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HYPERSURFACES OF THE TWO-DIMENSIONAL COMPLEX
PROJECTIVE SPACE

Sharief Deshmukh and M.A. Al-Gwaiz

Abstract: We consider a compact, simply connected,

real hypersurface of the two dimensional complex
projective space $CP^{2}$ of constant holomorphic sectional
curvature 4, and obtain a criterion for the hypersurface
to be diffeomorphic to $S^{3}$ in $te$rms of an inequality which
relates the length of the second fundamental form and the
mean curvature.

1. Introduction
Real hypersurfaces of the complex projective space $CP^{\cap}$ have not been
studied as extensively as those of real space forms. One of the reasons
for this is that the Codazzi equation is simpler for hypersurfaces in real
space forms. To overcome this deficiency, Lawson [2] considered the
Riemannian submerslon $\pi:S^{2n+1}\rightarrow CP^{\cap}$ whlch gives rise,for a real
hypersurface $M$ in $CP^{\cap}$, to a hypersurface $\pi^{-1}(M)$ in $s^{2n+1}$ such that

$-1$

$\pi:\pi(M)\rightarrow M$ is a Riemannlan submersion with totally geodesic
fibers. The properties of a hypersurface $M^{\sim}$ of $S$ ; which a$re$

$2n+1$

lnvariant under free $S^{1}$ action, can then be projected on the hyper-
surfaces of $CP^{n}$ provided that the corresponding $S^{1}$ action on $s^{2n+1}$

induces a free $S^{1}$ action on M. Lawson [2] used thls idea to study
the minimal hypersurfaces of $CP^{n}$, and Okumura [4] to study those
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with constant mean curvature.
The motivation for the present paper comes from the following

example of a real hypersurface of $CP^{2}$ . Consider the umit sphere $S^{S}$ in $C^{3}$ ,
and the Riemannian submersion $\pi:S^{5}\rightarrow CP^{2}$ wlth totally geodesic
fibers given by the integral curves of the unit vector field $\overline{\xi}=-J\overline{N}$

defined on $S^{s},$ $J$ being the complex structure on $C^{3}$ and $\overline{N}$ the unit normal
field to $S^{S}\ln C^{3}$ . Let $S^{1}(1/k)$ be the circle of radius $k$ in $C^{1}$ and
$S^{3}(1/m-)$ be the 3-sphere of radius $\sqrt{1-k^{z}}$ in $C^{2}$ . The product
$S^{1}(1/k)\times S^{3}(1/\sqrt{1-k^{z}})$ is then the hypersurface of $S^{5}$ whose shape
operator A is given at a given point of $S^{1}(1/k)\times S^{3}(1/1r-$ by

$\overline{A}=$

$[\sqrt{1-ff^{l}}/k0_{1}00_{\overline{1-}R^{2}}00-k/\vee\overline{1}\pi-2000-k/v^{0}o-k/m-00]$

Since the circle group $S^{1}$ acts freely on $S^{1}(1/k)\times S^{3}(1/\sqrt{1-l^{\ell})}$ , the
quotient space $S^{1}(1/k)\times S^{3}(1/\sqrt{1-ff^{z})}/S^{1}$ is a real hypersurface of $CP^{2}$ ,
and we can define the Riemannian submersion of $S^{1}(1/k)\times S^{3}(1/W1-)$

onto $S^{1}(1/k)\times S^{3}(1/\sqrt{1-k^{z}})/S^{1}$ , with totally geodesic
fibers,as the restriction to $S^{1}(1/k)\times S^{3}(1/\sqrt{1-ff}‘)$ of the Riemannian
submersion $\pi$ : $S^{5}\rightarrow CP^{2}$ . Using this we obtain the expression for
the shape operator A of the real hypersurface $S^{1}(1/k)\times S^{3}(1/\sqrt{1-k^{z}})/S^{1}$

in $CP^{2}$ as
$A=-\sqrt{1-k^{z}}^{I+\frac{\sqrt 1-k^{l}}{k}r\}^{\otimes\xi}}k$

$\xi=-JN$ being the unit vector field defined on the hypersurface, $J$ the
complex structure on $CP^{2},$ $N$ the unit normal field to the hypersurface,
and $Q$ the l-form dual to $\xi$ . Denoting the mean curvature of this hyper-
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surface by $\alpha$ , we find that

(1.1) $2+3\alpha g(A\xi,\xi)=tr\cdot A^{2}$ .
Furthermore, a point of $S^{1}(1/k)\times S^{3}(1/\sqrt{1-k^{l}})/S^{1}-1s$ an equivalence
class $[(z^{1},z^{2},z^{3})],$ $(z^{1},z^{2},z^{3})\in S^{1}(1/k)\times S^{3}(1/\sqrt{1-k^{\ell}})$ ; so lf we define
a function $f:S^{1}(1/k)\times S^{3}(1/\sqrt{1-k^{z}})/S^{1}\rightarrow S^{3}$ by

$f([(z^{1},z^{2},z^{3})])=(z^{2}/z^{1},z^{3}/z^{1})$ ,

then it easily follows that $f$ is a diffeomorphism.
The above example raises the following questlon: Is a compact,

simply connected, real hypersurface of $CP^{2}$ which satisfies (1.1)

diffeomorphic to $S^{3}$ ? In this paper we shall show that the answer
to this question is in the affirmative. In fact, we prove

Theorem: Let $M$ be a compact and simply connected real hypersurface
of $CP^{2}$ , with shape operator A and mean curvature $\alpha$ . If
$2+3\alpha g(A\xi,\xi)\geq tr\cdot A^{2}$ , then $M$ is diffeomorphic to $S^{3}$ , where $\xi=-JN$ ,
$J$ is the complex structure of $CP^{2}$ and $N$ is the unit normal vector
field of $M$ in $CP^{2}$ .

2. Preliminaries
Let J,g and V be, respectively, the complex structure, the hermitian
metric and the Riemannian connection on $CP^{2}$ . The curvature tensor
$\overline{R}$ of $CP^{2}$ is given

(2.1) $\overline{R}(X,Y)Z=g(Y,Z)X-g(X,Z)Y+g(JY,Z)JX-g(JX,Z)JY+2g(X,JY)JZ$ .
Let $M$ be a real hypersurface of $CP^{2}$ and $N$ be the unit normal
vector field to M. We denote by $g,\nabla$ and $A$ , respectively, the induced
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metric, the induced Riemannian connection and the shape ope$ra$tor on M.
Consequently, $t$he Gauss and Weingarten formulae are given by

(2.2) $\overline{\nabla}_{X}Y=\nabla_{X}Y+g(AX,Y)N$ , $\overline{\nabla}_{X}N=-A\times$ , $X,Y\in$ GE(M) ,

where ’X(M) is the Lle-algeb$ra$ of vector fields on M. And we also
have the equations of Gauss and Codazzi for the hyperswface,

(2.3) $R(\times,Y;Z,W)=\overline{R}(X,Y;Z,W)+g(AY,Z)g(AX,W)-g(AX,Z)g(AY,W)$ ,

(2.4) $\overline{R}(X,Y)N=(\nabla_{Y}A)(X)-(\nabla_{X}A)(Y)$ , X,Y,$Z,W\in$ ee(M) ,
where $R$ is the curvature tensor of M.

Define a umit vector field $\xi$ on $M$ by $\xi=-JN$ , and a $(1,1)$

tensor field $\phi$ on $M$ by setting JX $=\phi X+\eta(X)N$ , $X\in$ \yen (M),

where $\phi X$ is the tangential component of JX to $M$ and $Q$ is the
i-form dual to $\xi$ . Then it is straightforward to verify that the
triplet $(\phi,\xi,q)$ sa $t$isfies

(2.5) $\phi^{2}=-I+\eta\otimes\xi$ , $\phi\xi=0$ , $r$} $\phi=0$ , rank $\phi=2$ ,

and that

(2.6) $g(\phi\times,\phi Y)=g-q1(Y),$ $g(\phi X,Y)=-g(X,\phi Y),$ $X\in X(M)$ .
Since $(\overline{\nabla}_{X}J)(\xi)=0$ for all $X\in X(M)$ we can use equations (2.2),

(2.5) and JX $=\phi X+q(X)N$ to arrive at

(2.7) $\nabla_{X}\xi=\phi$ AX , $X\in X(M)$ .
For a local uni $t$ vector field $e$ orthogonal to $\xi$ , we note that $\{e,\phi e,\xi\}$

is a local ortbonormal frame on $M$ ; such a frame will be referred to
as an adapted frame. Using an adapted frame in (2.3), to compute the
Ricci $te$nso$r$ Ric of $M$ , we get
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(2.8) $Rlc(\times,Y)=5g(X,Y)-3\eta(X)\eta(Y)+3\alpha g(AX,Y)$ -g(AX,AY)

where $\alpha$ is the mean curvature on $M$

3. Proof of the Theorem
Let $M$ be a compact and simply connected real hypersurface of $CP^{2}$ .
Then, using an adapted frame in (2.7) to comput $e$ the divergence of $\xi$ ,
we obtain div $\xi=0$ . Next we compute $||\nabla\xi||^{2}wh1c_{3}h$ , for a local
orthonormal frame $\{e_{1},e_{2},e_{3}\}$ , is given by $||\nabla\xi||^{2}=\Sigma g(\nabla\xi,\nabla\xi)$ .

1 $e_{i}$ $e_{1}$

Again using an adapted frame with equation (2.7), we arrive at

$||\nabla\xi||^{2}=tr\cdot A^{2}-||A\xi||^{2}$ .
Now on any compact Riemannian manifold $M$ , and for any

X $\in$ \yen (M) , we have the following integral formula (cf. [5])

$\int_{M}\{Ric(X,X)+2X1_{||Lg||^{2}-}||\nabla X||^{2}-(dlvX)^{2}\}dv=0$ ,

where $L_{X}g$ is the Lie-derivative of $g$ with $re$spect to X. Applying
this formula to the hypersurface $M$ with $X=\xi$ , and using equation
(2.8) and the hypothesis of the theorem, we get $L_{\xi}g=0$ , which is

equivalent to

(3. 1) $g(\nabla_{X}\xi,Y)+g(\nabla_{Y}\xi,X)=0$ , X,Y $\in\yen(M)$ .
But, in view of (2.7), the skew symmetry of $\phi$ and the symmetry of $A$ ,
equation (3.1) leads to $A\phi=\phi A$ . And from thl $s$ it follows that
$\phi A\xi=0$ . Since rank $\phi=2$ and $\phi\xi=0$ , we conclude that $A\xi=\mu\xi$ ,
where $\mu$ is $a$ smooth function on M. Suppose $e$ is a unit vector field
orthogonal to $\xi$ , and is an eigenvector of A , that is, Ae $=\lambda e$ for
some smooth function $\lambda$ on M. Then the equation $A\phi=\phi A$ lmplies
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that $A\phi e=\lambda\phi e$ , thus A is diagonalized in the adapted frame
$\{e,\phi e,\xi\}$ , with at most two distinct eigenvalues. Now equation (2.7)

gives the local equations

(3.2) $\nabla_{e}\xi=\lambda\phi e$ , $\nabla_{\phi e}\xi=-\lambda e$ , $\nabla_{\xi}\xi=0$ ,

and $t$he Codazzi equation (2.4) wrltten in the fo$rm$

$(\nabla_{\phi e}A)(e)-(\nabla_{e}A)(\phi e)=\overline{R}(e,\phi e)J\xi$ ,

yields

$(\phi e\cdot\lambda)e+\lambda\nabla_{\phi e}e-A(\nabla_{\phi e}e)-(e\cdot\lambda)\phi e-\lambda\nabla_{e}\phi e+A(\nabla_{e}\phi e)=2\xi$ .
Taking $t$he inner product of each term in the above equation with
$e,$ $\phi e$ and $\xi$ , and using equations (3.2) together with $g(\nabla_{e}\phi e,\xi)=$

$-g(\phi e,\nabla_{e}\xi)$ , etc , we obtain

(3.3) $e\cdot\lambda=0$ , $\phi e\cdot\lambda=0$ and $\lambda^{2}-\lambda\mu=1$ .
Similarly the Codazzi equation

$(\nabla_{\xi}A)(e)-(\nabla_{e}A)(\xi)=\overline{R}(e,\xi)J\xi$

gives

(3.4) $\xi\cdot\lambda=0$ .
The equations (3.3) and (3.4) imply that $\lambda$ is a constant, and
$\lambda^{2}-\lambda\mu=1$ lmplIes tha$t\lambda\neq 0$ and $t$ha$ t\mu$ is also a constant. With
these resul $ts$ the Ricci curvatures of $M$ may now be computed from
(2.8). We get

(3.5) Ric(e,e) $=Rlc(\phi e,\phi e)=4+2\lambda^{2}$ , $Ric(\xi,\xi)=\lambda^{2}$ ,
$Rlc(e,\xi)=Rlc(\phi e,\xi)=Rlc(e,\phi e)=0$ ,
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where $\lambda$ is a non-zero constant. Thus, if $\omega^{1},\omega^{2}$ are the l-form
duals of $e,$ $\phi e$ respectively then any $\times\in ae(M)$ has the local
representation $X=\omega^{1}(X)e+\omega^{2}(\times)\phi e+l$} $(X)\xi$ . Therefore, when $X\neq 0$ ,

Ric(X,X) $=[\omega^{1}(X)]^{2}Rlc(e,e)+[\omega^{2}(X)]^{2}Rlc(\phi e,\phi e)+[r\}(X)]^{2}Rlc(\xi,\xi)\rangle$ $0$ .
Hence $M$ has strictly positive Ricci curvature. Being compact and
simply connected, $M$ is therefore dffeomorphic to $S^{3}$ by Hamilton’s
theorem (cf. [1]).
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