SOME NEW CRITERIA FOR P-VALENT MEROMORPHIC STARLIKE FUNCTIONS

Nak Eun Cho

Abstract

Let $\sum_{n,p}(\alpha)$ be the class of functions of the form

$$f(z) = \frac{a_{-p}}{z^p} + \sum_{k=0}^{\infty} a_k z^k \ (a_{-p} \neq 0, p \in N = \{1, 2, \dots\})$$

which are regular in the punctured disk $E = \{z : 0 < |z| < 1\}$ and satisfying

$$Re\left\{\frac{z(D^n f(z))'}{D^n f(z)}\right\} < -p\frac{n+\alpha}{n+1} \ (n \in N_0 = \{0,1,2,...\}, |z| < 1, 0 \le \alpha < 1),$$

where

$$D^{n}f(z) = \frac{a_{-p}}{z^{p}} + \sum_{m=1}^{\infty} (p+m)^{n} a_{m-1} z^{m-1}.$$

It is proved that $\sum_{n+1,p}(\alpha) \subset \sum_{n,p}(\alpha)$. Since $\sum_{0,p}(\alpha)$ is the class of *p*-valent meromorphic starlike functions of order α , all functions in $\sum_{n,p}(\alpha)$ are *p*-valent starlike. Futher property preserving integrals are considered.

1. Introduction

Let \sum_{p} denote the class of functions of the form

^{* 1990} Mathematics Subject Classification: 30C45.

(1.1)
$$f(z) = \frac{a_{-p}}{z^p} + \sum_{k=0}^{\infty} a_k z^k \ (a_{-p} \neq 0, p \in N = \{1, 2, ...\})$$

which are regular in the punctured disk $E = \{z : 0 < |z| < 1\}$. Define

$$(1.2) D0 f(z) = f(z),$$

(1.3)
$$D^{1}f(z) = \frac{a_{-p}}{z^{p}} + (p+1)a_{0} + (p+2)a_{1}z + (p+3)a_{2}z^{2} + \dots$$
$$= \frac{(z^{p+1}f(z))'}{z^{p}},$$

(1.4)
$$D^2 f(z) = D(D^1 f(z)),$$

and for n = 1, 2, ...,

(1.5)
$$D^{n} f(z) = D(D^{n-1} f(z))$$

$$= \frac{a_{-p}}{z^{p}} + \sum_{m=1}^{\infty} (p+m)^{n} a_{m-1} z^{m-1}$$

$$= \frac{(z^{p+1} D^{n-1} f(z))'}{z^{p}}.$$

In this paper, we shall show that a function f(z) in \sum_{p} , which satisfies one of the conditions

(1.6)
$$Re\left\{\frac{z(D^n f(z))'}{D^n f(z)}\right\} < -p\frac{n+\alpha}{n+1}, \ (z \in U = \{z : |z| < 1\}),$$

for some α $(0 \le \alpha < 1)$ and $n \in N_0 = \{0, 1, 2, ...\}$, is *p*-valent meromorphic starlike in *E*. More precisely, it is proved that, for the classes $\sum_{n,p}(\alpha)$ of functions in \sum_p satisfying (1.6), $\sum_{n+1,p}(\alpha) \subset \sum_{n,p}(\alpha)$ holds. Since $\sum_{0,p}(\alpha)$ equals the class of

p-valent meromorphic starlike functions of order α [4], the starlikeness of members of $\sum_{n,p}(\alpha)$ is a consequence of (1.7). Further for c>0, let

(1.7)
$$F(z) = \frac{c}{z^{c+p}} \int_0^z t^{c+p-1} f(t) dt,$$

it is shown that $F(z) \in \sum_{n,p}(\alpha)$ whenever $f(z) \in \sum_{n,p}(\alpha)$. Some known results of Bajpai [1], Goel and Sohi [2] are extended.

2. Properties of the class $\sum_{n,p}(\alpha)$

In proving our main results, we shall need the following lemma due to Jack [3].

Lemma. Let w be non-constant regular in $U = \{z : |z| < 1\}$, w(0) = 0. If |w| attains its maximum value on the circle |z| = r < 1 at z_0 , we have $z_0w'(z_0) = kw(z_0)$ where k is a real number, $k \ge 1$.

Theorem 1. $\sum_{n+1,p}(\alpha) \subset \sum_{n,p}(\alpha)$ for each integer $n \in N_0$.

Proof. Let $f(z) \in \sum_{n+1,p} (\alpha)$. Then

(2.1)
$$Re\left\{\frac{z(D^{n+1}f(z))'}{D^{n+1}f(z)}\right\} < -p\frac{n+1+\alpha}{n+2}.$$

We have to show that (2.1) implies the inequality

(2.2)
$$Re\left\{\frac{z(D^n f(z))'}{D^n f(z)}\right\} < -p\frac{n+\alpha}{n+1}.$$

Define w(z) in $U = \{z : |z| < 1\}$ by

(2.3)
$$\frac{z(D^n f(z))'}{D^n f(z)} = -p \left[\frac{n+\alpha}{n+1} + \frac{(1-\alpha)(1-w(z))}{(n+1)(1+w(z))} \right].$$

Clearly w(z) is regular and w(0) = 0. Using the identity

$$(2.4) z(D^n f(z))' = D^{n+1} f(z) - (p+1)D^n f(z),$$

the equation (2.3) may be written as

(2.5)
$$\frac{D^{n+1}f(z)}{D^nf(z)} = \frac{(n+1) + (n+1+2p(1-\alpha))w(z)}{(n+1)(1+w(z))}.$$

Differentiating (2.5) logarithmically, we obtain

(2.6)
$$\frac{z(D^{n+1}f(z))'}{D^{n+1}f(z)} = -p\left[\frac{n+\alpha}{n+1} + \frac{(1-\alpha)(1-w(z))}{(n+1)(1+w(z))}\right] + \frac{2p(1-\alpha)zw'(z)}{(1+w(z))(n+1+(n+1+2p(1-\alpha))w(z))}.$$

We claim that |w(z)| < 1 in U. For otherwise (by Jack's lemma) there exists z_0 in U such that

$$(2.7) z_0 w'(z_0) = k w(z_0)$$

where $|w(z_0)| = 1$ and $k \ge 1$. From (2.6) and (2.7), we obtain

$$(2.8) \quad \frac{z_0(D^{n+1}f(z_0))'}{D^{n+1}f(z_0)} = -p\left[\frac{n+\alpha}{n+1} + \frac{(1-\alpha)(1-w(z_0))}{(n+1)(1+w(z_0))}\right] + \frac{2p(1-\alpha)kw(z_0)}{(1+w(z_0))(n+1+(n+1+2p(1-\alpha))w(z_0))}.$$

Thus

$$(2.9) Re\left\{\frac{z_0(D^{n+1}f(z_0))'}{D^{n+1}f(z_0)}\right\} \ge -p\frac{n+\alpha}{n+1} + \frac{p(1-\alpha)}{2(n+1+p(1-\alpha))} > -p\frac{n+\alpha}{n+1},$$

which contradicts (2.1). Hence |w(z)| < 1 in U and from (2.3) it follows that $f(z) \in \sum_{n,p} (\alpha)$.

Theorem 2. Let $f(z) \in \sum_{p}$ satisfy the condition

$$(2.10) Re\left\{\frac{(D^n f(z))'}{D^n f(z)}\right\} < -p\frac{n+\alpha}{n+1} + \frac{p(1-\alpha)}{2(c(n+1)+p(1-\alpha))} \ (z \in U)$$

for a given $n \in N_0$ and c > 0. Then

(2.11)
$$F(z) = \frac{c}{z^{c+p}} \int_0^z t^{c+p-1} f(t) dt$$

belongs to $\sum_{n,p}(\alpha)$.

Proof. Let $f(z) \in \sum_{n,p} (\alpha)$. Define w(z) in U by

(2.12)
$$\frac{(D^n f(z))'}{D^n f(z)} = -p \left[\frac{n+\alpha}{n+1} + \frac{(1-\alpha)(1-w(z))}{(n+1)(1+w(z))} \right].$$

Then w(z) is regular and w(0) = 0. Using the identity

$$(2.13) z(D^n F(z))' = cD^n f(z) - (c+p)D^n F(z),$$

after simple computation, the equation (2.12) may be written as

$$(2.14) \quad \frac{z(D^n f(z))'}{D^n f(z)} = -p \left[\frac{n+\alpha}{n+1} + \frac{(1-\alpha)(1-w(z))}{(n+1)(1+w(z))} \right] + \frac{2p(1-\alpha)zw'(z)}{(1+w(z))(c(n+1)+(c(n+1)+2p(1-\alpha))w(z))}.$$

We claim that |w(z)| < 1 in U. The remaining part of the proof is similar to that of Theorem 1.

Remarks. (1). A result of Bajpai [1] turns out to be a particular case of the above Theorem 2 when $p = 1, a_{-1} = 1, n = 0, \alpha = 0$ and c = 1.

(2). For $p = 1, a_{-1} = 1, n = 0$, and $\alpha = 0$, the above Theorem 2 extends a result of Goel and Sohi [2].

Theorem 3. Let $f(z) \in \sum_{n,p} (\alpha)$ if and only if

(2.15)
$$F(z) = \frac{1}{z^{1+p}} \int_0^z t^p f(t) dt$$

belongs to $\sum_{n+1,p}(\alpha)$.

Proof. From the definition of F(z), we have

(2.16)
$$D^{n}(zF'(z) + (p+1)D^{n}F(z) = D^{n}f(z).$$

That is,

(2.17)
$$z(D^n F(z)' + (p+1)D^n F(z) = D^n f(z).$$

By using the identity (2.4), equation (2.17) reduces to $D^n f(z) = D^{n+1} F(z)$. Hence

(2.18)
$$\frac{z(D^n f(z))'}{D^n f(z)} = \frac{z(D^{n+1} F(z))'}{D^{n+1} F(z)}.$$

and the result follows.

Theorem 4. Let $F(z) \in \sum_{n,p}(\alpha)$ and let f(z) be defined as (2.1). Then $f(z) \in \sum_{n,p}(\alpha)$ in $|z| < R_c$, where

$$R_c = \frac{-(n+1+p(1-\alpha)) + \sqrt{(n+1+p(1-\alpha))^2 + c(n+1)(c(n+1)+2p(1-\alpha))}}{c(n+1) + 2p(1-\alpha)}.$$

Proof. Since $F(z) \in \sum_{n,p} (\alpha)$, we can write

(2.20)
$$\frac{z(D^n f(z))'}{D^n f(z)} = -p \left(\frac{n+\alpha}{n+1} + \left(\frac{1-\alpha}{n+1} \right) u(z) \right),$$

where $u(z) \in P$, the class of functions with positive real part in U and normalized by u(0) = 1. Using the equation (2.13) and differentiating (2.20), we obtain

(2.21)
$$-\frac{\frac{z(D^n f(z))'}{D^n f(z)} + p\left(\frac{n+\alpha}{n+1}\right)}{\frac{p(1-\alpha)}{n+1}} = u(z) + \frac{zu'(z)}{(c+p) - p\left(\frac{n+\alpha}{n+1} + \frac{1-\alpha}{n+1}u(z)\right)}.$$

Using the well known estimates, $\frac{|zu'(z)|}{Reu(z)} \le \frac{2r}{1-r^2}$ (|z|=r) and $Reu(z) \le \frac{1+r}{1-r}$ (|z|=r), the equation (2.21) yields

(2.22)

$$Re\left\{-\frac{\frac{z(D^nf(z))'}{D^nf(z)}+p\left(\frac{n+\alpha}{n+1}\right)}{\frac{p(1-\alpha)}{n+1}}\right\} \geq Reu(z)\left(1-\frac{2r}{(1-r^2)(c+p)-p\left(\frac{n+\alpha}{n+1}+\frac{1-\alpha}{n+1}u(z)\right)}\right).$$

Now the right hand side of (2.22) is positive provided $r < R_c$. Hence $f(z) \in \sum_{n,p}(\alpha)$ for $|z| < R_c$.

References

[1] S.K. Bajpai, A note on a class of meromorphic univalent functions, Rev. Roumaine Math. Pures Appl. 22(1977), 295-297.

- [2] R.M. Goel and N.S. Sohi, On a class of meromorphic functions, Glas. Mat. 17(1981), 19-28.
- [3] I.S. Jack, Functions starlike and convex of order α , J. London Math. Soc. 3(1971), 469-474.
- [4] V. Kumar and S.C. Shukla, Certain integrals for classes of p-valent meromorphic functions, Bull. Austral. Math. Soc. 25(1982), 85-97.

Nak Eun Cho
Department of Applied Mathematics
College of Natural Sciences
National Fisheries University of Pusan
Pusan 608-737
Korea

Received Mar. 19,1993