

Obviously we have

= U + V + W.

 $|W| \leq K_1 |x|^{N+1}$ for a constant K_1 .

As in the proof of Theorem 1, we have, with a constant K_2 ,

$$|V| = \left| \int_{0}^{\phi(x)} \frac{d}{ds} \left(H(x, g_{N}(X(x, g_{N}(x)+s))) \right) ds \right|$$

$$\leq K_{2} |x| \cdot |\phi(x)|$$

$$\leq K_{2} |x| \cdot K |x|^{N+1}.$$

$$|U| = |\mu|^{-1} |\phi(X(x, g_{N}(x)+\phi(x)))|$$

$$+ |H_{1}(x, g_{N}(X(x, g_{N}(x)+\phi(x)))+\phi(X(x, g_{N}(x)+\phi(x))))$$

$$- H(x, g_{N}(X(x, g_{N}(x)+\phi(x)))) |$$

 $= U_1 + U_2$,

in which

 $U_{1} \leq |\mu|^{-1} |\phi(X(x, g_{N}(x) + \phi(x)))|$ $U_{2} \leq K_{3} |x| \cdot K |x|^{N+1}.$ Thus, if δ is so small that

 $A = \alpha + (K_2 + K_3) \delta < 1$

and K is taken so large that $\frac{K_1}{1-A} < K$, then the operator T in (2.6) maps F into F, and we know the existence of the fixed point as in the proof of Theorem 1. Q.E.D.

Reference

[1]. D. R. Smart, "Fixed point theorems", Cambridge Univ. Press, (1974).
[2]. T. Kimura, "Ordinary differential equation", Kyouritu shuppan Press, (1974).

Department of Mathematics,

Faculty of Informatics,

Teikyo University of Technology,

Otani 2289-23, Uruido, Ichihara-shi,

Chiba, 290-01 Japan

Received April 20, 1994, Revised June 21, 1994