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A TRANSCENDENCE CRITERION OVER $p$-ADIC FIELDS

VICTOR ALEXANDRU AND ALEXANDRU ZAHARESCU

ABSTRACT. Let $p$ be a prime number, $Q_{p}$ the field of $p$-adic numbers, $\overline{Q}_{p}$ a
fixed algebraic closure of $Q_{p},$ $C_{p}$ the completion of $\overline{Q}_{p}$ with respect to the $p$-adic
valuation, and $O_{C_{p}}$ the ring of integers of $C_{p}$ . We provide a criterion which
characterizes the elements of $O_{C_{p}}$ which are transcendental over $Q_{p}$ .

1. INTRODUCTION

Let $p$ be a prime number, $Q_{p}$ the field of $p$-adic numbers, $Z_{p}$ the ring of $p$-adic
integers, $\overline{Q}_{p}$ a fixed algebraic closure of $Q_{p}$ , $C_{p}$ the completion of $\overline{Q}_{p}$ with respect
to the unique extension to $\overline{Q}_{p}$ of the $p$-adic valuation on $Q_{p}$ , and $O_{C_{p}}$ the ring
of integers of $C_{p}$ . The theory of saturated distinguished chains of polynomials,
developed in [8], [9], [12], [1], [10], [11], plays an important role in the problem of
describing the structure of irreducible polynomials in one variable over $Q_{p}$ , or more
generally over a local field $K$ . Knowing a saturated distinguished chain for a given
element $\alpha\in\overline{K}$ , where $\overline{K}$ denotes a fixed algebraic closure of $K$ , can be helpful
in various problems. One reason is that we can use such a chain to construct an
integral basis of $K(\alpha)$ over $K$ . The shape of such a basis may be useful in practice,
for instance it has been used in [7] in order to show that the Ax-Sen constant
vanishes for deeply ramified extensions (in the sense of [4]). Another instance when
saturated distinguished chains of polynomials can be successfully used as tools to
understand various questions on the structure of $C_{p}$ is described in the present
paper. If $t$ is an element of $O_{C_{p}}$ and $(P_{n}(X))_{\mathfrak{n}\in N}$ is a sequence of polynomials
in $Z_{p}[X]$ , of any degrees, such that $P.(t)\rightarrow 0$ as $ n\rightarrow\infty$ , we consider for each
$n\in N$ the derivative $P_{n}^{\prime}(X)$ , and investigate convergence properties of the sequence
$(P_{n}^{\prime}(t))_{\mathfrak{n}\in N}$ . It turns out that in general the sequence $(P_{\mathfrak{n}}^{\prime}(t))_{n\in N}$ behaves differently
when $t$ is transcendental over $Q_{p}$ , than in the case when $t$ is algebraic over $Q_{p}$ . This
allows us to establish a criterion which characterizes the elements $t\in O_{C_{p}}$ which
are transcendental over $Q_{p}$ , and to derive some consequences of this result. The key
ingredients in investigating such questions come from the properties of saturated
distinguished chains of polynomials over $Q_{p}$ .

2. DISTINGUISHED SEQUENCES OF POLYNOMIALS OVER $Q_{p}$

In this section we present the basic properties of the so-called distinguished se-
quences of polynomials. We work in the following context. We let $p$ be a fixed
prime number, $Q_{p}$ the field of $p$-adic numbers, $Z_{p}$ the ring of $p$-adic integers, and
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we denote by $v$ the $p$-adic valuation on $Q_{p}$ , normalized by $v(p)=1$ . Next, we let
$\overline{Q}_{p}$ be a fixed algebraic closure of $Q_{p}$ , and $C_{p}$ the completion of $\overline{Q}_{p}$ with respect
to the unique extension of $v$ to $\overline{Q}_{p}$ . We continue to denote by $v$ the corresponding
valuations on $\overline{Q}_{p}$ and $C_{p}$ .

A pair $(a, b)$ of elements from $\overline{Q}_{p}$ is said to be a distinguished pair (relative to
$Q_{p})$ , provided that one has

deg $a>\deg b$ ,
$v(a-c)\leq v(a-b)$

for any $c\in\overline{Q}_{p}$ with deg $c<\deg a$ , and

$v(a-c)<v(a-b)$

for any $c\in\overline{Q}_{p}$ with deg $c<\deg b$. Here deg $a$ , deg $b$ and deg $c$ denote the degrees of
$a,$

$b$ and respectively $c$ over $Q_{p}$ .
Given two irreducible polynomials $f,g\in Q_{p}[X]$ , one says that $(g, f)$ is a dis-

tinguished pair if there exist a root $a$ of 9 and a root $b$ of $f$ such that $(a, b)$ is a
distinguished pair. It is easy to see that if $(g, f)$ is a distinguished pair of poly-
nomials, then for any root $a$ of $g$ there exists a root $b$ of $f$ such that $(a, b)$ is a
distinguished pair, and for any root $b$ of $f$ there exists a root $a$ of $g$ such that $(a, b)$

is a distinguished pair.
Let $a\in\overline{Q}_{p}$ . If $a_{0},$ $\ldots,a_{s}\in\overline{Q}_{p}$ , one says that $(a_{0}, \ldots, a_{s})$ is a distinguished chain

for $a$ if $a_{0}=a$ and $(a_{i-1},a_{i})$ is a distinguished pair for any $i\in\{1, \ldots, s\}$ . The integer
$s$ is called the length of the chain $(a_{0}, \ldots, a_{s})$ . A distinguished chain $(a_{0}, \ldots, a_{s})$ for
$a$ is said to be saturated if there is no distinguished chain $(b_{0}, \ldots, b_{r})$ for $a$ , with
$r>s$ , such that $\{a_{0}, \ldots, a_{\epsilon}\}\subseteq\{b_{0}, \ldots, b_{r}\}$ . One shows that $(a_{0}, \ldots, a_{s})$ is saturated
if and only if $a_{\epsilon}\in Q_{p}$ .

Let $f_{0}=f,$ $f_{1},$
$\ldots,$

$f_{s}$ be monic, irreducible polynomials over $Q_{p}$ . One says that
$(f_{0}, \ldots, f_{s})$ is a (saturated) distinguished chain for $f$ if there exist roots $a_{0}=$

$a,$ $a_{1},$
$\ldots,$

$a_{s}$ of $f_{0},$ $f_{1},$ $\ldots,f_{s}$ respectively such that $(a_{0}, \ldots, a_{s})$ is a (saturated) dis-
tinguished chain for $a$ . The following results capture some of the basic properties of
saturated distinguished chains.

Theorem 1. ([12], Proposition 4.1). If $(a_{0}, \ldots, a_{s})$ is a distinguished chain, then
$G(Q_{p}(a_{s}))\subseteq G(Q_{p}(a_{s-1}))\subseteq\cdots\subseteq G(Q_{p}(a_{0})),$

.

and
$R(Q_{p}(a_{s}))\subseteq R(Q_{p}(a_{s-1}))\subseteq\cdots\subseteq R(Q_{p}(a_{0}))$ ,

where, for any $j\in\{0,1, \ldots, s\},$ $G(Q_{p}(a_{j}))=\{v(x) : x\in Q_{p}(a_{j})\}$ is the value group
of $Q_{p}(a_{j})$ , and $R(Q_{p}(a_{j}))$ denotes the residue field of $Q_{p}(a_{j})$ .
Corollary 1. If $(a_{0}, \ldots, a_{s})$ is a distinguished chain, then deg $a_{i}$ divides deg $a_{i-1}$ ,
for any $i\in\{1, \ldots, s\}$ .
Theorem 2. ([12], Proposition 4.2). Let $(a_{0}, \ldots, a_{s})$ and $(b_{0}, \ldots , b_{r})$ be two satu-
rated distinguished chains for $a$ . Then $s=r$ . Moreover if $c:\in\{a_{i}, b_{i}\},$ $1\leq i\leq s$ ,
then $(c_{0}, \ldots, c_{s})$ is also a saturated distinguished chain for $a$ .
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Theorem 3. ([12], Proposition 4.3). Let $a\in\overline{Q}_{p}$ , let $(a_{0}, \ldots, a_{s})$ and $(b_{0}, \ldots, b_{s})$ be
two saturated distinguished chains for $a$ , and let $f_{i},$

$g_{j}$ be the minimal polynomials
of $a_{i}$ and respectively $b_{j}$ over $Q_{p}$ . Then for any $i\in\{1, \ldots, s\}$ one has

$v(a_{i-1}-a_{i})=v(b_{i-1}-b_{i})$ ,

$v(f_{i}(a_{i-1}))=v(g_{i}(b_{i-1}))$ ,
$G(Q_{p}(a_{i}))=G(Q_{p}(b_{i}))$ ,

and
$R(Q_{p}(a_{i}))=R(Q_{p}(b_{i}))$ .

Moreover if we replace the condition $b_{0}=a$ in the hypothesis by the condition
$b_{0}=\sigma(a)$ where $\sigma\in Gal(\overline{Q}_{p}/Q_{p})$ then all the above relations remain valid, with
the only exception that in the last relation instead of equality we have a canonical
$R(Q_{p})$ -isomorphism.

A sequence $(\alpha_{n})_{n\in N}$ of elements from $\overline{Q}_{p}$ is said to be distinguished over $Q_{p}$ ,
provided that
(2.1) $\alpha_{0}\in Q_{p}$ ,

(2.2) $(\alpha_{n}, \alpha_{n-1})$ is a distinguished pair,

for any $n\geq 1$ , and
(2.3) $ v(\alpha_{n}-\alpha_{\mathfrak{n}-1})\rightarrow\infty$ , as $ n\rightarrow\infty$ .
Note that any distinguished sequence is a Cauchy sequence in $\overline{Q}_{p}$ , and so it has a
limit in $C_{p}$ .
Theorem 4. ([1], Proposition 2.1). Let $t\in C_{p}$ be the limit of a distinguished
sequence $(\alpha_{n})_{\mathfrak{n}\in N}$ . Then $t$ is transcendental over $Q_{p}$ .
Theorem 5. ([1], Proposition 2.2). Let $t\in C_{p}$ be transcendental over $Q_{p}$ . Then
there exists a distinguished sequence $(\alpha_{\mathfrak{n}})_{n\in N}$ such that $t=\lim_{\mathfrak{n}\rightarrow\infty}\alpha_{n}$ .
Theorem 6. ([1], Proposition 2.3). Let $t\in C_{p}$ be transcendental over $Q_{p}$ . Let
$(\alpha_{n})_{n\in N}$ and $(\alpha_{\mathfrak{n}}^{\prime})_{n\in N}$ be distinguished sequences over $Q_{p}$ such that $t=\lim_{n\rightarrow\infty}\alpha_{n}=$

$\lim_{n\rightarrow\infty}\alpha_{\mathfrak{n}}^{\prime}$ . Then
(2.4) deg $\alpha_{n}=\deg\alpha_{n}^{\prime}$ and $v(t-\alpha_{n})=v(t-\alpha_{n}^{\prime})$ ,

for any $n\in N$ . If $f_{n}$ and $\overline{f}_{n}$ denote the minimal polynomial of $\alpha_{n}$ and respectively
$\alpha_{n}^{\prime}$ over $Q_{p}$ , then

(2.5) $v(f_{n}(\alpha_{n+1}))=v(\overline{f}_{n}(\alpha_{n+1}^{\prime}))$ ,

for any $n\in N$ . Also,

(2.6) $e(Q_{p}(\alpha_{\mathfrak{n}})/Q_{p})=e(Q_{p}(\alpha_{\mathfrak{n}}^{\prime})/Q_{p})$ and $f(Q_{p}(\alpha_{n})/Q_{p})=f(Q_{p}(\alpha_{n}^{\prime})/Q_{p})$ ,

for any $n\in N$ , where $e(./.)$ and $f$ (,/.) denote the mmification index and respectively
the inertial degree of the corresponding fidd extension.
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By Theorem 6 it follows that, given an element $t\in C_{p}$ which is transcendental
over $Q_{p}$ , the numbers
(2.7) $D_{n}$ $:=\deg\alpha_{n},$ $n\in N$ ,

(2.8) $E_{n}$ $:=e(Q_{p}(\alpha_{\mathfrak{n}})/Q_{p}),$ $n\in N$ ,

(2.9) $F_{\mathfrak{n}}$ $:=f(Q_{p}(\alpha_{\mathfrak{n}})/Q_{p}),$ $n\in N$ ,

(2.10) $\delta_{\mathfrak{n}}:=v(t-\alpha_{\mathfrak{n}}),$ $n\in N$ ,
and
(2.11) $\gamma_{n}:=v(f_{\mathfrak{n}}(\alpha_{\mathfrak{n}+1})),$ $n\in N$ ,
depend on $t$ only, and not on the particular choice of the distinguished sequence
$(\alpha_{\mathfrak{n}})_{n\in N}$ with $\lim_{\mathfrak{n}\rightarrow\infty}\alpha_{\mathfrak{n}}=t$ .

Let us fix now a transcendental element $t$ and a distinguished sequence $(\alpha_{\mathfrak{n}})_{n\in N}$

with $\lim_{n\rightarrow\infty}\alpha_{n}=t$ . For any $n\in N$ , let $f_{\mathfrak{n}}$ denote the monic minimal polynomial of
$\alpha_{\mathfrak{n}}$ over $Q_{p}$ , and let $D_{\mathfrak{n}}=\deg\alpha_{\mathfrak{n}}=\deg f_{n}$ . By Corollary 1 we know that $D_{\mathfrak{n}}$ divides
$D_{\mathfrak{n}+1}$ , for any $n\in N$ .

We will denote by $\mathcal{A}$ the set of sequences of nonnegative integers of the form $s=$
$(s_{0}, s_{1}, \ldots, s_{\mathfrak{n}}, \ldots)$ such that $s_{n}<D_{\mathfrak{n}+1}/D_{\mathfrak{n}}$ for any $n$ , and $s_{n}=0$ for all but finitely
many values of $n$ . On $\mathcal{A}$ we have a natural order, defined by

$s=(s_{0}, s_{1}, \ldots, s_{\mathfrak{n}}, \ldots)<s^{\prime}=(s_{0}^{\prime}, s_{1}^{\prime}, \ldots, s_{n}^{\prime}, ...)$

if there exists a natural number $m$ such that $s_{\mathfrak{n}}=s_{n}^{\prime}$ for any $n>m$ , and $s_{m}<$

$s_{m}^{\prime}$ . With respect to this order, $A$ becomes a well ordered set. To any $s=$
$(s_{0}, s_{1}, \ldots, s_{\mathfrak{n}}, \ldots)\in \mathcal{A}$ one associates the polynomial

$ H_{l}(X)=f_{0}^{s_{0}}(X)f_{1}^{s_{1}}(X)\cdots f_{n}^{s}\cdot(X)\cdots$

Denote by $q_{*}$ the integer part of the rational number $v(H_{l}(t))$ , and let

$ M_{l}(X)=\frac{H_{l}(X)}{\mu}.\cdot$

We consider the element$sM_{l}(t)\in C_{p}$ , for $s\in \mathcal{A}$, and arrange them in a sequence,
according to the order on $\mathcal{A}$ . In order to simplify the notation, we write the element$s$

of this sequence as $M_{0},$ $M_{1},$
$\ldots$ , $M_{\mathfrak{n}},$

$\ldots$ . Thus for any $n\geq 0,$ $M_{n}$ stands for that
element $M.(t)$ for which $s$ is the $(n+1)$ -th element of $\mathcal{A}$, according to the order
on $\mathcal{A}$. It is easy to see that for each $n\geq 0,$ $M_{\mathfrak{n}}$ is a polynomial of degree exactly $n$

in $t$ . Note also that $0\leq v(M_{\mathfrak{n}})<1$ , for any $n\in N$ .
If $(a_{n})_{n\in N}$ is a sequence in $Q_{p}$ such that $ v(a_{\mathfrak{n}})\rightarrow\infty$ , then the series $\sum_{\mathfrak{n}\in N}a_{n}M_{\mathfrak{n}}$

converges in $C_{p}$ . Let $\mathcal{H}(t)$ denote the set of elements of $C_{p}$ of the form $\sum_{\mathfrak{n}\in N}a_{n}M_{\mathfrak{n}}$ ,
where $(a_{\mathfrak{n}})_{\mathfrak{n}\in N}$ is a sequence in $Q_{p}$ which converges to $0$ .
Theorem 7. ([1], Proposition 6.1). $\mathcal{H}(t)$ is a subnng of $C_{p}$ . Moreover for any
$x=\sum_{\mathfrak{n}\in N}a_{\mathfrak{n}}M_{\mathfrak{n}}$ , where $(a_{\mathfrak{n}})_{n\in N}$ is a sequence in $Q_{p}$ which converges to $0$ , one has

$v(x)=\inf_{\mathfrak{n}\in N}(v(a_{n})+v(M_{\mathfrak{n}}))$ .
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Theorem 8. ([1], Proposition 6.2). For any element $t$ of $C_{p}$ , transcendental over
$Q_{p}$ , the ring $Q_{p}[t]$ and the field $Q_{p}(t)$ have the same topological closure in $C_{p}$ .

Theorem 9. ([1], Proposition 6.3). For any element $t$ of $C_{p}$ , transcendental over
$Q_{P^{f}}\mathcal{H}(t)$ coincides with the topological closure of $Q_{p}(t)$ in $C_{p}$ .

Theorems 7, 8 and 9 above show that for any element $t$ of $C_{p}$ , transcendental
over $Q_{p}$ , and any distinguished sequence $(\alpha_{n})_{n\in N}$ over $Q_{p}$ , with $\lim_{n\rightarrow\infty}\alpha_{n}=t$ , the
corresponding sequence $(M_{\mathfrak{n}})_{\mathfrak{n}\in N}$ forms an integral basis of the topological closure
of $Q_{p}(t)$ in $C_{p}$ , over $Q_{p}$ .

We also mention that for any complete subfield $E$ of $C_{p}$ , in particular for $C_{p}$

itself, there exists an element $t$ such that $Q_{p}(t)$ is dense in $E$ (see [6] and [2]).

3. A TRANSCENDENCE CRITERION OVER $Q_{p}$

Denote by $O_{Q_{p}}$ and $O_{C_{p}}$ the ring of integers of $\overline{Q}_{p}$ and respectively the ring of
integers of $C_{p}$ , thus $O_{Q_{p}}=\{x\in\overline{Q}_{p} : v(x)\geq 0\}$ and $O_{C_{p}}=\{x\in C_{p} : v(x)\geq 0\}$ .
We will prove the following theorem.

Theorem 10. Let $t\in O_{C_{p}},$ $t$ transcendental over $Q_{p}$ . Then, for any sequence
$(t_{n})_{n\in N}$ in $C_{p}$ utth $\lim_{\mathfrak{n}\rightarrow\infty}t_{n}=t$ , and any sequence of polynomials $(P_{n}(X))_{n\in N}$ in
$Z_{p}[X]$ , such that
(3.1) $\lim_{n\rightarrow\infty}P_{\mathfrak{n}}(t_{n})=0$ ,

we have
(3.2) $\lim_{n\rightarrow\infty}P_{n}^{\prime}(t_{n})=0$ .

By taking $t_{n}=t$ for any $n\in N$ , we obtain the following corollary.

Corollary 2. Let $t\in O_{C_{p}},$ $t$ transcendental over $Q_{p}$ . Then, for any sequence of
polynomids $(P_{n}(X))_{\mathfrak{n}\in N}$ in $Z_{p}[X]$ , such that
(3.3) $\lim_{\mathfrak{n}\rightarrow\infty}P_{n}(t)=0$ ,

we have
(3.4) $\lim_{n\rightarrow\infty}P_{n}^{\prime}(t)=0$ .

Note that this result fails for any $t\in O_{C_{p}}$ which is algebraic over $Q_{p}$ . Indeed,
if $t=\alpha\in O_{C_{p}}$ is algebraic over $Q_{p}$ , and if $f_{\alpha}(X)$ denotes the monic minimal
polynomial of $\alpha$ over $Q_{p}$ , then, if we let $P_{n}(X)=f_{a}(X)$ for any $n\in N$ , equality
(3.3) will be satisfied, while (3.4) will not hold true. Thus Corollary 2 characterizes
the elements $t\in O_{C_{p}}$ which are transcendental over $Q_{p}$ .

Corollary 3. Let $(\alpha_{n})_{\mathfrak{n}\in N}$ be a Cauchy sequence of elements in $O_{Q_{p}}$ , and for each
$n\in N$ let $f_{a_{\mathfrak{n}}}(X)$ denote the monic minimal polynomial of $\alpha_{\mathfrak{n}}$ over $Q_{p}$ . Assume that
either the sequence $(f_{\alpha_{\mathfrak{n}}}^{\prime}(\alpha_{n}))_{n\in N}$ is not a Cauchy sequence, or that this sequence is
Cauchy but it does not converge to $0$ . Then the limit $\lim_{n\rightarrow\infty}\alpha_{n}$ is an element of
$C_{p}$ which is algebraic over $Q_{p}$ .
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Corollary 3 follows immediately from Theorem 10. Indeed, let $t=\lim_{n\rightarrow\infty}\alpha_{n}$

$\in O_{C_{p}}$ , and assume that $t$ is transcendental over $Q_{p}$ . Then, by taking $t_{n}=\alpha_{n}$ and
$P_{n}(X)=f_{\alpha_{\mathfrak{n}}}(X)$ for any $n\in N$ in the statement of Theorem 10, the condition
(3.1) will be satisfied, while (3.2) will fail, by the assumptions from the statement
of Corollary 3.

Corollary 4. Let $t\in O_{C_{p}},$ $t$ tmnscendental over $Q_{p}$ , and let $(P_{n}(X))_{n\in N}$ be a
sequence of polynomials in $Z_{p}[X]$ such that the sequence $(P_{\mathfrak{n}}(t))_{n\in N}$ is convergent,
and its limit belongs to $\overline{Q}_{p}$ . Then $\lim_{\mathfrak{n}\rightarrow\infty}P_{\mathfrak{n}}^{\prime}(t)=0$ .

Proof of Corollary 4. Denote $\beta=\lim_{\mathfrak{n}\rightarrow\infty}P_{\mathfrak{n}}(t)\in\overline{Q}_{p}$ , and let $f_{\beta}(X)$ be the monic
minimal polynomial of $\beta$ over $Q_{p}$ . Then one has

(3.5) $0=f_{\beta}(\beta)=f_{\beta}(\lim_{\mathfrak{n}\rightarrow\infty}P_{\mathfrak{n}}(t))=\lim_{\mathfrak{n}\rightarrow\infty}f_{\beta}(P_{\mathfrak{n}}(t))$ .

By Corollary 2, with $P_{n}(X)$ replaced by $f_{\beta}(P_{n}(X))$ , it folows from (3.5) that

(3.6) $0=\lim_{\mathfrak{n}\rightarrow\infty}(f_{\beta}oP_{\mathfrak{n}})^{\prime}(t)=\lim_{\mathfrak{n}\rightarrow\infty}(f_{\beta}^{\prime}(P_{n}(t))\cdot P_{\mathfrak{n}}(t))$ .
Since

(3.7) $\lim_{\mathfrak{n}\rightarrow\infty}f_{\beta}^{\prime}(P_{n}(t))=f_{\beta}^{l}(\lim_{\mathfrak{n}\rightarrow\infty}P_{\mathfrak{n}}(t))=f_{\beta}^{\prime}(\beta)\neq 0$ ,

by (3.6) and (3.7) we obtain
$\lim_{\mathfrak{n}\rightarrow\infty}P_{n}^{l}(t)=0$ ,

which completes the proof of Corollary 4.
Proof of Theorem 10. The proof goes in three steps. The first step is to show that

Theorem 10 is implied by Corollary 2. The $s$econd step deals with the particular
case of Corollary 2 when the sequence $(P_{\mathfrak{n}}(X))_{n\in N}$ is a distinguished sequence of
polynomials associated to $t$ . In the third step we consider a general sequence of
polynomials $(P_{n}(X))_{\mathfrak{n}\in N}$ in $Z_{p}[X]$ with $\lim_{\mathfrak{n}\rightarrow\infty}P_{\mathfrak{n}}(t)=0$ , and complete the proof
of the theorem.

We now proceed with the first step. Assume that Corollary 2 holds true and prove
that Theorem 10 also holds true. Fix an element $t\in O_{C_{p}},$ $t$ transcendental over
$Q_{p}$ . Let $(t_{n})_{\mathfrak{n}\in N}$ be a $s$equence of element$s$ in $C_{p}$ with $\lim_{\mathfrak{n}\rightarrow\infty}t_{\mathfrak{n}}=t$ , and choose a
sequence of polynomials $(P_{n}(X))_{n\in N}$ in $Z_{p}[X]$ which satisfies (3.1). For each $n\in N$ ,
we write

$P_{n}(X)=a_{\mathfrak{n},0}X^{d_{n}}+a_{n,1}X^{d_{\mathfrak{n}}-1}+\cdots+a_{\mathfrak{n},d_{\mathfrak{n}}}$ ,
with $a_{\mathfrak{n},0},$ $a_{\mathfrak{n},1},$ $\ldots$ , $a_{\mathfrak{n},h}\in Z_{p},$ $a_{n,0}\neq 0$ . Note that $t_{\mathfrak{n}}\in O_{C_{p}}$ for $n$ large enough.
Since

$v(P_{\mathfrak{n}}(t_{n})-P_{n}(t))=v(\sum_{j=0}^{d_{\mathfrak{n}}-1}a_{\mathfrak{n}_{\dot{O}}}(t_{\mathfrak{n}}^{d_{\mathfrak{n}}-j}-t^{d_{*}-j}))$

$\geq\min_{0\leq j\leq d_{n}-1}(v(a_{n_{\dot{J}}})+v(t_{n^{n}}^{d-j}-t^{d_{\mathfrak{n}}-j}))\geq\min_{0\leq j\leq d_{n}-1}v(t_{n^{n}}^{d-j}-t^{d_{\mathfrak{n}}-j})\geq v(t_{\mathfrak{n}}-t)$ ,
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which tends to $\infty$ as $ n\rightarrow\infty$ , and since $P_{n}(t_{n})\rightarrow 0$ as $ n\rightarrow\infty$ , it follows that
$P_{n}(t)\rightarrow 0$ as $ n\rightarrow\infty$ . Then Corollary 2 implies that $P_{n}^{\prime}(t)\rightarrow 0$ as $ n\rightarrow\infty$ .
Combining this with the inequalities

$v(P_{n}^{l}(t_{n})-P_{n}^{\prime}(t))=v(\sum_{j=0}^{d_{n}-2}(d_{n}-j)a_{n,j}(t_{n}^{d_{n}-j-1}-t^{d_{\mathfrak{n}}-j-1}))$

$\geq\min_{0\leq j\leq d_{n}-2}(v(d_{n}-j)+v(a_{n,j})+v(t_{n}^{d_{n}-j-1}-t^{d_{\mathfrak{n}}-j-1}))\geq v(t_{\mathfrak{n}}-t)$ ,

we find that $P_{n}^{\prime}(t_{n})\rightarrow 0$ as $ n\rightarrow\infty$ . In conclusion Theorem 10 follows from Corollary
2.

In order to prove Corollary 2, let us fix a transcendental element $t\in O_{C_{p}}$ as
before, and let us first consider the particular case when $P_{n}(X)=f_{\alpha_{n}}(X)$ for any
$n\in N$ , where $(\alpha_{\mathfrak{n}})_{n\in N}$ is a distinguished sequence with $\lim_{n\rightarrow\infty}\alpha_{n}=t$ , and for each
$n,$ $f_{\alpha_{n}}(X)$ denotes the monic minimal polynomial of $\alpha_{n}$ over $Q_{p}$ . We need to show
that $f_{\alpha_{n}}^{\prime}(t)\rightarrow 0$ as $ n\rightarrow\infty$ . By an argument as above we know that
(3.8) $v(f_{\alpha_{n}}^{l}(t)-f_{\alpha_{\mathfrak{n}}}^{\prime}(\alpha_{n}))\geq v(t-\alpha_{n})$ ,

for any $ n\in$ N. If $\alpha_{n,1}=\alpha_{n},$ $\alpha_{n,2},$ $\ldots$ , $\alpha_{n,d_{n}}$ denote the conjugates of $\alpha_{n}$ over $Q_{p}$ ,
then, since $v(\alpha_{n}-\alpha_{\mathfrak{n}_{\dot{J}}})\geq 0$ for any $j$ , we see that

(3.9) $v(f_{\alpha_{\mathfrak{n}}}^{\prime}(\alpha_{n}))=v(\prod_{j=2}^{d_{n}}(\alpha_{n}-\alpha_{\mathfrak{n},j}))=\sum_{j=2}^{d_{n}}v(\alpha_{n}-\alpha_{n_{\dot{O}}})$

$\geq_{2}\max_{\leq j\leq d_{n}}v(\alpha_{n}-\alpha_{ni})$ .

Let $G=Gal_{con\ell}(C_{p}/Q_{p})$ , the group of continuous automorphisms of $C_{p}$ over $Q_{p}$ ,
which is canonically isomorphic to $Gal(\overline{Q}_{p}/Q_{p})$ . The map from $G$ to $C_{p}$ given by
$\sigma\vdash*\sigma(t)$ is continuous, and its image $C(t)=\{\sigma(t) : \sigma\in G\}$ is a compact subset
of $C_{p}$ . Fix an $\epsilon>0$ , and cover $C(t)$ with a finite union of balls of radius $\epsilon$ , say
$C(t)\subseteq\bigcup_{1\leq i<N_{e}}B_{i}$ . The element $t$ belongs to at least one of these balls, say $t\in B_{1}$ .
Then, for $a\overline{11}$ large $n,$ $\alpha_{n}$ will belong to $B_{1}$ . Note also that if $n$ is large enough so
that deg $\alpha_{\mathfrak{n}}>N_{\epsilon}$ , there will be two distinct conjugates of $\alpha_{n}$ , say $\alpha_{\mathfrak{n},r}$ and $\alpha_{n,s}$ ,
which belong to the same ball $B_{i}$ . Since any continuous automorphism of $C_{p}$ over
$Q_{p}$ is an isometry, if we choose $\sigma\in G$ such that $\sigma(\alpha_{n})=\alpha_{n,r}$ , then $\sigma^{-1}(\alpha_{n,s})$ is
a conjugate of $\alpha_{n}$ , distinct from $\alpha_{\mathfrak{n}}$ , which belongs to $B_{1}$ . By letting $\epsilon\rightarrow 0$ , and
choosing $n$ large enough in terms of $\epsilon$ , we deduce that the far right side of (3.9) goes
to $\infty$ as $ n\rightarrow\infty$ . Therefore $f_{\alpha_{n}}^{\prime}(\alpha_{n})\rightarrow 0$ as $ n\rightarrow\infty$ , and combining this with (3.8),
it follows that $f_{\mathfrak{a}_{n}}^{\prime}(t)\rightarrow 0$ as $ n\rightarrow\infty$ .

We now turn to the general case of Corollary 2. Fix a transcendental element
$t\in O_{C_{p}}$ as before, and let $(P_{k}(X))_{k\in N}$ be a sequence of polynomials in $Z_{p}[X]$ such
that $P_{k}(t)\rightarrow 0$ as $ k\rightarrow\infty$ . We need to show that $P_{k}^{l}(t)\rightarrow 0$ as $ k\rightarrow\infty$ . We know
from Theorem 5 that there exists a distinguished sequence $(\alpha_{\mathfrak{n}})_{\mathfrak{n}\in N}$ over $Q_{p}$ such
that $\lim_{\mathfrak{n}\rightarrow\infty}\alpha_{n}=t$ , and from Theorems 7, 8 and 9 we know that the corresponding
sequence $(M_{n})_{\mathfrak{n}\in N}$ forms an integral basis over $Q_{p}$ of the topological closure of $Q_{p}(t)$

in $C_{p}$ . Here for each $n\in N$ we denote by $f_{n}(X)$ the monic minimal polynomial of
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$\alpha_{n}$ . Then define, for $s\in \mathcal{A},$ $H_{8}(X),$ $q_{s},$ $M_{8}(X)$ , and arrange the elements $M_{s}(t)$ ,
$s\in A$ in a sequence $(M_{n})_{n\in N}$ , as in the previous section.

Next, we write each of the elements $P_{k}(t)$ in terms of this basis,

(3.10)
$P_{k}(t)=\sum_{*\in A}a_{k,\epsilon}M_{8}(t)$ .

Then

(3.11) $v(P_{k}(t))=\min_{\epsilon\in A}(v(a_{k,\epsilon})+v(M_{l}(t)))$ .

Let us note, as a consequence of (3.11) and of the inequality $v(M_{l}(t))<1$ , for any
$s\in \mathcal{A}$, that

(3.12) $v(a_{k,*})\geq v(P_{k}(t))-1$ ,

for any $s\in \mathcal{A}$.
Since $P_{k}(X)\in Z_{p}[X]$ , and since each of the polynomials $f_{j}(X),$ $j\in N$ , is monic,

with coefficients in $Z_{p}$ , which in tum implies that each polynomial $H_{l},$ $s\in \mathcal{A}$, is
monic, with coefficients in $Z_{p}$ , it is easy to see that each polynomial $P_{k}(X)$ has a
representation of the form

(3.13)
$P_{k}(X)=\sum_{\epsilon\in A}c_{k},{}_{\epsilon}H_{*}(X)$

,

with $c_{k,*}\in Z_{p}$ for any $s\in A$, and $c_{k,s}=0$ for any $s=(s_{0}, s_{1}, \ldots, s_{n}, \ldots)\in A$ for
which $\sum_{\mathfrak{n}\in N}s_{\mathfrak{n}}$ deg $f_{\mathfrak{n}}(X)>$ deg $P_{k}(X)$ . Thus, if $n_{k}$ is the largest positive integer
for which deg $f_{n_{h}}(X)\leq\deg P_{k}(X)$ , then any $s\in \mathcal{A}$ which appears with a nonzero
coefficient $c_{k,*}$ on the right side of (3.13), has the form $s=(s_{0}, s_{1}, \ldots, s_{n}, \ldots)$ , with
$s_{n}=0$ for $n>n_{k}$ . By (3.10), (3.13) and the definition of $H_{l}(X),$ $q_{*}$ and $M_{8}(X)$ , we
see that for any $s\in A,$ $q_{*}$ is a nonnegative integer and $a_{k,*}=p^{q}\cdot c_{k,\epsilon}$ .

Let us note that for any $m\in N$ , there exists an element $s(m)\in A$ such that any
$s\in \mathcal{A}$ with $s>s(m),$ $s=(s_{0}, s_{1}, \ldots, s_{n}, \ldots)$ , has at least one nonzero component
$s_{n}$ for which $n>m$ . Then, for each $s\in \mathcal{A}$ with $s>s(m),$ $H_{*}(X)$ will have at least
one factor of the form $f_{m+i}(X)$ , with $i\geq 1$ .

Let now $L$ be an arbitrary positive number, and choose a positive integer $m(L)$

such that for any $m>m(L)$ one has simultaneously that $v(f_{m}(t))>L$ and
$v(f_{m}^{\prime}(t))>L$ . Here for this last inequality one uses the second step in our proof,
which proved Corollary 2 in the particular case of a distinguished sequence of poly-
nomials associated to $t$ .

Next, we con$s$ider the finite set
$A_{1}=\{s\in \mathcal{A}:s\leq s(m(L))\}$ .

Let $q=\max\{q_{l} : s\in \mathcal{A}_{1}\}$ . Since $P_{k}(t)\rightarrow 0$ , there exists $k_{q}\in N$ , such that for any
$k>k_{q}$ , one has $v(P_{k}(t))>1+q+L$ . Then, using (3.12), we see that for any $k>k_{q}$

and any $s\in \mathcal{A}_{1}$ , one has

(3.14) $v(c_{k,*})=v(\frac{a_{k,\epsilon}}{p*})\geq v(P_{k}(t))-1-q>L$ .
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Let now $k>\max\{k_{q}, m(L)\}$ . By (3.13) we have

(3.15)
$P_{k}^{l}(t)=\sum_{s\in A_{1}}c_{k},{}_{s}H_{8}^{\prime}(t)+\sum_{\epsilon>s(m(L))}c_{k},{}_{s}H_{s}^{\prime}(t)$

.

Clearly $v(H_{8}^{\prime}(t))\geq 0$ for any $s\in \mathcal{A}$, since each polynomial $H_{s}(X)$ has coefficients in
$Z_{p}$ . Therefore, by (3.14), we find that

(3.16)
$v(\sum_{\in A_{1}}c_{k},{}_{s}H_{l}^{\prime}(t))\geq\min_{\epsilon\in A_{1}}v(c_{k,*})>L$ .

In order to deal with the second sum on the right side of (3.15), recall that each
coefficient $c_{k,s}$ belongs to $Z_{p}$ , hence

(3.17)
$v(\sum_{*>\iota(m(L))}c_{k},{}_{\epsilon}H_{l}^{\prime}(t))\geq\inf_{>\epsilon(m(L))}v(H_{l}^{\prime}(t))$ .

Let us also recall that for each $s>s(m(L))$ , the polynomial $H_{8}(X)$ factors as a
product of polynomials $f_{j}(X)$ , which appear with various multiplicities in $H_{8}(X)$ ,
but such that at least one factor has the form $f_{m(L)+:}(X)$ , with $i\geq 1$ . Therefore
$H_{8}^{\prime}(X)$ will equal a sum, in which each term is a product of factors of the form
$f_{j}(X)$ , and exactly one factor of the form $f_{j}^{\prime}(X)$ . All these factors are polynomials
with coefficients in $Z_{p}$ . Moreover, in each term as above, we have at least one factor
of the form $f_{m(L)+i}(X)$ , or of the form $f_{m(L)+i}^{\prime}(X)$ , with $i\geq 1$ . We deduce that for
any $s>s(m(L))$ ,
(3.18) $v(H_{*}^{\prime}(t))\geq\inf_{i\geq 1}\min\{v(f_{m(L)+i}(t)), v(f_{m(L)+i}^{\prime}(t))\}$ .

By our choice of $m(L)$ it follows that the right side of (3.18) is $\geq L$ . Using this
bound in (3.17), we obtain

(3.19)
$v(\sum_{*>*(m(L))}c_{k},{}_{\epsilon}H_{*}^{\prime}(t))\geq L$

.

${\rm Re} lations(3.15),$ $(3.16)$ and (3.19) imply that
(3.20) $v(P_{k}^{\prime}(t))\geq L$ ,
for any $k>\max\{k_{q}, m(L)\}$ . We now let $ L\rightarrow\infty$ , and then from (3.20) it follows
that $P_{k}^{\prime}(t)\rightarrow 0$ as $ k\rightarrow\infty$ . This completes the proof of the theorem.

We end the paper with an application, concerning elements $\beta\in O_{Q_{p}}$ for which
the differential $ d\beta$ vanishes. Let $K=Q_{p}^{ur}$ be the maximal unramified extension of
$Q_{p}$ in $\overline{Q}_{p}$ , and let $L$ be any algebraic (finite or infinite) extension of $K$ in $\overline{Q}_{p}$ , which
is not deeply ramified over $K$ . Consider the module $\Omega_{O_{L}/O_{K}}$ of differentials of $O_{L}$

over $O_{K}$ , where $O_{K}$ and $O_{L}$ denote the ring of integers in $K$ and $L$ respectively, and
let $d$ denote the canonical derivation $d:O_{L}\rightarrow\Omega_{O_{L}/O_{K}}$ . This map has various subtle
arithmetical properties (see for instance the Appendix of [5]). If $L/K$ is not deeply
ramified then $\Omega_{O_{L}/O_{K}}$ is annihilated by a suitable power of $p$ (see [7], Theorem 2.2).
In this case the above map $d$ is locally constant on $O_{L}$ , and hence it can be extended
by continuity to a map $d:O_{E}\rightarrow\Omega_{O_{L}/O_{K}}$ , where $E$ denotes the topological closure
of $L$ in $C_{p}$ , and $O_{E}$ denotes the ring of integers in $E$ .
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We remark in passing that if one replaces $L$ by the entire field $\overline{Q}_{p}$ , which is
deeply ramified over $K$ , then one can not extend the canonical derivation $ d:O_{\overline{Q}_{p}}\rightarrow$

$\Omega_{O_{Q_{p}}/O_{K}}$ by continuity, from $O_{Q_{p}}$ to $O_{C_{p}}$ .
Returning to our extension $L/K$ which is not deeply ramified, we know that

there exists an element $t\in O_{E},$ $t$ transcendental over $Q_{p}$ , such that the topological
closure of the ring $Q_{p}[t]$ in $C_{p}$ , coincides with $E$ . Therefore any element of $E$ , and
in particular any element of $L$ , is the limit of a sequence of the form $(P_{n}(t))_{n\in N}$ ,
where $P_{n}(X)\in Q_{p}[X]$ for any $n\in N$ . This does not mean, and in general it is not
true, that any element of $O_{E}$ is the limit of a sequence of the form $(P_{\mathfrak{n}}(t))_{\mathfrak{n}\in N}$ , with
$P_{\mathfrak{n}}(X)\in Z_{p}[X]$ for any $n\in N$ . Thus, if we take an element $t\in O_{B},$ $t$ transcendental
over $Q_{p}$ , and if we denote by $A_{\ell}$ the topological closure of the ring $Z_{p}[t]$ in $C_{p}$ , then
$A_{t}$ will be a closed subring of $C_{p}$ which in general will be strictly contained in $O_{E}$ .
Let $\beta$ be an element of $A_{\ell}$ which is algebraic over $Q_{p}$ . By Galois theory in $C_{p}$

(see [3], [13], [14]), we know that any algebraic element of $E$ belongs to $L$ . Thus
$\beta\in A_{\ell}\cap O_{L}$ . We claim that $\beta$ belongs to the kernel of the canonical derivation
$d:O_{L}\rightarrow\Omega_{O./O}.$ . Indeed, choose a sequence of polynomials $(P_{n}(X))_{\mathfrak{n}\in N}$ in $Z_{p}[X]$

such that $ P_{\mathfrak{n}}(t)\rightarrow\beta$ as $ n\rightarrow\infty$ . By the continuity of the map $d$ on $O_{E}$ , we have that
$ d(P_{n}(t))\rightarrow d\beta$ , as $ n\rightarrow\infty$ . Now, for each $n\in N$ we have $d(P_{\mathfrak{n}}(t))=P_{\mathfrak{n}}^{\prime}(t)dt$ . Since
the sequence $(P_{n}(t))_{n\in N}$ converges to $\beta$ , which is algebraic over $Q_{p}$ , by Corollary 4
it follows that $P_{n}^{l}(t)\rightarrow 0$ as $ n\rightarrow\infty$ . Therefore

$d\beta=\lim_{\mathfrak{n}\rightarrow\infty}d(P_{n}(t))=\lim_{n\rightarrow\infty}P_{\mathfrak{n}}^{\prime}(t)dt=0\cdot dt=0$ ,

which proves the claim. We have obtained the following result.

Corollary 5. Let $L$ be an algebraic extension of $K=Q_{p}^{ur},$ $L$ not deeply mmified
over K. Let $E$ be the topological dosure of $L$ in $C_{p}$ , let $t\in O_{E},$ $t$ transcendental
over $Q_{p}$ , and denote by $A_{\ell}$ the topological dosure of $Z_{p}[t]$ in $C_{p}$ . Then the ring
$A_{\ell}\cap O_{L}$ is contained in the kemel of the canonical derivation $d:O_{L}\rightarrow\Omega_{O_{L}/O_{K}}$ .
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