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§0. Introduction

Let P,(C) be an n-dimensional complex projective space equipped with the
Fubini-Study metric of constant holomorphic sectional curvature 4, and let us denote

by M a real hypersurface of P,(C). Then M admits a natural almost contact
structure (¢, &, 7, g) induced from the almost complex structure J of P, (C).

Recently many differential geometers ([1],[3],[5],[7],[13]) have studied several
characterizations of homogeneous real hypersurfaces which are said to be of type
Ay, Az, B, C, D and E,introduced as model hypersurfaces in the works of Takagi[13],
Cecil-Ryan[1] and Kimura and Maeda[7], in terms of tensor equations.

On the other hand, Tashiro-Tachibana[15] proved that there does not exist a
real hypersurface in P, (C) with the parallel second fundamental tensor. Thus there
can not be existed totally umblical or totally geodesic hypersurfaces in P, (C). From
this point of view, Y.Maeda[10] calculated the norm of the second fundamental
tensor and showed that it is estimated by ||V A]|* > 4(m — 1),where the equality

holds if and only if M is of type A; and A,.

* Partially supported by TGRC-KOSEF
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Also Ki[3] proved that there does not exist a real hypersurface of P,(C) with
the parallel Ricci tensor. From this it seems to be natural to consider some problems
concerned with the estimation of the Ricci tensor for the real hypersurfaces of P, (C).
Untill now it has not been well known to us for these problems. But among of them
Kimura and Maeda[9] have characterized a geodesic hypersphere which is said to be
of type A, by estimating the norm of the covariant derivative of the Ricci tensor.

In this paper we will find a new tensorial formula concerned with the parallel
Ricci tensor by using the Hopf-fibration # : §?®+! P, (C) and give it another

characterization of type A; and A; by the following.

Theorem A. Let M be a real hypersurface in P,C (n > 3) with constant

mean curvature. Then M satisfies

(VxS)Y =h{g(8Y, X){ —n(Y )X} — {g(oY, X)AE
—9(A{, Y )X} — 2{n(Y)pAX — g(AX, $Y )¢}
if and only if M is of type A; and A, provided that n(A£) is constant.

Finally as an application of this characterization we will estimate the norm of

the covariant derivative of the Ricci tensor for this type as follows.

Theorem B. Let M be a real hypersurface of P,(C) (n > 3) with constant

mean curvature and ¢ is principal. Then the following inequality holds

VS| > 4a(a — h)? + 4(2 — n)(h — a)® + 8(2 — a(h — a))(TrA? — a?)
+ 4(h — a){TrdA%pA — hTrpAPA)}

+3{TrAdA*dA — hTrAdAPA},
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where h means the trace of the Weingarten map A and a = n(A€). Moreover, the

above equality holds if and only if M is locally congruent to of type A;,and A,.

The present authors would like to express their hearty thanks to the referee for

his valuable comments.
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§1. Preliminaries

Let M be a real hypersurface of a complex projective space P,(C), and let C
be a unit vector field on a neighborhood of a point z in M. Let us denote by J the
almost complex structure of P,(C).

For any local vector field X on a neighborhood of z in M, the transformation

of X and C under J can be given by
JX = ¢X +n(X)C, JC = ~¢,

where ¢ defines a skew-symmetric transformation on the tangent bundle TM of M,

while  and § denote a 1-form and a vector field on a neighborhood of X in M

respec tively. Then it is seen that g(¢,X) = n(X), where g denotes the induced
Riemannian metric on M.
The set of tensors (¢, £, n,g) is called an almost contact structure on M. Then

they satisfy the following

(L.1) $ = I +n®E 8 = 0,n(¢X) = 0,n(€) = 1,

where I denotes the identity transformation. Furthermore, the covariant derivatives

of the structure tensors are given by
(1.2) (Vx@)Y =n(Y)AX —g(AX,Y){, Vx{ = ¢AX,

where V is the Riemannian connection of g and A denotes the shape operator with

respect to the unit normal C on M.
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Since the ambient space is of constant holomorphic sectional curvature 4, the

equations of Gauss and Codazzi are respectively given as follows
(13)  R(X,Y)Z = g(Y,2)X — g(X, Z)Y + g(¢Y, Z2)¢X — g(¢X, Z)¢Y

—29(¢X,Y)PZ + g(AY,Z)AX — g(AX, Z)AY,

(1.4) (VxA)Y — (Vy A)X = n(X)¢Y — n(Y )X — 29(8X, Y ),

where R denotes the Riemannian curvature tensor of M and VxA denotes the
covariant derivative of the shape operator A with respect to X.

The Ricci tensor S’ of M is the tensor of type (0,2) given by S§'(X,Y) =
trZ — R(Z,X)Y. Also it may be regarded as the tensor of type (1,1) and denote

by § : TM—TM ; it satisfies S'(X,Y) = g(SX,Y). From (1.3) we see that the

Ricci tensor S of M is given by
(1.5) S=0@n+ 1D -3n®¢&+hA— A%,
where we have put h = trA. The covariant derivative of (1.5) are given as follows

(1.6) (VxS)Y = =3(Vxn)(Y) —3n(Y)VxE+(Xh)AY + h(Vx A)Y —(VxA?)Y.
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§2. Some properties concerned with parallel Ricci tensor

Let us now consider a fibration # : M — M which is compatible with the
Hopf-fibration & : §?™+! — P, (C), where M is a real hypersurface of P,(C) and

M = 7#~1(M) is a hypersurface of a (2n + 1)-dimensional unit sphere $?™+1. More

precisely speaking 7 : M — M is a fibration with totally geodesic fibres such that

the following digram commutative;

M L gam

(2.1) 1: lvr

M - P,(C)

where 1 : M — §?"*! and i : M — P,(C) are isometric immersions.

Prior to state main results of this section, let us describe one of model spaces

which are said to be of type A;, A, in Theorem A by using the Hopf-fibration
7. Denoting by S?’*+1(a) a hypersphere of radius a centered at the origin in a
2(p+1)-dimensional complex number space C?*!, we can consider the product space
ME (a,b) = S?P+!(a)x S?91+1(b) as a submanifold in CP+9+2 = CP+1 x C9+!, Thus,if
a? + b® = 1, for any portion (p, q) of an integer m — 1 such that p+gq=m—1,p >
0,94 > 0,MF (a,b) may be considered as a hypersurface of $™+!(1) C C"*!, Thus
by using the Hopf-fibration &® we put A'If:q(a, b) = i(A-Iﬁq(a, b)), which gives an
example for the real hypersurface of P,(C).

Let $?™*! be covered by a system of coordinate neighborhoods {U;y*} such

that #(U) = U are coordinate neighborhoods of P,(C) with lecal coordinate (v').
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Then we can express the projection # by 3 = ¢/(y*) and put E./ = 8y’ (6« =
8/8y*) with the rank of matrix (E.’) being always 2n. Let us denote by £ com-
ponents of the unit Sasakian structure vector £ of $§2™+! induced from C"*!. Then
{E,cj,f.,;} becomes a local coframe in U, where §, = f"g,,,;,g,‘,c being components
of the metric tensor on §2"+1,

Next we define E%; by (E*;, £%) = (E,;j,.f,‘)". Then {E*;, %} is a local
frame in U and {E,’,£.} the frame dual to {E“,-,E"}, where the indices &, u, v, ...,
and 1, j, k, ..., run over the range {1,2,...,2n + 1}, and {1, 2, ..., 2n} respectively.

Let us take coordinate neighborhoods {U; z*} of #~'(M) such that »n(U) =U
are coordinate neighborhoods of M with local coordinates (z*). Moreover, let the
isometric immersion 3 : #~1(M) — S?m+1(1) be locally expressed by y* = y*(z),

then the commutativity of diagram (2.1), that is, ¥ o+ = i o 7 implies that
By'Es® = EBo*, E. By =Ba"E",

where E¢ = 8,z°* and B,* = 8,y", indices a,B,7, ..., and a, b, ¢, ..., run over the
range 1,2,...,2nand 1,2, ..., 2n—1 respectively. Hence the Sasakian structure vector
£ is always tangent to M.

If we denote by £ component of £ in a coordinate neighborhood {U;z*} of
M, Similarly we obtain a local frame {E®,, £*} and its dual coframe {Eqs*, o} in
U, where ¢, is the associated vector field of £ with respect to the metric tensor

9dBa = guxBp* Bo" of M.
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Since the metrics gog on # (M) are invariant with respect to the submersion
©, the van der Waerden-Bortolotti covariant derivative of E,%, E*.,£* and{, are

given by(See Ishihara and Konish [2])

(2.2) VoE." = —4*(Eg€e + €3EL), VaE® s = —$ra Eg €3 E,,

(2.3) Vpba = ¢ Eg°Eq’, V€™ = ¢ *Eg°E”a,

respectively, where Vg denote the operators of covariant differentiations with re-

spect to gga and dse = P1°Gea,$® 1s a component of an almost contact metric

structure tensor ¢ on M.

Let us denote by K and K be the Ricci tensors of #~1(M) and M respectively.

Also denote by I;'.,p and K. components of i and K respectively. Then putting
(2.4) Ko = K,gE".EPy, K. =K, gE" P,
we get the following from the equations of co-Gauss and co-Codazzi

(2.5) I;’cb = Ky + 2¢:“Pes,

(2.6) K. =V ¢c°.

Now let us suppose that the Ricci tensor is parallel on M. Then applying the

operator V., = E<.V, to (2.5), (2.6) and using (2.1) and (2.4), we can easily find

(2-7) VeI;'eé = ¢ce1;’oé + ¢‘be1§’ac,
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(2.8) ¢ Kap + ¢ Keqa =0

(2'9) Vef\;co = 2(" - 1)¢ce + [;’éa¢ea»

(2.10) Kio¢ = 0.

For a compatible submersion (M, M, r) with the Hopl-fibration #, when M is

a locally symmetric space or a Einstein space, the Ricci tensor is parallel on M.
Thus M = (M) satisfies (2.7) ~ (2.10). In particular, since the Ricci tensor is

parallel on M (a,b), M (a,b) also satisfies .(2.7) ~ (2.10).
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£3. Certain Lemma

Substituting (2.5) and (2.6) into (2.7) and using (1.2), we obtain
(3.1) (VxS = h{g(sY, X){ —n(Y)dX} — {g(4Y, X) A — g(AE,Y )X}

—2{n(Y)pAX — g(AX, ¢Y)(},
where we have put h = TrA. Then we give a Lemma as follows

Lemma 3.1. Let M be a real hypersurface of P,(C) (n > 3) with constant
mean curvature. If M satisfies (3.1) and n( A€) is constant, then the structure vector

field £ is principal, that is, the trajectories of £ is geodesic.

Proof. Now let us suppose that M satisfies the condition. In order to use the
formula (R(W, X)S)Y = (Vw VxS —VxVwS— Viw,x)5)Y, firstly we differentiate

(3.1) and use (1.2) as follows

(Vw(VxS)Y = (Vo x S)Y = (Wh){g(¢Y, X )¢ — n(Y)$X}

+h[n(Y)g(AW, X )¢ — g(AW, Y)n(X)E + 9(4Y, X )pAW — g($AW, Y )$X

= n(Y){n(X)AW — g(AW, X)¢}] — [n(Y )g(AW, X )AE — n(X)g(AW, Y )AL

+ 9(Y, X)(Vw A) + g(@Y, X )ASAW — g((Vw A)E + AGAW, Y )X

— g(AL, Y ){n(X)AW — g(AW, X )¢}] — 2[g(4AW, Y )pAX + n(Y ){n(AX)AW
~ g(AW, AX)¢} + (Y )$(Vw A)X — g((Vw A) X, $Y )¢

— g(AX,n(Y)AW — g(AW, Y )E)E — g(AX, ¢Y )pAW].
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From this, taking skew-symmetric part and using the above formula of the curvature

tensor, we get

(3.2)

(R(W, X)S)Y = (Wh){g(Y, X )¢ — n(Y )X}

— (Xh){g(eY, W){ — n(Y )¢W}

+ [~ g(AW, Y)n(X) + g(AX, Y )n(W)E + g(8Y, X )$AW
—g(¢Y, W)PAX — g(¢AW,Y )X + g(¢AX,Y )W

— (Y ){(n(X)AW — n(W)AX}] = [ = n(X)g(AW, Y ) A¢

+ n(W)g(AX,Y)AE + g(oY, X)(Vw A) ~ g(6Y, W)(Vx A)¢

+ g(@Y, X)ApAW — g(¢Y, W)APAX — g((Vw A)¢, Y )X
+9((VxA), Y)W — g(ApAW, Y )¢ X + g(APAX,Y )oW

— g(AE, Y )(n(X)AW — n(W)AX)]

— 2[g($AW,Y)$AX — g(dAX, Y AW + n(Y){n(AX)AW — n(AW)AX}
+0(Y)((Vw A)X — (Vx A)W) — g((Vw A)X — (Vx A)W, ¢Y )
+ g(AW, Y )n(AX )¢ — g(AX, Y )n(AW)E — g(AX, 6Y )pAW

+ g(AW, ¢Y )pAX].

Now let us take e;,e,, ..., e2,—; be local fields of orthonormal vectors on M.

Then from (3.2) and the assumption of constant mean curvature it follows that

2n-—1

Tiz1 9((R(ei, X)S)E, dei) = — (2n — 1)g(AdAX, £) — (2n — 3)g((Vx A), )

— 1(X)g((VeA)E, §),

— 143 —



where we have used the equation of Codazzi (1.4). From this, using the equation

of Gauss (1.3) to the left side, we can calculate the following
n-—-1

Simy 9((R(ei, X)S)E, dei) = Tioy g(R(ei, X )(SE), de;)

— Sin 7 g(R(ei, X )€, Sde;)
= 2ng(¢X, S€) + g(PAX, ASE) + g(SAX, PAE),

where we have used the fact TrA4S¢ = 0. Thus from these equations it follows that

2ng($5€, X) + g(ABASE, X ) — g(ASPAE, X)
(3.3) -

= (2n — 1)g(A4AX, £) + (2n — 3)g((Vx A), ) + n(X)g((VeA), §).

Also from (3.2) we can calculate the following

Sier g((R(ei, dei)S)E, X) = — 29((Vx A)E, £) + 2n(X)g((VeA)E, £)

— 29(APAX ,£) — 2[g(€, APAX) — g(APAE, X))].

Similarly, if we use the equation of Gauss (1.3) to the left side of this equation, we

get

2n-—1 2n—

Bizt 9((R(ei, ¢e)S), X) = B2y g(R(ei, de:)SE, X) — I g(R(ei, pei)€, SX)
= g(—4n@SE + 2(SAPA — APAS)E, X).
From these equations we also get the following
g(~2nSE + (SASA — ABAS)E, X)

(3.4)
= —g((Vx A),§) — 39(APAX, £) + n(X)g((Ve A, §).
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Summing up (3.3) and (3.4) and noticing the fact that SAPA{ = ASPAEL, we have

(35)  (n—2){g(APAX, ) + g((Vx A)E, )} + n(X)g((VeA)E, €) = 0.

From this, replacing X by £, then we get g((V¢A)¢,§) = 0 for a case where n>2.

Thus from the assumption n>3 (3.5) reduces to

(3.6) 9(404X,£) +9((Vx 4),{) = 0.

Since we have assumed that n(A¢) is constant, we know that
g((Vx A), &) = —29(A4AX, (),

from which together with (3.6), it follows

(3.7) APAE = 0.

On the other hand, (3.2) can be contracted as the following

2n-1

Tiz1 9((R(ei, X)S)Y, e;) = (£h)g(SY, X) — (¢X h)n(Y')
+h[ - g(46,Y)n(X) + g(4X,Y) — g($4X, $Y ) — g($A¢X,Y)
—n(Y)n(X)TrA + n(Y)g(AX,€)]
— [=m(X)g(A%,Y) + g(AX, Y )g(AE,€) + (@Y, X)Tr(VeA)
(38)  —g((VxA), ¢Y) — g(APAX,8Y) — g((Vex A),Y) — g(A4A¢X,Y)
— g(AE, Y I(X)TrA + g(A€,Y)g(AX, €)]
— 2[g($46AX,Y) + (Y n(AX)TTA — n(Y Jg(AX, AE)
+2(n = 1)n(Y)n(X) — g(¢X, 8Y) + g(A¢, Y )n(AX) — n(A{)g(AX,Y)

+9(#AX, APY)],
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where we have used the fact that E?_:l—lg(d)e;, e;) =0, E?__'f;lg(¢Ae,~,e,~) =0, and

2n—-1

2,~=l g(A¢Ae,-, 6,‘) = 0.
Now let us note that the left hand side of (3.8) is symmetric with respect to X

and Y, because
Zin'g((R(ei, X)S)Y, e;) = Sy 'g(R(ei, X )(SY), &) — Siny g(R(ei, X)Y, Se;)

2n-1

= g(S‘Y) SY) - Ei=l g(R(e‘" X)Y; Se.),

and if we use the first Bianchi identity to the second term, we get

2n-1 2n — an-—

—n T g(R(ei, XY, Sei) = Sy 'g(R(X, Y )ei, Se;) + Bimy ‘g(R(Y, €)X, Sei)

2n-1

=trS-R(X,Y)—-%,_, g(R(ei, Y)X, Se;)
2n-1

= —E:‘=l g(R(e.'. Y)X) Se;).

Hence taking the skew-symmetric part of (3.8) and account of the symmetry of the

left hand side of (3.8), we have

0 = 2(h)g(BY, X) — ($Xh)n(Y) + (6Y h)n(X)
— h{g($AX, $Y) — g($AY, $X )}
— [ n(X)n(A%Y) + n(Y )n(A>X ) + 29(¢Y, X)Tr(V¢A)

(39)  —g((VxA),8Y)+g((Vy A, 6X) — g(ABAX, $Y) + g(ADAY, $X)
— g(Vex A, Y) + g((Vgr AN, X) — g(AGASX,Y) + g(ABAGY, X)
— hn(AY )n(X ) + hn(AX)n(Y')]

+ 2{n(Y (A% X) — n(X)n(A%Y)}.
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On the other hand, by using the equation of Codazzi (1.4) we have

g(Vx A, 8Y) — g((Vy A), 0X ) + g((Vex A), Y ) — g((Vyer A), X)
= g((Ved)X — ¢X,9Y) — g((VeA)Y — ¢Y,¢X)
+9((VeA)dX — ¢°X,Y) — g((VeA)9Y — ¢%Y, X)

= 0.

From this and the fact g(¢A4X,¢Y) = g(4X,Y) — n(Y )n(4X),(3.9) reduces to the

following

0 = 2(¢h)g(4Y, X) — ($X)(Y) + (Y h)n(X) + (¥ )n(4>X)

— (X )(A%Y) + 29($X, Y )Tr(Ve A) + 29(ASAX, ¢Y) — 29(APAY, $.X).

Put Y = £ in this equation, then

2
X
S

(3.10) 0= ¢Xh = n(A*X) — (X )n(A%€) ~ 2g(ASAE, $X),

because the mean curvature h is constant on M. Substituting (3.7) into (3.10), we

get

(3.11) n(A2X) = n(X)n(A%), ie, A’ =n(A%E)E.

Now we put A§ = af + U, where U is a unit vector field orthogonal to £.

From (3.7) and this expression it follows

(3.12) A¢Af = BAYU = 0.

— 147 —



Then in order to prove that £ is principal it suffices to show that 8 = 0 on M. Now

let us put
AU = B +U + 6V,

where U,V and ¢ are mutually orthogonal. Then from this and (3.11) it follows

that
A2£ — ((12 +IB2)€

= a?¢ + aBU + B¢ + U + BSV.

Since we have assumed that the mean curvature is constant, (3.1) and (1.6)

gives that

—3(Vxn)(Y)E - 3n(Y )$AX + h(Vx A)Y — (Vx A4?)Y
(3.13) = h{g(¢Y, X){ — n(Y)¢X} — {9(8Y, X )AL — g(AE, Y )pX}

—2{n(Y)pAX — g(AX, ¢Y )¢}
Now let us denote a? + 82 by A2. Then differentiating A2 = A%¢ gives
(VxA%)E = (XA + N2V xE — A%9AX.
Substituting Y = ¢ in (3.13) and using this fact, we get
h(Vx A) = $AX + {(XA%)E + A2PAX — A%PAX} — héX + g(AE, €)dX.
From this it follows that

hg((Vx A)Y, €) =g($AX,Y) + (X\)n(Y) + N2g($AX, )

— g(A?PAX,Y) — (h — a)g(#X,Y),

— 148 —



where n(Af) = g(A¢E,€) is denoted by a. Then taking skew-symmetric part and

using the equation of Codazzi, we have

—29(8X, Y )h =g((¢4 + A$)X,Y) + (X A?)n(Y) — (¥ A?)n(X)
(3.14) + X%g((¢A + AP)X,Y) — g((A’PA + 49A%)X,Y)

—2(h — a)g(¢X,Y),
If we put Y = £ in (3.14), then
(315) X3 = (€A)n(X) + (A€, X) + Ng(AE, X) + g(A2pA + ABADX, £).
Substituting this into (3.14), we have

—2g(#X,Y )h =g((¢A + A$)X,Y) + g(SAL, X)n(Y)
— g(@AE, Y (X)) + A?{g(pAL, X )n(Y)
(3.16) — g(B4E, Y (X))} + {9((A%84 + A6A")X, E)n(Y)
— g((A’¢4 + AA%)Y, E)n(X)} + N g((94 + 49)X,Y)

— g((A%¢A + ApA*)X,Y) — 2(h — a)g(¢X,Y).
Thus if we put X = A€ in (3.16) and use (3.12), we have
9(AS* A€, Y) + |6AEI°n(Y) + A6 AL]*n(Y)

+A2g((¢pA + AP)PAL, Y ) + 2ag($? AL, Y ) = 0.
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From this and (1.1) it follows

(@® + B2 + 1){—g(A%¢,Y) + n(AE)g(AL,Y)}
(3.17) :

+(a® + B2 + 1)||$AEIPn(Y ) — 2ag(AE, ¥) + 2a*n(Y) = 0.
Then substituting ¥ = U in (3.17), we have
(a® +8%2-1)aB =0.

Now let us consider an open set & = {peM|B(p)#0}. Then a®+8% =1, ora = Oon
U. For a case where o + 87 =1 (3.11),(3.12) and (3.15) imply that g(94€,X)=0
for any tangent vector field X on &«. Thus ¢A€ = 0. From this it follows that §is

a principal vector and 8 = 0, which makes a contradiction. Thus this case can not

occuron U.

Next we consider for a case where @ = 0. Then by virtue of (3-1) and the
expression of A{ and AU we know g(A§,AU) = By =0. Since 8#£0, vy=0o0n
U. This means that

AU = B+ 48V,

where V' is orthogonal unit vector to £. From this expression and (3.11) we also

know that

B = A% = A(AE) = PAU = B¢ + BsV.

Thus B8V = 0 implies § = 0 on U. This gives AU = BE€ and AU =0 on U.
Unless otherwise stated, hereafter let us discuss our statement on the above

open set U.
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Now taking covariant derivative to A{ = BU, .then we get
(VxAY + AVXE=(XB)U +BVxU.
From this it follows that
(3.18) g(VxA),Y) +g(A9AX,Y) = (XB)g(U,Y) + Bg(VxU,Y).

Thus using the equation of Codazzi (1.4), we find

—29(¢X,Y) +29(A44X,Y) =(XB)g(U,Y) - (Y B)g(U, X)

Now we put Y = U in this equation, and note thaf AU = 0, and ¢AU = 0, then
‘Yﬂ = (U:B)g(U) ‘Y) + ﬂg(VUU, ‘Y) - 29(¢4Y: U)

From this we also get

PAEB = 29(dU, pAL) + Bg(VuU, pAL)
(3.19)

= 28||¢U||I> + B?g(VuU, #U).

On the other hand, replacing X and Y in (3.18) by U and @U respectively and

also using A¢U = 0, we have

Bg(VuU, dU) = g((Vu A)E, pU) = g((Ve¢ AU, 9U) — g(9U, ¢U )

= Bg($AE, $U) — g(¢U, ¢U) = B* — 1.
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Thus

avot o) = L2
~ B
From this together with (3.19) it follows
(3.20) (648)B = 2B||U|° + B(B* — 1) = p° + B.

On the other hand, (3.15) together with a = 0 implies
(#48)8° = (B° + ll$4¢|® = B°(8” + 1),
Thus applying (3.20) to the left side ($A£)B? = 28(SAE)B, we have
BAB*+1) = o

Thus B = 0. This case can not occur on the open set Z. Hence there does not exist

|
such an open set . From this fact we complete the proof of Lemma 3.1.
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84. Characterization of type A; and A, in P, (C).

Let M be a real hypersurface in P,(C). The Ricci tensor S is said to be
n-parallel if g((VxS)Y,Z) = 0 for a,ny X,Y and Z in €1, where ¢+ denotes the
orthogonal complement of the structure vector {. Then to characterize of type A,

and A; in P,(C) let us introduce known theorems as follows

Theorem 4.1.[12] Let M be a rcal hypersurface in P,(C). Then Then the
Ricci tensor is n-parallel and the structure vector field ¢ is principal if and only if

M is of type A,,A2 and B.

Theorem 4.2.[4] Let M be a connected complete real hypersurface in P,(C)
and assume that ¢ is principal vector field on M. If M satisfies S¢ + ¢S = k¢ for
some constant k#0, then M is of type A,,B or M is locally congruent to one of a

certain hypersurface of type A,.
By using the above theorems we can prove the following

Theorem 4.3. Let M be a real hypersurface in P,(C) (n>3) with constant

mean curvature. Then M satisfies

(VxS)Y =h{g(¢Y, X){ —n(Y)eX} - {g(8Y, X)AL
(%)
— g(A8,Y)pX} - 2{n(Y)pAX — g(AX, $Y ){}
if and only if M is of type A, and A, provided that n(A{) is constant.

Proof. Now let us suppose M is of type A; and A,. then for the characteri-

zation of type A; and A; Y.Maeda[10] and M.Okumura [11] asserted that
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(4.2) ApX = $AX

for any X,Y in M respectively. Obviously (4.2) gives that ¢ is a principal vector

field, that is, A{ = af. From this and (1.6) it follows that

(VxS == 3{g($AX, ¥)E + n(¥)$AX} + (I — A){=n(Y )X
— 98X, Y)E} + m(AY)6X + g(bX, AV )¢
=h{g(¢Y, X)§ —n(Y )X} + n(Y)AdX + g(¢X,Y)AE
£ 1(AY)EX + g(ASX, Y )E ~ 3g(AX, ¥ ) — 3(Y )pAX
=h{g(dY, X){ — n(Y)dX} — {g(¢Y, X )AL — g(AE, Y )é X}

—2{n(Y)A¢X + g(¢AX,Y )¢}

Thus M is of type A; and A, satisfies (*).

Conversely let us suppose that M satisfies (*) and the mean curvature is con-
stant on M. Since (*) implies that ¢ is a principal vector by Lemma 3.1, (*) also
gives g((Vx S)Y, Z) = 0 for any X,Y and Z in £1. That is, the Ricci tensor S is
n-parallel on M. Thus by Theorem 4.1 we have that M is of type A;, A; and B.

Now assume that M is of type B. Then from Theorem 4.2 it follows that for a

non-zero constant k

Sé+ ¢S = ké.

From this, differentiating and using (1.2), we have

(VxS)Y + #(VxS)Y + n(Y)SAX — g(AX,Y)S¢
(4.3)
+1(SY)AX — g(AX, SY ) = k{n(Y)AX — g(AX,Y )¢}.
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From (*) the first and the second term of the above equation can be given as

follows respectively
(VxS)PY = (h — a){—g(¥, X)E + (Y )n(X)E} — 2{g(AX, Y )E — n(¥Y In(AX )¢},

H(Vx S = (h—a){n(Y)X — n(X)n(Y)E} + 2{n(Y)AX — n(AX)n(Y )}

Substituting these equations into (4.3) and using (1.2), we get

(h = a){n(Y)n(X)— g(X,Y)} — 2{g(AX,Y) — n(Y)n(AX)}{
+ (h = a){n(Y)X — n(X)n(Y )¢} + 2n(Y {AX — n(AX)¢}
+(Y)SAX — g(AX,Y)SE + n(SY)AX — g(AX,SY )¢

= k{n(Y)AX - g(AX,Y)E}.
From this, replacing Y by €, and taking a vector field X orthogonal to £, we get
(4.4) (h—a)X + 24X + SAX + n(SAX = kAX,

where n(S¢) = 2(n— 1) + a(h — a).

Since we have assumed M is of type B, our real hypersurface M has three

distinct constant principal curvatures (+0) (=1 with multiplicities n — 1 respec-

(I-1)" (+1
tively, and a = 2cot2r, where t = 2cotr, 0 < r < §. Now let us denote i—'_i'—:— by A,
and denote by X the principal vector orthogonal to { with the principal curvature

A such that AX = A\X. Then

S(AX) = {(2n+1)+Ah—=2}2X.
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From this, substituting into (4.4), we get
(45) (h—a)+2 4+ {(2n+ 1)+ Ah =X’ + {2(n - 1) + a(h — @)} = kA.

Similarly, also using (4.4) for the principal vector Y orthogonal to ¢ with the prin-

cipal curvature --i- such that AY = --:{-Y, we have

(h=a)= 3+ {(2n+ 1)~ 3~ 5 HSD) + (2n = 1) + alh — O} 5) = k().

Thus, multiplicating —A? to both sides, we get
, o1
(46) —(h—a)X*+22+{(2n+1) - T :\7}/\ + {2(n—-1)+ a(h — a)}r = k.

Substracting (4.6) from (4.5) and using the fact that o = A — } we find that

(h—a)(1+/\2)+(1+,\2)h—,\3+:1\-=0.
Since (1 + A?) # 0 we have
1
(4.7) 2h—a—-(A-<)=0.
On the other hand, A — { = cot(r — §) — tan(r — §) = —4, (4.7) reduces to

a’?—-4(2n-3)=0.
To complete our proof of the above Theorem let us introduce the following

theorem.
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Theorem 4.4.[8] Let M be a real hypersurface with constant mean curvature
in P,(C). Suppose that £ is a principal curvature vector and the corresponding
principal curvature is non-zero. If V¢S = 0, then M is a tube of radius r over one
of the following Kaehler submanifolds;

(A,) hyperplane P,(C), where0 <r < % andr # T,

(A2) totally geodesic P¢(C) (1<k<n—2), where0<r < % andr # T,

(B) complex quadric Q,_,,where 0 < r < I and cot®2r =n — 2.

(C) Pi(C)xP-,(C), where 0 < v < §, cot?2r = (n_lzj and n(> 5) is odd,

(S [*)

(D) complex Grassmann G35(C), where 0 < r < %, cot?2r = 2 and n =9,

(E) Hermitian symmetric space SO(10)/U(5), where 0 < r < ¥, cot®2r = 3

and n = 15.

Since we have assumed M is of type B, we know that ¢ is a principal vector
with non-zero principal curvature a. Moreover (*) gives VS = 0. By virtue of
these facts we can use the above Theorem 4.4 . Thus for a case where M is of type
B M is a tube of radius r over the complex quadric Q,_,,where 0 < r < T and
cot?2r = n — 2. Combining this fact with (4.7), we have a contradiction, because
(4.7) implies cot?2r = 2n — 3. Hence M is of type B can not occur. Now we

complete the proof of Theorem 4.3.

On the other hand, if M is of type A, Theorem 4.3 together with the fact that
£ is principal implies
(VxS)Y = —(h—a){g(¢X,Y){ + n(Y)eX}

(++)
= 2{n(Y)pAX + g(¢AX + g(¢AX,Y){}.

— 157 —



As a converse problem of this fact we also get the following by using the same

method in the proof of Theorem 4.3

Corollary 4.5. Let M be a real hypersurface in P,(C) with constant mean

curvature and assume that { is principal vector field on M. Then M satisfies (**)

if and only if M is of type A,,A;.

Remark 4.1 In the paper [10] it is known that if £ is princiapl vector field

on M, then its principal curvatire a = n( A€) is constant on M.
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§56. The proof of Theorem B.

Motivated by Theorem 4.3 we will prove the main result in this section. Also

we will discuss our statement under the condition such that the mean curvature is

constant on M and the structure vector field £ is principal. Then Lemma 3.1 and

(*) implies
(5.1) (VxS)Y = —(h—a){g(¢X, YY)+ n(Y)dX} —2{n(Y)PAX + g(#AX,Y )}
Now let us define a new tensor field T on M as follows

T(X,Y) =(VxS)Y + (h — a){g(¢X, Y )¢ +n(¥)$X}
(5.2) :
+ 2(n(Y)PAX + g($AX,Y)E}.

Thus by Corollary 4.5 T = 0 holds on M if and only if M is of type 4,, A,.
In order to estimate the norm of the covariant derivative of the Ricci tensor,

we calculate the norm of (5.2) as follows

an-1

ITI? =227 9(T(eis ), T(eir ) = IV SI
2n-1 2n-1

+ 4(h - a)zi=1 g((vc;s)fi QSC,') + 825:1 g(d)Ae,-, (Vc.s)f)

(5.3)

+4(n —1)(h — @)? + BT[] g(pAe;i, pAe;)

+8(h — a)Tin; g(dAei, dei),

where we have put {e,, ..., €2,_1} be the orthonormal basis of T, (M) for any z € M.
On the other hand, we calculate the following from (1.6) under the condition
that £ is principal

2n~-1 2n—1 2n—1

Ei:l g((ve- S)f) ¢Ci) = -321':1 g(¢Ac.', ¢C,‘) + azi:l g((hI - A)¢Acil¢ei)
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2n-1 2n-1 2n—1

_zizl g((h[ - A)A¢Aei) ¢C.‘) - Ei:l g(a2¢Aei; ¢C.‘) + asi:l g(A¢AC,‘, ¢C.‘),

Thus
T 9((V.,S)E, dei) = a(h — a)? — 3(h — a) + hTrAdA — TreA3HA.

Similarly, we also calculate

2n—1

Licy 9((Ve,S), pAe;) = {=3+a(h—a)}(TrA? —a?)+ hTrAPAPA—TrAPA $A.
From these facts and (5.3) it follows that

ITI* =HVSI? + da(h — o) + 4(n — 2)(h — a)® + 8{a(h — a) — 2}(Tr4? — o?)

+ 4(h — a){hATrpAPA — TrpA®PA} + 8{hTrAPAPA — TrAPA%PA}.

Thus we have proved Theorem B in §0.

Remark 5.1 Substituting (2.5) into (2.8), we know that the Ricci tensor S of
M in P,(C) commutes with the almost contact structure tensor ¢ of M. Kimura[6]
classified real hypersurfaces M which satisfy S¢ = ¢S in P,(C). By virtue of his
classification we know that M satisfying (2.8) is of type A;,A; or is locally congruent
to one of a certain hypersurfaces of type B,C,D or E.

For a case where M is in a complex hyperbolic space H,,(C)(n>3) the present
authors [4] proved that S¢ = ¢S if and only if M is a horosphere or a tube over
Hi(C) for a k=0,1,...,n-1.

Remark 5.2 (2.10) means that the trajectories of the structure vector field
€ 1s geodesics.

Remark 5.3 For the formula (2.9) we will discuss in a forthcoming paper.
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