Nihonkai Math. J.
Vol.14(2003), 31-42

Extremals for families of plane
quasiconformal mappings

Shinji YAMASHITA

Abstract

Let #(K) be the family of K-quasiconformal mappings from the Riemann sphere
C# onto C#, which preserve reals, and moreover, which have three fixed points,
—1,0, and oo. For real t let A(K,t) and v(K,t) be the supremum and the infimum,
respectively, of the values f(¢) for f ranging over the family #(K). Among others
we shall express X(K,t) for X = A, v, in terms of extremals for various families of
K-quasiconformal self-mappings of C¥.

1 Introduction

Let 2 = 2(K) be the family of all the K-quasiconformal mappings from the Riemann
sphere C# = {|z| £ +o00} onto C#. Three families with the inclusion formulae & C ¢4 C
S are then defined by 5 = J#(K) ={ f € 2; f(0) =0, f(0) =0}; ¥ =¥(K)=
{fes? f(-1)=-1}y F=F(K)={fe€¥9; f(R) =R}, where R is the set of all
the real numbers, so that C = R? is the complex plane.

In [KY] we studied |

MK, t) = t d K,t)= inf t
(K9= sw fO) ad K= gt [0)

for t € R in detail. Since & (K) is normal, A(K,t) and v(K,t) are the maximum and the
 minimum, respectively. In particular, v(K,t) < t < MK, t) for all t € R and trivially,
X(K,t) =tfor X = \,v,and t = —1, 0, co; moreover, X (1,t) = t. Furthermore, v(K,t) >
0 for all t > 0. For a fixed K > 1 the function X(K,t) is increasing for t € R. For fixed

t > 0 the functions A(K,t) and v(K,t) are increasing and decreasing functions of K > 1,
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respectively. We shall sometimes write X (t) = X(K,t) for X = A, v, and t € R whenever
K > 1 is fixed.
Set

p(f,) =max|f(2)  end  q(f,t) = min|f(2)]

for f complex-valued and continuous on the circle {|z| =t}, ¢ > 0.

We begin with ¢, the family of the members of 2 with the fixed points, —1,0, and

Theorem 1. Fort >0,

(1.1) MK, t) = max, p(f,t) and v(K,t)= rgl(n)Q(f,t)

S. Agard [A, p. 10, (3.1)] claimed that A(K,t) = supjeg(x)P(f,t) for t > 1. More
precisely he wrote P3(a, K) = supscy+x) P(f, a) for a > 1, where 4*(K) is the family of

mappings —f(—z) for f € 4(K).
Our next theorem is concerned with J#.

Theorem 2. Forr >0 andt > 0,

p(f,tr) _ e alfytr)
(1.2) AK,t) = fexag() ) and v(K,t) = jin o)

The M\-part in (1.2) for ¢ = 1 is given in [LVV, Theorem 1]. Theorem 2 has two
corollaries which will be described in Section 3.

Let 2(K, D) be the family of all the K-quasiconformal mappings from a domain
D c C* into C#. One can therefore regard 2(K) = 2(K,C*) C 2(K, D). Let f be a
homeomorphism from D into C#. For t > 0 and D 3 z # oo # f(z), set

. axymer | F(C + 2) — £(2)]
A ‘f’z)‘l‘ﬂi‘é" ming— 1/ +2) — F(2)]°

minyg—er | f( + 2) — f(2)|
Ay (f,2) = llrlil)i%f max|¢|=r |f(C + Z) - f(z)l ’
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so that 0 < A7 (f,2) < A (f,z) < +oo. Let Y stand for A} or A;. In case D 5 z #
oo = f(z), define Y(f,2) = Y(1/f,2). In case oo € D, set g(¢) = f(1/¢), ¢ € D, and
define Y (f,00) = Y(g,0).

Our third result considers the family 2(K, D) the most restricted of which is 2(K).

Theorem 3. For a domain D C C# andt > 0,

1.3) MK,t)= sup AS(S, d v(K,t) = f A7(f,2) for all ze€ D.
(1.3) MK, t) fegugm (f,z) and v(K,t) feéf(‘xp) :(frz) for all =z

Hence the supremum and the infimum in (1.3) are independent of the particular choice
of a pair z, D with z € D. Theorem 3, actually, follows from Theorem 4 which will be
described later in Section 4. See also the Remark at the end of Section 4.

How about the results in Theorems 1-3 in case ¢t < 0?7 We have only to remember the
formulae A(t) = —1—v(~1—1t) and v(t) = =1 — A(—=1—t) for t € R, and further X (t) =
-1/{14+ X(-1~-1/¢t)} for X = A\ v and for t € R\ {0}; see [KY, Theorem 3.1].

For example, following are the consequences of (1.1).

Fort < —1,

A(K,t)=—-1- ,zin q(f,—1—1¢) and V(K t)=-1 —frer;%)p(f,—l —t);

and for —1 <t<0,

AK,t)=-1/ (1 + ,g;%}‘()f’(f’—l - l/t)) and v(K,t)=-1/ ( min p(f,—1— l/t)) .

fe4(K)
2 Proof of Theorem 1
The hyperbolic distance o(z, w) of z and w in C* = C\ {-1, 0} is given by the line integral

(2.1) o(ew) = [ " P(¢)lde]

along a geodesic from z to w, where the hyperbolic density P satisfies the differential
equation Alog P = 4P? in C*. |

Supposing t > 0 we first prove A(t) 2 p(f,t) and q(f,t) = v(t) for f € 4. We begin
with the A-part. Since ¢t < A(t) it suffices to prove that |f(¢)| < A(¢) for ¢ € {|¢| = t}
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and for f € ¢4 under the condition that ¢ < |f({)|. Recall the Teichmiiller theorem [LVV,

p. 6] which says, in our terms, that
(2.2) o(w, g(w)) < log VK

for all w € C* and all g € ¥, see [KY, Section 4] also. On the other hand,

t A(t)
(2.3) P(z)dz = / P(z)dz =logVK, z€cR,;
v(t) t

see [KY, Section 4]. Consequently, (2.2) for w = { and g = f yields that

At)
(2.9) / P(z)dz > o(C, £(¢).

Since P(Jw|) <P(w), w € C*, by [LVV, p. 6, Lemma), where p(—w) = P(w), it follows
that
3{(9]

1£(I
(25) oG5 = [ Pl > [ Pyas,
t
which, combined with (2.4), shows that A(t) > |f(¢)|- Hence A(¢t) > p(f,1).
To prove the inequality v(t) < q(f,t) for f € ¢, we may suppose that |f(¢)] < ¢ for

[¢] = t, so that we have, this time,

t

< t
P(z)dz < / P(w)ldw| = o(¢, (0)) < / P(z)dz.
1F(O) §i(9) v(t)

Hence |£(O)] 3 v(2).

For t € R we have f; € & and f, € & such that fi(t) = v(t) and fo(t) = A(2);
see [KY, Theorem 1.1). Hence, v(t) 2 q(fi,t) and A(t) < p(fe,t) for t > 0, so that
v(t) = q(f1,t) and A(t) = p(f2,t). These equalities complete the proof of (1.1).

3 Proof of Theorem 2 and asymptotic behavior
For the proof of p(f,tr)/q(f,r) < A(t) for f € 5 we choose a and b such that
(3.1) la| =tr with |f(a)] =p(f,tr); bl =7 with [f(b)] = q(f,7).

Set g(z) = —f(—bz)/f(b) for z € C*¥. Then g € 4 and |g(—a/b)| = p(f,tr)/q(f,r). Since
|g(—a/b)| < A(t) by Theorem 1 with | — a/b| = t, the requested inequality follows.

For the proof of v(t) < q(f,tr)/p(f,r) we replace the pair p,q with the pair ¢,p in
(3.1), and apply the v-part in (1.1).

— 34 —



To prove the maximality for A, we choose f € % with f(t) = A(t) and set g(z) =
—f(—z/r), so that g € 2 and q(g,7) < 1 by g(r) = 1. Since p(g,tr) = p(f,¢) = f(t) =
A(t), it follows that p(g,tr)/q(g,7) = A(t), whence p(g,tr)/q(g,7) = A(t).

The proof of the minimality for v is now obvious.

Corollary 1 to Theorem 2 Suppose that f : C — C is K-quasiconformal with
f(C)=C. Then for z€ C, w e C\ {2} and ¢ € C\ {2},

(—=z

w—2z

(—=z

w—2z

62 v(k, ) 1w - 5 <150 - 1@ <A (5 |[E22 ) 176w - @)

Proof. The function g(n) = f(n+2)— f(z) of n € C is K-quasiconformal with g(C) =
C, so that, by defining g(oo) = oo, one observes that g € JZ. Set v = (¢ — 2)/(w — 2).
Then, for 7, = y(w — 2) = { — 2, one has |n,| = tr wheret =|y| >0 and r = |w — 2| > 0.

The following are consequences of (1.2).

17(¢) = f(2)] = lg(mo)| < plg, tr)

< MK 1)a(g, 1) < MK, Dlg(w — 2)| = MK, )| f(w) - f(2)];
I£(Q) = f(2)| = lg(mo)| > alg, tr)

2 v(K,t)p(g,7) 2 v(K, t)lg(w — 2)| = v(K, )| f(w) — f(2)]-

As an application of (3.2) let 0 < a < b < +oo and let
alw—2| < |¢ — 2| < bjw — 2|.
Then

(33) v(K,a)|f(w) - f(2)] < 1£(Q) — f(2)| < MK, b)|f(w) — £(2)].

Actually this is trivial in case z = w, so that ( = z = w. In case z # w, one observes that
¢ # z, so that (3.3) follows from (3.2).
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Remark. The A-part in (3.2) for [( — 2|/|Jw — z| > 1 is observed in [A]. The case
K =1 in (3.2) is trivial because f is linear, f(z) =az+b, a # 0.

It follows from the local 1/K-Holder-continuity in terms of the spherical distance on
C# of f € 2(K) described in [LV, p. 71] that if f is a K-quasiconformal mapping from
C onto C, then

: f(w) - f(z
(3.4) luil_sgp | 'SU )_ z|1/(K)| < 400
for z € C and
1/K
lim sup [l

ool [fw)] = T

Since we may replace f with its inverse in the last, it follows that

(3.5) lim sup 1@ < 400
w00 I'wl
For later use we need two examples f; and f, of K-quasiconformal mappings from C
onto C. Set f;(w) = KRew +iImw for K > 1. Then, since |f,(w)|/|w]|"/* > |w|*~V¥ it

follows that

(3.6) lim A = +00

w—oo |w|1/K

Next, set fo(w) = (w — 2)|w — 2|/%~! for K > 1. Then

- ACT,

Corollary 2 to Theorem 2. Suppose that f : C — C is K-quasiconformal with
f(C) =C. Then for z € C,

. |f(w) = f(2)] k-1 ¢ | f (W) = f(2)]
< .
(3.8) h’f,‘f}}p |lw—2z|K 16 hgl»l;lzlf PEYLE
. | f(w) — f(2)] 1-1/K yi |f(w) = f(2)I
< .
(3.9) lu,f,l_s,‘:p |lw— 2|V& 16 hwm.}?f |w — 2|V/K
Furthermore,
. |f (w)| K-17: ¢ [ (W)l
< .
(3.10) hgifogp ik S 16 %g.}f Wk
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(3.11) lim sup l_f_(w_)l < 161"YE lim inf li(_w_)_l

w—o0 |'LU'1/K w300 Iw'l/K'

The (inferior) limit in (3.8) may be +o0 as (3.7) shows, whereas the (inferior) limit in
(3.11) may be +o0; see (3.6).

Proof of (3.8)-(3.11). Inequalities (3.8) and (3.10) follow from (3.9) and (3.11),
respectively. For the proof just consider the inverse of f which is K-quasiconformal again.
For the proof of (3.9) we recall [KY, (6.24)] to obtain
(3.12) lim t~V¥)\(K,t) = 16'"VK,
t—+400 )

Set t = |¢ — z|/|w — 2| in the A-part in (3.2). Then

t_l/Klf(Q — f(2)| € t-l(K)\(K,t)lf(w) — f(2)],

whence

1£(Q) = F(2)| _ - |f(w) — £(2)]
(3.13) ——IZ—_—zP/—K— <t VEXK,t) - oo — 2K
Let ¢ — 2, so that ¢t = 0. Then
(3.14) . lir?j;up ———lfi(ccz_—zlf/(;) | < 161-VK lflgf)_-;l‘f/(;)l

Hence (3.9) follows from (3.14).

To prove (3.11) we set g({) = 1/(f(1/() - f(O)) for ¢ # 0 and g(0) = 0. Then g is
K-quasiconformal from C onto C, so that, one may apply (3.9) to g and to z = 0. Then

: Jw|/% lg(w)]
3.15 limsup ———— = limsup ——=% <
(3.15) o @)~ a0 Jwl7E S
/K
1-1/K 33 lg(w)] _ 1@l-1/K ;. lw|!
16 1151_}1(1)1f ————lel/K =16 hwnlgf 7o)

Hence (3.11) follows on taking the reciprocal in the first and in the last in (3.15).
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4 Theorem 4 and Proof of Theorem 3

A Jordan domain Q = Q(a,b,c,d) C C* with four distinct points, a,b,c, and d on its
boundary curve in the positive order can be mapped by a conformal maping, or a univalent
and meromorphic function, ¢, which is said to be canonical, onto the the interior of the
rectangle with the vertices ¢(a) = 0, ¢(b) = M(Q) > 0, ¢(c) = M(Q) + i, and ¢(d) = i,
where the homeomorphic extension of ¢ to the closure @ of Q is again denoted by ¢. Then
M(Q) is uniquely determined by Q. Let f be a sense-preserving homeomorphism from a
domain D C C# into C#. We then denote f(Q) = f(Q)(f(a), f(b), f(c), f(d)) for Q =
Q(a,b,c,d) with Q C D. Let U(z) C D be an open disk of center z € D and set

_ M(f(Q))
ANV = e @)

We shall be concerned with
wlf,2) = v w(f,U().

Then 0 € w(f,2) < +oo. Note that w(f,2) is a ‘local’ quantity and does not depend
on D as far as f is defined near z. More precisely, let U,(z) = {w; lw — 2| < r} C D.
Then w(f, 2) = lim,ow(f,U.(2)). If f € 2(K, D), then w(f,2) < K at each z € D.
Set Q(f, z) = max(w(f, z), 1).

Theorem 4. For a domain D C C#,t > 0, z € D, and for f € 2(K, D), one has
(4.1) AF(f,2) S MQ(f,2),t) and A (f,z) 2 v(/,2),1).

The inequalities in (4.1) are sharp: Givent > 0, z € D, and € > 0, there ezist fy and
fo of 2(K) C 2(K, D) such that Q(fx,2) = w(fa,2) = QUfo,2) = w(f,,2z) = K and
furthermore,

(4.2) Af(fr,2) > MK t) —e and A7 (fi,2) <v(K,t) +e.

The A-part in the case t = 1 is a generalization of [LVV, Theorem 2] in which D = C#.
Our Theorem 3 is now an immediate consequence of Theorem 4 with A(Q(f, 2),t) <
A(K,t) and v(Q(f, 2),t) = v(K,t) for f € 2(K, D).



Proof of Theorem 4. First we recall A(t) = 1/v(1/t) and v(t) = 1/A(1/t) for
t € R\ {0}; see [KY, Theorem 3.1]. The v-part in (4.1) immediately follows from the
A-part in (4.1). In fact.

Ay (f,2) = 1/A7,(f,2) 2 1/MQUS, 2),1/t) = v(Q(S, 2), 1).

To prove the A-part in (4.1) we may suppose that z # oo # f(z) for a fixed f €
2(K, D). For € > 0 we have U = {(; |¢ — 2| < p} C D such that w(f,U) < w(f,z) +¢
< Qf,z)+e = K. Set ¢(¢) = p{ + 2z, ¢ € C#, and choose a conformal mapping
¥ from f(U) onto the disk § = {¢;[|¢| < 1} so that ¥(f(z)) = 0. By reflexion the
composed mapping ¥ o f o ¢ from § onto §, which is K’-quasiconformal, can be extended
K'-quasiconformally to the whole C# in the standard manner [L, p. 16|, so that the
resulting function f* is in J#(K’). It then follows from Theorem 2 that

Af (Yo fo¢,0) = Af(f,0) < MK',2).

On the other hand, setting 8 = |¢’(f(2))|, one observes that

AFGho fod,0) 8Xigjmtpr |0 © F(C + 2) — W 0 £(2)]
(4o f04,0)=limsup 7 Mty % © F(C + 2) — P 0 F(2)]

At (o _ 1 Bmaxyj=r | f(¢ + 2) — f(2)|
=AfWefi2) = limeup S T2 = ()]

Hence A (f,2z) < MK',t). Since € > 0 is arbitrary, and since the function A(K",t) of

= A/ (f,2).

K" > 1 is continuous, we have the A-part in (4.1).

To prove the A -part in (4.2) we shall find a sequence {ry}2,, with 0 < r \, 0, and
a function @ € ¥(K) such that w(®,0) = K and
(P, try)
q(®,7)
Once (4.3) is established, it follows that A} (®,0) > A(¢) — ¢, so that we have only to set
Q) =2(¢—2), { € C*.

‘There exists F' € #(K) with F(t) = A(t). Let us recall the detailed construction of F
described in the proof of [KY, Theorem 1.1]. The upper half-plane H = H(0, z, 00, —1) for
z > 0 admits a canonical mapping ¢, with ¢.(z) = M(z) = (2/7)u(1/+/1+ ), where u(r)
is the modulus (= module in) [L, p. 11] of the Grotzsch ring domain § \ [0,7], 0 < r < 1.
Set K = M(A(t))/M(t), so that K > 1 by A(t) > t. Then the reflection F' of ¢,\(t) oVod,

(4.3) >At)—¢€/2 for k=1,2,..
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with respect to the real axis is the requested, where ¥({) = K Re( + iIm( satisfies
w(¥,¢) = K for all ( € C. Hence w(F,0) = K and F € & (K). Since KM(t) = M(A(t))
we have F(t) = A(t).

The image F(A,) of the ring domain A, = {{;1/n < |{| < n} for a natural number
n > max(l + t,1 + 1/t) can be mapped onto a ring domain B, = {(;a. < [¢| < b,},
0 < a, <1 < b,, by a conformal mapping h,, with h,(—1) = —1. Actually, let M, be the
modulus (= module in) [L. p. 10] of F(A,) so that we have a conformal mapping 7 from
F(A,) onto the ring domain {¢; 1 < |{| < e} with 7(—1) < 0. Set a, = —1/7(—1) and
b, = —eM» /7(—1). Then h, = —7/7(~1) is the requested.

For each fixed n > max(1+t,1+1/t) the K-quasiconformal mapping h,oF : A, — B,
can then be extended to the whole C# by repetition of the reflections, so that the resulting
function g, is in 4. Hence gn(—1) = h, 0 F(—1) = —1 and gn(t) = hn o F(t) = ha(A(2)).
By reflecting v2k times internally, every point { € A, is mapped to n~**(, so that

(4.4) 9n(n™*C) = (an/bn)*gn(C)-

Hence, for k = 1,2, ...,

4(gn, ™) < (an/ba)*|gn(=1)| = (an/ba)*

and

P(gn, tn™) > (an/ba)*1gn (2],
so that
(45) PUOn 07 5 1g,@)] = Iha A

q(gn, n™%)

Since ¢ is normal in C# in terms of the spherical distance by [L, p. 14, Theorem 2.1]
we have a subsequence of {g,}, which we denote again by {g,} for simplicity, and which
converges to g € ¢ in the Euclidean distance on each open disk (of finite radius) in C;
see [L, p. 15, Theorem 2.3].

Since h, = gp o F~! maps F(A,) conformally onto B,, it is conformal for some n
onwards in every open disk in C \ {0}. Consequently, the limiting function h of {h,} is a
conformal mapping from C \ {0} onto C \ {0}. We can then extend h to C# by setting
h(0) = 0 and h(oo) = oo. Since h({) = ¢ for ¢ € {—1,0,00}, h must be the identity.
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For € > 0 we have an N such that |hn(A(2))] > A(t) — /2. Hence (4.3) follows from
(4.5) on setting ® = gy and 7, = N~* k= 1,2, .... Apparently, w(gn,0) = w(F,0) = K.

For the v-part in (4.2) let 0 < &’ < 1/v(t) — 1/(v(t) + €) and let f, be the function
for the A-part, this time, for ¢’ and 1/t instead of € and ¢. Then f, = f) is the requested
because Ay (fx, z) = 1/A7,,(fx, 2) and v(t) = 1/A(1/t).

Remark. Let us consider the meaning of Y(f, z) for Y = A* , A~, and for a home-
omorphism f from D C C# into C, which is differentiable at z € D \ {c0}, and which
satisfies |0 f(z)| > |0f(2)|. Then,

vt gy = HOF@I+ B _ oy
SR i v yToe T oS TR A

L 05 - B))
AR = 55 T B @)

where 8f = (f, —if,)/2, Of = (f=+if,)/2, and D; = (|0f| + |8f|)/(10f] — |8f)|) is the
dilatation quotient [L, p. 19]. |

= t/Ds(2),
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