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CHARACTERIZATION OF COMPLEX SPACE FORMS
IN TERMS OF GEODESICS AND

CIRCLES ON THEIR GEODESIC SPHERES

TOSHIAKI ADACHI AND SADAHIRO MAEDA

ABSTRACT. In this paper we pay particular attention to $g\infty desioe$ and circles on
$g\infty daeic$ spheres in a given K\"ahler manifold. We characterize complex space forms
in the class of K\"ahler manifolds ffom this point of view.

1. Introduction.
In this paper we characterize complex space forms among K\"ahler manifolds by

observing the structure torsion of geodesics on their geodesic spherea A complex
n-dimensional complex space form is a K\"ahler manifold of constant holomorphic
sectional curvature $c$ , which is locally congruent to either a complex projective space
$\mathbb{C}P^{n}(c)$ , a complex Euclidean space $\mathbb{C}^{n}$ or a complex hyperbolic space $\mathbb{C}H^{n}(c)$ ,
according as $c$ is positive, zero or negative. Among real hypersurfaces in a complex
space form geodesic spheres have many nice properties. For a unit tangent vector
$v\in T_{x}N$ of a real hypersurface $N$ in a K\"ahler manifold $M$ , we put $\eta(v)=\langle v,\xi_{x}\rangle$

and cal its structure torsion. Here $\xi$ is the characteristic vector field of $N$ in
$M$ which is defined by $\xi=-J\mathcal{N}$ with unit normal vector field $\mathcal{N}$ and complex
structure $J$ of $M$ . For a geodesic $\gamma$ on $N$ which is parameterized by its arc-length,
we can define a structure torsion function $\eta_{\gamma}$ by $\eta(\dot{\gamma})$ . When $N$ is a geodesic sphere
in a complex space form, the structure torsion $\eta_{\gamma}$ for an arbitrary geodesic $\gamma$ is a
constant function. Our main result in this paper is Theorem 1 which characterizes
complex space forms among K\"ahler manifolds by this property. We also give a
characterization of complex Euclidean spaces by the extrinsic shape of circles on
geodesic spheres (Theorem 2).

2. Characterization of complex space forms.
For a Riemannian manifold $(M, \langle , \rangle)$ of dimension greater than 2, we denote

by $G_{x}(r)$ a geodesic sphere of radius $r$ centered at $x\in M$ , and by $A=A_{x,r}$ the
shape operator of $G_{x}(r)$ in $M$ with respect to the outward unit normal vector field
$\mathcal{N}$. We then have the following relationship between the Riemannian connections
$\tilde{\nabla}$ of $M$ and $\nabla$ of $G_{x}(r)$ :

(2.1) $\overline{\nabla}_{X}Y=\nabla_{X}Y+\langle A_{x,r}X, Y\rangle \mathcal{N}$ and $\overline{\nabla}_{X}\mathcal{N}=-A_{x,r}X$.
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Our study in this paper is deeply based on the following expansion for the second
fundamental form.

Lemma ([CV, Theorem 3.1]). For nonzero tangent vectors $v,$ $w\in T_{x}M$ at a point
$x\in M$ , we choose a unit tangent vector $u\in T_{x}M$ orthogonal to both $v$ and $w$ . We
denote by $v_{r},w_{r}\in T_{\exp_{*}(ru)}M$ the parallel displacements of $v,w$ along the geodesic
segment $\exp_{x}(su),$ $0\leqq s\leqq r$ . Then for sufficiently small $r$ we have

(2.2) $\langle A_{m,r}v_{r}, w_{r}\rangle=\frac{1}{r}\langle v,w\rangle-\frac{r}{3}\langle R(u,v)w,u\rangle+O(r^{2})$ .

Our characterization of complex space forms is the folowing:

Theorem 1. For a Kahler manifold $M$ of complex $n(\geqq 2)$ -dimension, the following
two conditions are equivalent each other.

(1) $M$ is a complex space form.
(2) At an arbitrary point $x\in M$ , for each geodesic sphere $G_{x}(r)$ of sufficiently

small radius $r$ , every geodesic on $G_{x}(r)$ has constant structure torsion.

Proof. Since a geodesic sphere $G$ is a real hypersurface, it admits an $aost$ contact
metric structure $(\phi,\xi,\eta, \langle, \rangle)$ induced by the complex structure $J$ of $M$ , which
satisfies $\phi^{2}=-I+\eta\otimes\xi$ . It follows &om equalities (2.1) that

(2.3) $(\nabla_{X}\phi)Y=\eta(Y)AX-(AX,$ $Y\rangle$ $\xi$ and $\nabla_{X}\xi=\phi AX$.

For a geodesic $\gamma$ on a geodesic sphere $G$ , by the second equality in (2.3) we find
that

(2.4) $\eta_{\gamma}^{\prime}=\nabla_{\dot{\gamma}}(\dot{\gamma},\xi\rangle=\langle\dot{\gamma}, \nabla_{\dot{\gamma}}\xi\rangle=\langle\dot{\gamma},\phi A\dot{\gamma})=-\langle A\psi\dot{\gamma},\dot{\gamma}\rangle$ .

(1) $\Rightarrow(2)$ . Since it holds $\phi A=A\phi$ for every geodesic sphere $G$ in a complex
space form (see for example [NR]), we see that $\eta_{\gamma}^{\prime}=\langle\dot{\gamma}, \phi A\dot{\gamma}\rangle=-\langle\dot{\gamma}, \phi A\dot{\gamma}\rangle$ , which
shows $\eta_{\gamma}^{\prime}=0$ .

(2) $\Rightarrow(1)$ . For a geodesic sphere $G_{x}(r)$ of radius $r$ , it follows from (2.4)
that $\langle v, \phi Av\rangle=0$ for every tangent vector $v\in TG_{x}(r)$ . In particular, we see
$\langle v+w, \phi A(v+w)\rangle=0$ for arbitrary $v,$ $w\in T_{y}G_{x}(r)$ at an arbitrary point $ y\in$

$G_{x}(r)$ . This guarantees $\langle(\phi A-A\phi)v,w\rangle=0$ for arbitrary $v,$ $w\in T_{y}G_{x}(r)$ , so that
$\phi A_{m,r}=A_{m,r}\phi$ . This shows that the characteristic vector $\xi$ is a principal curvature
vector of $G_{x}(r)$ in the ambient K\"ahler manifold $M$ .

Given a unit tangent vector $v\in T_{x}M$ we take a unit tangent vector $w\in T_{x}M$

which is orthogonal to both $v$ and $Jv$ and use Lemma by putting $u=Jv$ . Since
$u_{r}$ is a normal vector of $G_{x}(r)$ in $M$ at $y=\exp_{x}(ru)$ and $M$ is K\"ahler, the vector
$v_{r}=-Ju_{r}$ is the characteristic vector of $G_{x}(r)$ at $y$ . As $v_{r}$ is a principal curvature
vector of $G_{x}(r)$ , the equality (2.2) implies that the curvature tensor $R$ of $M$ satisfies
$\langle R(u, Ju)w, u\rangle=0$ . Thus we find that $R(u, Ju)u$ is proportional to $Ju$ for every
$u\in T_{x}M$ , so that $M$ is a complex space form (see [T]).

3. Characterization of a complex Euclidean space.
A smooth curve $\gamma$ in $M$ parameterized by its arc-length is caled a circle of

curvature $\kappa(\geqq 0)$ , if there exists a field of unit vectors $Y_{s}$ along this curve which
satisfies the differential equations $\nabla_{\dot{\gamma}}\dot{\gamma}=\kappa Y_{s},$ $\nabla_{\dot{\gamma}}Y_{s}=-\kappa\dot{\gamma}$ , where $\kappa$ is a constant
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and $\nabla_{\dot{\gamma}}$ denotes the covariant differentiation along $\gamma$ with respect to the Riemannian
connection $\nabla$ on $M$ . A circle of null curvature is nothing but a circle. More
generaly, for a smooth curve $\gamma$ in $M$ parameterized by its arc-length, we usually
cal the norm $\Vert\nabla_{\dot{\gamma}}\dot{\gamma}\Vert$ the first curvature of $\gamma$ in the sense of Frenet formula. In their
paper[CV], Chen and Vanhecke gave the following characterization of complex space
forms.

Proposition. A complex $n(\geqq 2)$ -dimensional Kahler manifold $M$ is a complex
space form if and only if at an arbitrary point $x\in M$ for each geodesic sphere $G_{x}(r)$

of sufficiently small radius $r$ every geodesic on $G_{x}(r)$ has $\omega nstant$ first curvature
as a curve in the ambient space $M$ ,

Motivated by this result, we characterize a complex Euclidean space in the
class of K\"ahler manifolds by observing circles of positive curvature on its geodesic
spheres.

Theorem 2. For a complex $n(\geqq 2)$ -dimensional Kahler manifold $M$ the following
two conditions are equivalent each other.

(1) $M$ is locally congruent to a complex Euclidean space.
(2) At an arbitrary point $x\in M$ , for each geodesic sphere $G_{x}(r)$ of sufficiently

small mdius $r$ , there exists $\kappa=\kappa_{x,r}>0$ satisfying that every circle of
curvature $\kappa$ on $G_{x}(r)$ has constant first curvature as a curve in the ambient
space $M$ .

Though this theorem can be obtained as a consequence of the result in [M], we
here give a complete proof without using the result.

Proof. (1) $\Rightarrow(2)$ . Since the geodesic sphere $G(r)$ of radius $r$ in $\mathbb{C}^{n}$ is a standard
sphere of constant sectional curvature $1/r^{2}$ , it is known that every circle of curvature
$\kappa$ on $G(r)$ can be regard as a circle of curvature $\sqrt{\kappa^{2}+(1}/r^{2}$) in $\mathbb{C}^{n}$ , so that our
assertion is obvious.

(2) $\Rightarrow(1)$ . For an arbitrary orthogonal pair of vectors $u,$ $v\in T_{y}G_{x}(r)$ at
a point $y\in G_{x}(r)$ we take a circle $\gamma=\gamma(s),$ $s\in I$ of curvature of $\kappa$ on a ge-
odesic sphere $G_{x}(r)$ with initial condition that $\gamma(0)=x,\dot{\gamma}(0)=u$ and $Y_{0}(=$

$(1/\kappa)\nabla_{\dot{\gamma}}\dot{\gamma}(O))=v$ . It follows from the first equality in (2.1) that

$\tilde{\nabla}_{\dot{\gamma}(\epsilon)}\dot{\gamma}(s)=\kappa Y_{s}+\langle A_{x,r}\dot{\gamma},\dot{\gamma}\rangle \mathcal{N}$, $ s\in I.\cdot$

By the assumption, the first curvature $\kappa_{1}=||\overline{\nabla}_{\dot{\gamma}}\dot{\gamma}||$ of the curve $\gamma$ in the ambient
K\"ahler manifold $M$ is constant, so that this equality implies that \langle $A_{m,r}\dot{\gamma},\dot{\gamma}$) is
constant on $I$ . Hence we have

$ 0=\frac{d}{ds}\langle A_{m,r}\dot{\gamma},\dot{\gamma}\rangle=\langle(\nabla_{\dot{\gamma}}A_{m,r})\dot{\gamma},\dot{\gamma}\rangle+2\langle A_{m,r}\dot{\gamma}, \nabla_{\dot{\gamma}}\dot{\gamma}\rangle$

$=\langle(\nabla_{\dot{\gamma}}A_{m,r})\dot{\gamma},\dot{\gamma}\rangle+2\kappa\langle A_{m,r}\dot{\gamma}, Y_{\epsilon}\rangle$ .
Evaluating this equation at $s=0$ , we get

(3.1) $\langle(\nabla_{u}A_{m,r})u, u\rangle+2\kappa\langle A_{m,r}u, v\rangle=0$ .

On the other hand, for another circle $\rho=\rho(s)$ of the same curvature $\kappa$ on $G_{x}(r)$

with initial condition that $\rho(0)=x,\dot{\rho}(0)=u$ and $\nabla_{\dot{\rho}}\dot{\rho}(0)=-\kappa v$ , we see that

(3.2) $\langle(\nabla_{u}A_{m,r})u, u\rangle-2\kappa\langle A_{m,r}u, v\rangle=0$
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which corresponds to equation (3.1). Thus, from (3.1) and (3.2) we obtain
$\langle A_{m,r}u, v\rangle=0$ for an arbitrary orthonormal pair of vectors $u,$ $v$ at each point $y$

of $G_{x}(r)$ , so that our geodesic sphere $G_{x}(r)$ is totaly umbilic in $M$ . This, together
with equation (2.2), yields that the curvature tensor $R$ of the ambient K\"ahler man-
ifold $M$ satisfies $\langle R(u, v)w, u\rangle=0$ for any orthonormal vectors $u,$ $v,$ $w\in T_{x}M$ . By
virtue of Cartan’s result we find $hom$ this property that $M$ is of constant sectional
curvature. Therefore we can conclude that our K\"ahler manifold $M$ of complex
dimension $n(\geqq 2)$ is nothing but a complex Euclidean space. $\square $
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