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Abstract

In the first half, we determine completely the numbers of any prime degree places of
maximal function fields in the Hasse-Weil sense, and we present a new characterization
of the Hermitian function field. In the latter half, in fact we count such numbers for
three algebraic function fields. The first and the second examples are generalizations of
the Hermitian function field, which are maximal. The last example is the Klein Quartic
function field over the field of two elements. This is not maximal.
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1 Introduction
Let $q$ be a power of a prime number and $F_{q}$ the finite field of size $q$ . We consider an algebraic
function field $F$ of one variable with full constant field $F_{q}$ . Let $N(F)$ be the number of rational
places (i.e., places of degree one) of $F/F_{q}$ , and let $B_{n}=B_{n}(F)$ be the number of places of
degree $n$ of $F/F_{q}$ . Of course $N(F)$ is equal to $B_{1}(F)$ . Let $g=g(F)$ be the genus of an algebraic
function field $F$ . It is well-known (for example, [4] Hasse-Weil Bound) that

$|N(F)-(q+1)|\leq 2g(F)\cdot\sqrt{q}$ .

One is often interested in algebraic function fields with many rational places. So we introduce
the following notion.

Definition. An algebraic function field $F/F_{q}$ is called maximal (resp. minimal) if

$N(F)=q+1+2g(F)\cdot\sqrt{q}$ (resp. $N(F)=q+1-2g(F)\cdot\sqrt{q}$).

In this paper, we show the following theorem and corollary.

Theorem. Assume that $F$ is a maximal function field over $F_{q^{2}}$ of genus $g$ . Then,

(1)

$B_{2}(F)=\frac{q(q+1)(q^{2}-q-2g)}{2}$

(2)

$B_{\iota}(F)=\frac{q(q^{l-1}-1)(q^{l}+q+2g)}{l}$ for every odd prime number $l$ .

By the theorem, it is clear that the number $B_{l}(F)$ is not zero for any maximal function field
$F$ and any odd prime number $l$ . We have the following corollary for $l=2$ .
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Corollary. A maximal function field $F/F_{q^{2}}$ has the number $B_{2}(F)=0$ if and only if $F/F_{q^{2}}$ is
isomorphic to the Hermitian function field over $F_{q^{2}}$ .

This corollary characterizes the Hermitian function field, and states that the Hermitian
function field is a special maximal function field.

In the next section, we give an elementary proof for a special case of an explicit formula in the
textbook of H. Stichtenoth $($ [4], $p$ 178 (2.23) $)$ by only using fundamental facts of the algebraic
function field theory. This proof is completely different from his one. In the third section, we
recall the facts of the Zeta functions and L-polynomials, and we prove the theorem and the
corollary. The last section has three examples. The first and the second are generalizations of
the Hremitian function field, which are maximal. The last is the Klein Quartic function field
over the field of two elements, which is not maximal. It is interesting to count the numbers
of nonrational places, because these imply the numbers of monic irreducible polynomials over
finite fields and a special case of Fermat’s theorem. Little attention has been given to compute
the numbers of nonrational places of algebraic function fields.

2 Preliminaries
Let $n$ be a positive integer and $F_{q^{\mathfrak{n}}}$ the n-th cyclic Galois extension of $F_{q}$ . We fix an algebraic
closure $\overline{F}_{q}$ of $F_{q}$ . By Galois Theory, there exists $\xi\in\overline{F}_{q}$ such that $F_{q^{n}}=F_{q}(\xi)$ . Assuming that
$\varphi(T)$ is the minimal polynomial of the element $\xi$ over $F_{q}$ , then the degree of $\varphi(T)$ is equal to
$n$ . Let $m$ be a positive integer. Note that if $m$ and $n$ are coprime then the fields $F_{q^{m}}$ and $F_{q^{\mathfrak{n}}}$

are linearly disjoint over $F_{q}$ , therefore the intersection of $F_{q^{m}}$ and $F_{q^{n}}$ is equal to $F_{q}$ .
Let $F$ be an algebraic function field over $F_{q}$ of genus $g$ , and let $P_{F}$ be the set of places of

$F$ . We fix the constant field extension $F\overline{F}_{q}$ of $F$ and set $F_{n}$ the compositum $FF_{q^{\mathfrak{n}}}\subseteq F\overline{F}_{q}$ of
the fields $F$ and $F_{q^{\mathfrak{n}}}$ . Then $F_{n}$ is the algebraic function field with full constant field $F_{q^{n}}$ , and
its genus $g(F_{n})$ is equal to $g$ (see, [4] Proposition III.6.1 and Theorem III.6.3). It is clear that
$F_{n}=F(\xi)$ and $[F_{n} : F]=n$ by Galois Theory. Let $P$ be a place of $F/F_{q}$ , and $O_{P}$ its discrete
valuation ring. Since $F_{q}\subseteq O_{P}$ and $F_{q}\cap P=\{0\}$ , the residue class map

$O_{P}\rightarrow O_{P}/P$, $c\leftrightarrow\overline{c}:=c+P$

induces a canonical embedding of the finite field $F_{q}$ into the residue class field $O_{P}/P$ of $P$ . By
the embedding map, if $\psi(T)=c_{0}+c_{1}T+\cdots+c_{s}T^{s}$ is a polynomial over $O_{P}$ then $\overline{\psi}(T)$ $:=$

$\overline{c}_{0}+\overline{c}_{1}T+\cdots+\overline{c}_{s}T^{s}$ is a polynomial over $O_{P}/P$ . In particular, if $\psi(T)$ is a polynomial over
$F_{q}$ , then $\overline{\psi}(T)$ can be regarded as $\psi(T)$ , that is, $\overline{\psi}(T)=\psi(T)$ .

The next is very useful when one investigates the ramification of nonrational places.

Definition. Let $P$ be a place of $F$ , and let $F^{\prime}$ be a finite algebraic extension of $F$ . We call the
place $P$ totally inert in the extension $F^{\prime}/F$ if there exists only one extension $P^{\prime}$ of $P$ in $F^{\prime}$ and
the relative degree $f(P^{\prime}|P)$ is equal to the degree $[F^{\prime} : F]$ .

Now we show the proposition:

Proposition. Let $l$ be a prime number, and $F$ an algebraic function field over the finite field
$F_{q}$ . Let $F_{l}\subseteq F\overline{F}_{q}$ be the compositum of the fields $F$ and $F_{q}$ . Then we have

$N(F)+l\cdot B_{l}(F)=N(F_{l})$ .

This proposition is a special case for any prime number of an explicit formula in the textbook
of Stichtenoth $($ [4], $p$ 178 (2.23) $)$ . His proof requires some deep results from the constant field

–78–



extension theory (confer, [4] Chapter III.6). Here we give a very elementary proof without using
it. This proposition follows from the following two lemmas, which we can prove by only using
Galois Theory and the Kummer’s Theorem (see, [4] Theorem III.3.7).

Lemma 1. Let $P$ be a place of $F$ . Assume that $m$ is greater than $n$ .

(1) If $P$ is rational (i.e., of degree one), then $P$ is totally inert in the extension $F_{n}/F$ and the
extension of $P$ in $F_{n}$ is also rational.

(2) If $P$ is of degree $n$ , then $P$ splits completely in $F_{n}/F$ and $n$ extensions of $P$ in $F_{n}$ are
rational.

(3) If $P$ is of degree $m$ , then each extension of $P$ in $F_{n}$ is not rational.

Proof. (1) Assuming that a place $P$ is rational of $F$ , then its residue class field $O_{P}/P$ is
the finite field $F_{q}$ and the minimal polynomial $\varphi(T)$ of the element $\xi$ over $F_{q}$ is irreducible
over $O_{P}/P$ . By using the Kummer’s Theorem, there exists $P^{\prime}\in P_{F_{n}}$ satisfying $P^{\prime}|P$ and
$f(P^{\prime}|P)=n$ . Hence we obtain deg $P^{\prime}=1$ because

$n$ . deg $P^{\prime}=[\mathcal{O}_{P^{\prime}}/P^{\prime} : F_{q^{n}}]\cdot[F_{q^{n}} : F_{q}]=f(P^{\prime}|P)$ . deg $P=n$ .

(2) If $P$ is a place of degree $n$ in $F$ , then $O_{P}/P=F_{q^{\mathfrak{n}}}$ and $\varphi(T)=(T-\xi_{1})\cdots(T-\xi_{n})$ in the
polynomial ring $\mathcal{O}_{P}/P[T]$ , where $\xi_{1}$ $:=\xi$ . Then, for $1\leq i\leq n$ , there are $P_{i}\in P_{F_{n}}$ satisfying
$P_{i}|P$ and $f(P_{i}|P)=1$ . Moreover, $P_{i}\neq P_{j}$ for $i\neq j$ . Thus deg $P_{i}=1$ for all $i$ .
(3) Let $P$ be a place of degree $m$ in $F$ , and let $P^{\prime}$ be an extension of $P$ in $F_{n}$ . Then

deg $P^{\prime}=[O_{P^{\prime}}/P^{\prime} : F_{q^{n}}]=\frac{f(P^{\prime}|P)\cdot\deg P}{n}>1$ ,

and the proof is complete. $\square $

Lemma 2. Suppose that $n$ is prime to $m$ . If $P$ is a place of degree $m$ in $F$ , then $P$ is totally
inert in the extension $F_{n}/F$ , and the degree of the extension of $P$ in $F_{n}$ is equal to $m$ .

Proof. If $P$ is a place of degree $m$ in $F$ , then $\mathcal{O}_{P}/P=F_{q^{m}}$ . Since $m$ and $n$ are coprime, then
the fields $F_{q^{m}}$ and $F_{q^{n}}$ are linearly disjoint over $F_{q}$ , and we know that

$m=[F_{q^{m}} : F_{g}]=[F_{q^{m}}(\xi) : F_{q^{n}}]$ .

Suppose that $\varphi(T)=\varphi_{1}(T)\cdot\varphi_{2}(T)$ , where $\varphi_{1}(T)$ and $\varphi_{2}(T)$ are polynomials over $F_{q^{m}}$ . Without
loss of generality, we can assume that $\varphi_{1}(\xi)=0$ . Then we obtain

$m$ . deg $\varphi(T)=[F_{q^{m}}(\xi) : F_{q}]\leq\deg\varphi_{1}(T)\cdot m$ , so deg $\varphi(T)\leq\deg\varphi_{1}(T)$ .

Hence $\varphi(T)$ is irreducible over $\mathcal{O}_{P}/P$ . By the Kummer’s Theorem, there exists $P^{f}\in P_{F_{n}}$

satisfying $P^{\prime}|P$ and $f(P^{\prime}|P)=n$ . Hence we obtain deg $P^{\prime}=m$ . $\square $

Proof of Proposition. By Lemma 1 (1), any rational place of $F$ has only one extension of
degree one in $F_{l}$ . Next, assuming that $P$ is a place of degree $l$ , the place $P$ has $l$ extensions of
degree one in $F_{l}$ from Lemma 1 (2). Lastly, suppose that $P$ is a place as in Lemma 1 (3) or
Lemma 2. Any extension of the place $P$ in $F_{l}$ is not rational, and the proof is complete. $\square $
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3 Proofs
In the section, we prove the theorem and the corollary. Firstly, we recall some facts about the
Zeta functions and L-polynomials of algebraic function fields over finite fields.

Definition. Let $F$ be an algebraic function field over the finite field $F_{q}$ . The Zeta function
$Z_{F}(t)$ (resp. L-polynomial $L_{F}(t)$ ) of $F$ is defined as follows:

$Z_{F}(0):=1$ and $Z_{F}(t):=\sum_{n=1}^{\infty}N(F_{\mathfrak{n}})t^{n-1}$ ;

(resp. $L_{F}(t)$ $:=(1-t)(1-qt)\cdot Z_{F}(t)$ ).

By the difinitions, we obtain (confer, [4] Corollary V.1.17)

$\frac{d}{dt}$ log $L_{F}(t)=\frac{d}{dt}$ log $Z_{F}(t)-\frac{1}{1-t}-\frac{q}{1-qt}$

$=\sum_{n=1}^{\infty}N(F_{n})t^{n-1}-\sum_{n=1}^{\infty}t^{n-1}-\sum_{n=1}^{\infty}q^{n}t^{n-1}$

$=\sum_{n=1}^{\infty}(N(F_{\mathfrak{n}})-(q^{n}+1))t^{\mathfrak{n}-1}$ . (1)

It is well-known that $F$ is an maximal (resp. minimal) function field over $F_{q}$ if and only if

$L_{F}(t)=(1+\sqrt{q}t)^{2g(F)}$ (resp. $L_{F}(t)=(1-\sqrt{q}t)^{2g(F)}$ ).

Secondly, we show the following by using the above facts.

Lemma 3. Let $F$ be an algebraic function field over $F_{q}$ , and let $F_{n}$ be the compositum of the
fields $F$ and $F_{q^{n}}$ (note that $F_{n}$ is an algebraic function field over $F_{q^{n}}$ ).

(i) Assume that $F$ is maximal. If $n$ is an odd (resp. even) integer, then $F_{\mathfrak{n}}$ is maximal (resp.
minimal); $N(F_{n})=q^{n}+1+2g(F)\cdot\sqrt{q^{n}}$ (resp. $N(F_{n})=q^{n}+1-2g(F)\cdot\sqrt{q^{n}}$).

(ii) If $F$ is minimal, then the compositum $F_{n}$ is also minimal for each $n$ .

Proof. (i) Since $F$ is maximal, then we have $L_{F}(t)=(1+\sqrt{q}t)^{2g(F)}$ by the above fact, so

$\sum_{n=1}^{\infty}(N(F_{n})-(q^{n}+1))t^{n-1}=\frac{d}{dt}$ log $L_{F}(t)$

$=2g(F)\sqrt{q}\sum_{n=1}^{\infty}(-\sqrt{q}t)^{\mathfrak{n}-1}$

by the equation (1). Contrasting the both sides for each $n$ , we obtain the desired results. The
claim (ii) is the same as the proof of the claim (i). This finishes the proof of Lemma 3. $\square $

Now, we compute the numbers of any prime degree places in maximal function fields.

Proof of Theorem. (1) Fix $l=2$ . By Lemma 3 (i), the algebraic function field $F_{2}$ over $F_{q^{4}}$

is minimal, that is, $N(F_{2})=q^{4}+1-2gq^{2}$ . Hence, from Proposition, we get

$B_{2}(F)=\frac{N(F_{2})-N(F)}{2}=\frac{q(q+1)(q^{2}-q-2g)}{2}$ .

–80–



(2) We know, from Lemma 3 (i) that the algebraic function fields $F_{l}$ over $F_{q^{2l}}$ are maximal,
namely, $N(F_{l})=q^{2l}+1-29q^{l}$ . Therefore we obtain by Proposition

$B_{l}(F)=\frac{N(F_{l})-N(F)}{l}=\frac{q(q^{\iota-1}-1)(q^{l}+q+2g)}{l}$

Now the integers $q,$ $q^{l-1}-1$ and $q^{l}+q+2g$ are positive, thus $B_{l}(F)$ are not zero for all $l$ . $\square $

Next, we prove the corollary.

Proof of Corollary. Suppose that $F$ is a maximal function field over $F_{q^{2}}$ , and $B_{2}(F)=0$ .
Then the genus $g$ of $F$ is equal to $g=q(q-1)/2$ by Theorem (1). Hence it follows that $F$ is
isomorphic to the Hermitian function field over $F_{q^{2}}$ from the main theorem in the paper [3] of
H. G. R\"uch and H. Stichtenoth. The converse is trivial, and the proof is complete. $\square $

4 Examples
Let us begin with the definition of q-polynomials (see, [2] Chapter 3.4).

Definition. Polynomials

$f(T)=\sum_{i=0}^{m}a_{i}T^{i}$ and $f^{*}(T)=\sum_{i=0}^{m}a_{i}T^{q^{:}}$

over $F_{q^{n}}$ are called q-associates of each other.

We can interpret $f^{*}$ as a linear map over $F_{q}$ from the algebraically closure $\overline{F}_{q}$ of $F_{q}$ to itself,
that is, $f^{*}(\alpha+\beta)=f^{*}(\alpha)+f^{*}(\beta)$ and $f^{*}(c\alpha)=cf^{*}(\alpha)$ for all $\alpha,$

$\beta\in\overline{F}_{q}$ and all $c\in F_{q}$ . Suppose
that

$f(T)=\sum_{i=0}^{m}a_{i}T^{i}$ and $g(T)=\sum_{j=0}^{n}b_{j}T^{j}$

are polynomials over $F_{q^{\prime}}$. Since the product of $f$ and $g$ is given by

$fg(T)=\sum_{k=0}^{m+n}(\sum_{i+j=k}a_{t}b_{j})T^{k}$ ,

then we obtain

$(fg)^{*}(T)=\sum_{k=0}^{m+n}(\sum_{i+j=k}a_{i}b_{j})T^{q^{k}}=\sum_{i=0}^{m}\sum_{j=0}^{n}a_{i}b_{j}T^{q^{+j}}=f^{*}(g^{*}(T))$ . (2)

It follows, from the equation (2) that the next algebraic function field is maximal.

Example 1. Let us consider the algebraic function field

$H=F_{q^{2r}}(x, y)$ with $y^{q}+y=x^{q^{r}+1}$ ,

where $r$ is an odd integer. Note that this is the Hermitian function field when $r$ is equal to
one. Let $Q$ be the infinite place (i.e., the simple pole of $x$ ) of the rational function field $F_{q^{2r}}(x)$ .
As the place $Q$ is totally ramified in the extension $H/F_{q^{2r}}(x)$ , the full constant field of $H$ is
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also the finite field $F_{q^{2r}}$ . Firstly, we know that the genus of $H$ is equal to $q^{r}(q-1)/2$ (see, [4]
Proposition VI.4.1 $(e))$ . Next, we count the number of rational places in $H$ . Assuming that

$\rho(T)=\sum_{i=0}^{r-1}(-1)^{i}T^{r-i-1}$ and $\tau(T)=(T+1)(T^{r}-1)$

are polynomials over $F_{q^{2r}}$ , their linearized q-associates are given by

$\rho^{*}(T)=\sum_{i=0}^{r-1}(-1)^{i}T^{q^{r-\ell-1}}$ and $\tau^{*}(T)=(T^{q}+T)^{q^{r}}-(T^{q}+T)$

from the equation (2). Therefore we get an equation $T^{q^{2r}}-T=\rho^{*}(\tau^{*}(T))$ over $F_{q^{2r}}$ . Suppose
that an element $\beta$ in an algebraically closure $\overline{F}_{q}$ of $F_{q}$ is a root of the equation $T^{q}+T=\alpha^{q^{r}+1}$

for a element $\alpha\in F_{q^{2r}}$ . Then

$\tau^{*}(\beta)=(\beta^{q}+\beta)^{q^{r}}-(\beta^{q}+\beta)=(\alpha^{q^{r}+1})^{q^{r}}-(\alpha^{q^{r}+1})=0$ ,

thus $\beta^{q^{2r}}-\beta=\rho^{*}(\tau^{*}(\beta))=\rho^{*}(0)=0$ , so the element $\beta$ is in $F_{q^{2r}}$ . Hence, for each $\alpha\in F_{q^{2r}}$

the equation $T^{q}+T=\alpha^{q^{r}+1}$ has $q$ distinct roots in $F_{q^{2r}}$ , and $N(H)=q^{2r+1}+1$ (see, [1]). In
consequence, we see that the algebraic function field $H$ over $F_{q^{2r}}$ is maximal, that is,

$N(H)-(q^{2r}+1)=q^{2r+1}-q^{2r}=q^{r}(q-1)\cdot\sqrt{q^{2r}}=2g(H)\cdot\sqrt{q^{2r}}$.

Combining Proposition and Lemma 3 (i), we obtain the following results:

(1) If $l=2$ , then we obtain

$B_{2}(H)=\frac{q^{2r+1}(q^{r-1}-1)(q^{r}+1)}{2}$ ;

(2) If $l$ is an odd prime number, then we obtain

$B_{l}(H)=\frac{q^{2r+1}(q^{(l-1)r}-1)(q^{(l-1)r-1}+1)}{l}$ .

We deal with a subfield of the Hermitian function field.

Example 2. Assume that $s|q+1$ . Let us consider the algebraic function field

$H=F_{q^{2}}(x, y)$ with $y^{q}+y=x^{s}$ .

Since $g(H)=(q-1)(s-1)/2$ and $N(H)=1+q(1+(q-1)s)$ , the algebraic function field $H$

over $F_{q^{2}}$ is maximal (for example, [4] Example VI. 4.2). Combining Proposition and Lemma 3
(i), we obtain the following results:

(1) If $l=2$ , then we obtain

$B_{2}(H)=\frac{q(q-1)(q+1)(q+1-s)}{2}$ ;

(2) If $l$ is an odd prime number, then we obtain

$B\iota(H)=\frac{(q^{\iota}-q)(q^{l}+q+(q-1)(s-1))}{l}$ .
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Remark. When $s=1$ , this example is interesting. Because it show that $B_{l}(H)$ is equal to the
number of monic irreducible polynomials of degree $l$ in $F_{q^{2}}[T]$ (confer, [2] Chapter 3.2).

For an algebraic function field $F$ over the finite field $F_{q}$ , the Serre Bound (for example, [4]
Theorem V.3.1) is given by $|N(F)-(q+1)|\leq[2g(F)\cdot\sqrt{q}]$ , where $[r]$ denotes the integer part
of the real number $r$ .

The algebraic function fields in the above examples is maximal. Thus the numbers $B_{l}$ are
given by the theorem if the genus is known. Next, we present such numbers of a nonmaximal
function field. Since this is not maximal, we can not apply the theorem.

Example 3. We consider the Klein Quartic function field $K=F_{2}(x, y)$ defined by the affine
equation $y^{3}+x^{3}y+x=0$ . It is well-known (for example, [4] Example VI.3.8) that

$[K:F_{2}(x)]=3$ , $g(K)=3$ and $N(K)=3$ ,

and the L-polynomial of the Klein Quartic is given by $L_{K}(t)=1+5t^{3}+8t^{6}$ . After a technical
computation, we obtain the power series expansion of the logarithmic derivative of $L_{K}$ :

$\frac{d}{dt}$ log $L_{K}(t)=3t^{2}(5+16t^{3})\cdot\frac{1}{1+5t^{3}+8t^{6}}$

$=3t^{2}(5+16t^{3})\cdot\frac{32}{7+(5+16t^{3})^{2}}$

$=\frac{2^{5}\cdot 3}{7}t^{2}\cdot\sum_{n=0}^{\infty}(\frac{-1}{7})^{n}(5+16t^{3})^{2n+1}$ ; (3)

$=15t^{2}-27t^{5}+15t^{8}+141t^{11}-825t^{14}+2997t^{17}+\cdots$ .

First, fix $l=3$ . It follows from the equation (1) and the series (3) that

$N(K_{3})-(2^{3}+1)=15$ , so $N(K_{3})=24$ .

Thus we get $B_{3}(K)=7$ by Proposition. Next, we fix a prime number $l$ and $l\neq 3$ . Note that
the number $l$ is not divisible by 3. It follows that $N(K_{l})=2^{l}+1$ from the equation (1) and
the series (3). So we have $B_{l}(K)=(2^{l}-2)/l$ by Proposition. In conclusion, we obtain

$B_{3}(K)=7$ and $B_{l}(K)=\frac{2^{\iota}-2}{l}$ for any prime number $l,$ $l\neq 3$ .

Remark. (1) The algebraic function field $K_{3}$ over the field of eight elements is maximal for
Serre Bound. It is for this reason that $l=3$ is the special case.

(2) For any prime number $l\neq 3$ , the number $B_{l}(K)$ is equal to the number of monic irreducible
polynomials of degree $l$ in $F_{2}[T]$ (confer, [2] Chapter 3.2).
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