Harmonic Foliations on a Complete Riemannian Manifold

S.D. Jung, T.H. Kang, B.H. Kim, H.K. Pak and J.S. Pak

Abstract. Let \mathcal{F} be a Riemannian foliation with finite energy on a manifold (M, g_{M}) with a complete bundle-like metric g_{M}. Assume that the Ricci curvature is non-negative and the transversal scalar curvature is non-positive. If \mathcal{F} is harmonic, then \mathcal{F} is totally geodesic.

0 Introduction

A foliation \mathcal{F} on a manifold M is harmonic, if the canonical projection $\pi: T M \rightarrow Q$ of the tangent bundle to the normal bundle $Q=T M / L$ is a harmonic Q-valued 1 -form ($[2,3]$). For this one needs the connection ∇^{\prime} defined by (3.10) in Q, and a Riemannian metric g_{M} in M.

A rich variety of harmonic foliations were discussed in [2]. It is wellknown that \mathcal{F} is harmonic if and only if all leaves of \mathcal{F} are minimal submanifolds of M ([2]).

On the other hand, if \mathcal{F} is Riemannian, i.e., if there exists a holonomy invariant metric g_{Q} on Q, there is a unique metric and torsion-free connection ∇ in $Q([2])$.

In 1984, F.W.Kamber and Ph.Tondeur([3]) studied the interplay of the harmonicity property with the curvature of the Riemannian metric g_{M} and the curvature of the connection ∇, which is metric and trosion-free with respect to the holonomy invariant metric g_{Q} on Q. Namely, let \mathcal{F} be a Riemannian foliation on a closed oriented manifold M. Let g_{M} be a Riemannian metric on M with non-negative Ricci curvature and assume the

[^0]normal sectional curvature K_{∇} of g_{Q} to be non-positive. If π is a harmonic form, then each leaf is a totally geodesic submanifold of M.

In this paper, we extend several results of Kamber and Tondeur([3]) to the case of complete manifolds.

The paper is organized as follows. In section 1, we review the known facts on a vector bundle. In section 2, we study the cut off functions, which is main tools for our research in complete manifolds. In section 3, we give some results when \mathcal{F} is a Riemannian foliation on a complete manifold (M, g_{M}) with holonomy invariant metric g_{Q} (g_{M} is not assumed to be bundle-like). With respect to $\nabla, " \pi: T M \rightarrow Q$ is harmonic" does not mean that \mathcal{F} is harmonic, i.e., all leaves of \mathcal{F} are minimal submanifolds of $\left(M, g_{M}\right)$. On the other hand, if g_{M} is a bundle-like metric and the holonomy invariant metric g_{Q} is induced from g_{M}, then the unique metric and torsion-free connection ∇ is given by (3.10), and then " π is harmonic" means that \mathcal{F} is harmonic.

On the other hand, the tension field τ plays an important role in studying a foliation on a Riemannian manifold with bundle-like metric. When a foliation is minimal, i.e., $\tau=0$, many results are obtained. An apparent weakening of the condition of the vanishing tension field $\tau \in \Gamma Q$ would be to require $\nabla \tau=0$. But this parallel condition of τ is meaningless because $\nabla \tau=0$ implies $\tau=0$ on a compact manifold([2]). In appendix, we prove that the parallel condition $\nabla \tau=0$ is also meaningless on complete manifolds.

The main tools we use are the Weitzenböck formulas and cut off functions.

1 Preliminaries

We review some basic facts on a vector bundle ([4]). Let $E \rightarrow M$ be a smooth Riemannian vector bundle over a Riemannian manifold M, i.e., E is a vector bundle over M and there is a C^{∞}-assignment of an inner product $<\cdot,>$ to each fiber E_{x} of E over $x \in M$. Let $A^{r}(E)$ be the space of E valued r-forms over M. We assume a (metric) connection ∇ is given in E, i.e., $\nabla: A^{0}(E) \rightarrow A^{1}(E)$ is an \mathbb{R}-linear map such that $\nabla(f s)=f \nabla s+s d f$, $f \in A^{0}(M), s \in \Gamma(E)$ and such that

$$
\begin{equation*}
\left.X<s_{1}, s_{2}\right\rangle=\left\langle\nabla_{X} s_{1}, s_{2}\right\rangle+\left\langle s_{1}, \nabla_{X} s_{2}\right\rangle \tag{1.1}
\end{equation*}
$$

for any $X \in T M$ and $s_{1}, s_{2} \in A^{0}(E)$. By the usual algebraic formalism, $\nabla: A^{0}(E) \rightarrow A^{1}(E)$ can be extended to an anti-derivation

$$
d_{\nabla}: A^{r}(E) \rightarrow A^{r+1}(E)
$$

by the following rule: if $\sum_{a} s_{a} \eta^{a} \in A^{r}(E)$, then

$$
\begin{equation*}
d_{\nabla}\left(s_{a} \eta^{a}\right)=\nabla s_{a} \wedge \eta^{a}+s_{a}\left(d \eta^{a}\right) \tag{1.2}
\end{equation*}
$$

for $s_{a} \in \Gamma(E), \eta^{a} \in A^{r}(M)$. For a Riemannian matric g_{M} on M, we extend the star operator $*: A^{r}(M) \rightarrow A^{n-r}(M)(n=\operatorname{dim} M)$ to $*: A^{r}(E) \rightarrow$ $A^{n-r}(E)$ as follows: If $s \in \Gamma(E)$ and $\eta \in A^{r}(E)$, then $*(s \eta)=s(* \eta)$. Moreover the operator $d_{\nabla}^{*}: A^{r}(E) \rightarrow A^{r-1}(E)$ given by

$$
\begin{equation*}
d_{\nabla}^{*} \phi=(-1)^{n(r+1)+1} * d_{\nabla} * \phi, \quad \phi \in A^{r}(E) \tag{1.3}
\end{equation*}
$$

is the formal adjoint of d_{∇} with respect to a suitable inner product induced from $<,>$ and g_{M}. The Laplacian Δ for $A^{*}(E)$ is given by

$$
\begin{equation*}
\Delta=d_{\nabla} d_{\nabla}^{*}+d_{\nabla}^{*} d_{\nabla} \tag{1.4}
\end{equation*}
$$

Let e_{1}, \cdots, e_{n} be an orthonormal basis of $T_{x} M$ and E_{1}, \cdots, E_{n} a local framing of $T M$ in a neighborhood of x, coinciding with e_{1}, \cdots, e_{n} at x and satisfying $\nabla_{e_{\alpha}}^{M} E_{\beta}=\left(\nabla_{E_{\alpha}}^{M} E_{\beta}\right)_{x}=0(\alpha, \beta=1, \cdots, n)$, where ∇^{M} denotes the Riemannian connection of $\left(M, g_{M}\right)$. Let ω^{α} be the dual coframe field of e_{α}. Then on $A^{*}(E)$ we have

$$
\begin{equation*}
d_{\nabla}=\sum \omega^{\alpha} \wedge \tilde{\nabla}_{e_{\alpha}}, \quad d_{\nabla}^{*}=-\sum i\left(e_{\alpha}\right) \tilde{\nabla}_{e_{\alpha}} \tag{1.5}
\end{equation*}
$$

where $\tilde{\nabla}_{X}(s \eta)=\left(\nabla_{X} s\right) \eta+s\left(\nabla_{X}^{M} \eta\right)$ and $i(X)(s \eta)=s[i(X) \eta]$ for $s \in$ $\Gamma(E), \eta \in A^{*}(M)$. From these, we obtain the following Weitzenböck formula: for any $\phi \in A^{1}(E)$,

$$
\begin{equation*}
\Delta \phi=-\sum \tilde{\nabla}_{e_{\alpha}} \tilde{\nabla}_{E_{\alpha}} \phi+S(\phi)_{x} \tag{1.6}
\end{equation*}
$$

where $S(\phi)_{x}(X)$ is defined by

$$
\begin{equation*}
S(\phi)_{x}(X)=\sum\left\{R^{E}\left(e_{\alpha}, X\right) \phi\left(e_{\alpha}\right)-\phi\left(R^{M}\left(e_{\alpha}, X\right) e_{\alpha}\right)\right\} \tag{1.7}
\end{equation*}
$$

Here R^{E} denotes the curvature of the connection ∇ in E and R^{M} the curvature of the Riemannian connection ∇^{M} in $T M$. Formula (1.6) yields then the following "scalar" Weizenböck formula

$$
\begin{equation*}
-\frac{1}{2} \Delta^{M}|\phi|^{2}=|\tilde{\nabla} \phi|^{2}-<\Delta \phi, \phi>+\langle S(\phi), \phi\rangle \tag{1.8}
\end{equation*}
$$

where Δ^{M} is the ordinary Laplacian $d^{*} d$ on functions on M and $|\phi|^{2}=<$ $\phi, \phi>$ is given by $|\phi|_{x}^{2}=\sum<\phi\left(e_{\alpha}\right), \phi\left(e_{\alpha}\right)>$. The first term on the right hand side of (1.8) is given by

$$
|\tilde{\nabla} \phi|_{x}^{2}=\sum<\tilde{\nabla}_{e_{\alpha}} \phi, \tilde{\nabla}_{e_{\alpha}} \phi>
$$

Now we define the global scalar product $\ll \cdot, \cdot \gg$ by

$$
\begin{equation*}
\ll \phi, \psi \gg=\int_{M}<\phi, \psi>\quad \text { for } \phi, \psi \in A^{*}(E) . \tag{1.9}
\end{equation*}
$$

Let $A_{0}^{r}(E)$ be the subspace of $A^{r}(E)$ with compact supports and $L_{2}^{r}(E)$ the completion of $A_{0}^{r}(E)$ with respect to the global scalar product \ll, \gg. Then we have

$$
\ll d_{\nabla} \phi, \psi \gg=\ll \phi, d_{\nabla}^{*} \psi \gg
$$

for any $\phi \in A_{0}^{r}(E)$ and $\psi \in A_{0}^{r+1}(E)$.

2 Cut off functions

Let x_{0} be a point of M and fix it. For each point $y \in M$, we denote by $\rho(y)$ the geodesic distance from x_{0} to y. Let $B(\ell)=\{y \in M \mid \rho(y)<\ell\}$ for $\ell>0$. Then there exists a Lipschitz continuous function ω_{ℓ} on M satisfying the following properties:

$$
\begin{align*}
& 0 \leq \omega_{\ell}(y) \leq 1 \quad \text { for any } y \in M \\
& \operatorname{supp} \omega_{\ell} \subset B(2 \ell) \\
& \omega_{\ell}(y)=1 \text { for any } y \in B(\ell) \tag{2.1}\\
& \lim _{\ell \rightarrow \infty} \omega_{\ell}=1, \\
& \left|d \omega_{\ell}\right| \leq \frac{C}{\ell} \quad \text { almost everywhere on } M
\end{align*}
$$

where $C(>0)$ is a constant independent of $\ell([1])$. Then we have

Lemma 2.1 ([1]) For any $\phi \in A^{r}(E)$, there exists a positive constant A independent of ℓ such that

$$
\begin{gathered}
\left\|d \omega_{\ell} \wedge \phi\right\|_{B(2 \ell)}^{2} \leq \frac{A}{\ell^{2}}\|\phi\|_{B(2 \ell)}^{2} \\
\left\|d \omega_{\ell} \wedge * \phi\right\|_{B(2 \ell)}^{2} \leq \frac{A}{\ell^{2}}\|\phi\|_{B(2 \ell)}^{2}
\end{gathered}
$$

where $\|\phi\|_{B(2 \ell)}^{2}=\int_{B(2 \ell)}\langle\phi, \phi\rangle$.
Now, we remark that, for $\phi \in L_{2}^{r}(E) \cap A^{r}(E), \omega_{\ell} \phi$ has compact support and $\omega_{\ell} \phi \rightarrow \phi(\ell \rightarrow \infty)$ in the strong sense. From (1.2) and (1.3), we have

$$
\begin{align*}
& d_{\nabla}\left(\omega_{\ell}^{2} \phi\right)=\omega_{\ell}^{2} d_{\nabla} \phi+2 \omega_{\ell} d \omega_{\ell} \wedge \phi, \tag{2.2}\\
& d_{\nabla}^{*}\left(\omega_{\ell}^{2} \phi\right)=\omega_{\ell}^{2} d_{\nabla}^{*} \phi-*\left(2 \omega_{\ell} d \omega_{\ell} \wedge * \phi\right)
\end{align*}
$$

for any $\phi \in A^{r}(E)$. By using the inequality $|\langle a, b\rangle| \leq \frac{1}{t}|a|^{2}+t|b|^{2}$ for any positive real number t, we have

$$
\left|\ll \omega_{\ell} d_{\nabla}^{*} \phi, *\left(d \omega_{\ell} \wedge * \phi\right) \gg_{B(2 \ell)}\right| \leq \frac{1}{4}\left\|\omega_{\ell} d_{\nabla}^{*} \phi\right\|_{B(2 \ell)}^{2}+4\left\|*\left(d \omega_{\ell} \wedge * \phi\right)\right\|_{B(2 \ell)}^{2} .
$$

From Lemma 2.1, we have

$$
\begin{equation*}
\left|\ll \omega_{\ell} d_{\nabla}^{*} \phi, *\left(d \omega_{\ell} \wedge * \phi\right)>_{B(2 \ell)}\right| \leq \frac{1}{4}\left\|\omega_{\ell} d_{\nabla}^{*} \phi\right\|_{B(2 \ell)}^{2}+\frac{4 A}{\ell^{2}}\|\phi\|_{B(2 \ell)}^{2} \tag{2.3}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\left|\ll \omega_{\ell} \tilde{\nabla} \phi, d \omega_{\ell} \wedge \phi>_{B(2 \ell)}\right| \leq \frac{1}{4}\left\|\omega_{\ell} \tilde{\nabla} \phi\right\|_{B(2 \ell)}^{2}+\frac{4 A}{\ell^{2}}\|\phi\|_{B(2 \ell)}^{2} \tag{2.4}
\end{equation*}
$$

3 Harmonicity of foliations

Let $L \subset T M$ be an integrable subbundle defining a foliation \mathcal{F} and $Q=$ $T M / L$ the normal bundle of \mathcal{F}. Since \mathcal{F} is Riemannian, there exist a holonomy invariant metric g_{Q} on Q and a unique metric and torsion free
connection ∇ in $Q([2])$. A Riemannian metric g_{M} on M defines a splitting σ of the exact sequence

$$
\begin{equation*}
0 \longrightarrow L \longrightarrow T M \stackrel{\pi}{\stackrel{\pi}{\sigma}} Q \longrightarrow 0 \tag{3.1}
\end{equation*}
$$

where $\sigma(Q)$ is the orthogonal complement L^{\perp} of L in $T M$. The induced connection $\tilde{\nabla}$ on Q-valued forms involve ∇ and ∇^{M}. Let $\left\{E_{\alpha}\right\}_{\alpha=1, \cdots, n}$ be an orthonormal framing with respect to g_{M} such that $e_{i} \in L_{x}, i=1, \cdots, p$ and $e_{a} \in \sigma Q_{x}, a=p+1, \cdots, n=p+q$ with $\nabla_{e_{\alpha}}^{M} E_{\beta}=0$. But we neither claim nor require that $\left(E_{i}\right)_{y} \in L_{y}$ for $1 \leq i \leq p$ or $\left(E_{a}\right)_{y} \in \sigma Q_{y}$ for $p+1 \leq a \leq n$ at points $y \neq x$. We do have $\left(\pi E_{i}\right)_{x}=\pi e_{i}=0$. In the case where g_{M} is a bundle-like metric, the vectors $\left(\pi E_{a}\right)_{x}=\pi e_{a}$ form an orthonormal basis of $Q_{x}([3])$.

Consider the canonical projection $\pi: T M \rightarrow Q$ as a Q-valued 1-form, i.e., $\pi \in A^{1}(Q)$. Then it is well known that $d_{\nabla} \pi=0([2])$, since $d_{\nabla} \pi$ equals the torsion T_{∇} given by

$$
T_{\nabla}(X, Y)=\nabla_{X} \pi(Y)-\nabla_{Y} \pi(X)-\pi[X, Y]
$$

which is zero. Hence we have the following lemma.
Lemma 3.1 Let \mathcal{F} be a Riemannian foliation with finite energy on a complete Riemannian manifold (M, g_{M}) with holonomy invariant metric g_{Q} on Q. If $\Delta \pi \in L_{2}^{1}(Q)$, then

$$
\frac{1}{2}\left\|d_{\nabla}^{*} \pi\right\|^{2} \leq \limsup \ll \Delta \pi, \omega_{\ell}^{2} \pi \gg \leq \frac{3}{2}\left\|d_{\nabla}^{*} \pi\right\|^{2} .
$$

Proof. We know that $d_{\nabla} \pi=0([2])$. Hence from (1.4) and (2.2), we have

$$
\begin{aligned}
<\Delta \pi, \omega_{\ell}^{2} \pi \ggg>(2 \ell) & =\ll d_{\nabla}^{*} \pi, d_{\nabla}^{*}\left(\omega_{\ell}^{2} \pi\right)>_{B(2 \ell)} \\
= & <\omega_{\ell} d_{\nabla}^{*} \pi, \omega_{\ell} d_{\nabla}^{*} \pi \gg_{B(2 \ell)} \\
& -2 \ll \omega_{\ell} d_{\nabla}^{*} \pi, *\left(d \omega_{\ell} \wedge * \pi\right)>_{B(2 \ell)} .
\end{aligned}
$$

From (2.3), we get

$$
\begin{aligned}
\frac{1}{2}\left\|\omega_{\ell} d_{\nabla}^{*} \pi\right\|_{B(2 \ell)}^{2}-\frac{8 A}{\ell^{2}}\|\pi\|_{B(2 \ell)}^{2} & \leq \ll \Delta \pi, \omega_{\ell}^{2} \pi \ggg{ }_{B(2 \ell)} \\
& \leq \frac{3}{2}\left\|\omega_{\ell} d_{\nabla}^{*} \pi\right\|_{B(2 \ell)}^{2}+\frac{8 A}{\ell^{2}}\|\pi\|_{B(2 \ell)}^{2} .
\end{aligned}
$$

Since $\pi, \Delta \pi \in L_{2}^{1}(Q), d_{\nabla}^{*} \pi$ is square-integrable. Hence we obtain the inequality by letting $\ell \rightarrow \infty$.

Moreover, we have the following lemma from (1.6).

Lemma 3.2 Let \mathcal{F} be a Riemannian foliation on (M, g_{M}) with holonomy invariant metric g_{Q} on Q (g_{M} is not assumed to be bundle-like). Then for any $\phi \in A^{r}(Q)$, we have

$$
\begin{aligned}
\ll \Delta \phi, \omega_{\ell}^{2} \phi \gg_{B(2 \ell)}= & 2 \ll \omega_{\ell} \tilde{\nabla} \phi, d \omega_{\ell} \wedge \phi>_{B(2 \ell)}+\left\|\omega_{\ell} \tilde{\nabla} \phi\right\|_{B(2 \ell)}^{2} \\
& +\ll S(\phi), \omega_{\ell}^{2} \phi \gg_{B(2 \ell)} .
\end{aligned}
$$

Proof. From (1.6), we have, at $x \in M$,

$$
\begin{aligned}
<\Delta \phi, \omega_{\ell}^{2} \phi>= & -\sum<\tilde{\nabla}_{E_{\alpha}} \tilde{\nabla}_{E_{\alpha}} \phi, \omega_{\ell}^{2} \phi>+<S(\phi), \omega_{\ell}^{2} \phi> \\
= & -\sum E_{\alpha}<\tilde{\nabla}_{E_{\alpha}} \phi, \omega_{\ell}^{2} \phi>+\sum<\tilde{\nabla}_{E_{\alpha}} \phi, \tilde{\nabla}_{E_{\alpha}}\left(\omega_{\ell}^{2} \phi\right)> \\
& +<S(\phi), \omega_{\ell}^{2} \phi> \\
= & -\sum E_{\alpha}<\tilde{\nabla}_{E_{\alpha}} \phi, \omega_{\ell}^{2} \phi>+\sum<\tilde{\nabla}_{E_{\alpha}} \phi, 2 \omega_{\ell} d \omega_{\ell}\left(E_{\alpha}\right) \wedge \phi> \\
& +\left|\omega_{\ell} \tilde{\nabla} \phi\right|^{2}+<S(\phi), \omega_{\ell}^{2} \phi> \\
= & -\operatorname{div}\left(\omega_{\ell} X_{\ell}\right)+\sum<\tilde{\nabla}_{E_{\alpha}} \phi, 2 \omega_{\ell} d \omega_{\ell}\left(E_{\alpha}\right) \wedge \phi>+\left|\omega_{\ell} \tilde{\nabla} \phi\right|^{2} \\
& +<S(\phi), \omega_{\ell}^{2} \phi>
\end{aligned}
$$

where a vector field X_{ℓ} satisfies

$$
g_{M}\left(X_{\ell}, Y\right)=<\tilde{\nabla}_{Y} \phi, \omega_{\ell} \phi>
$$

for any Y. The last line is proved as follows: at $x \in M$,

$$
\begin{aligned}
\operatorname{div}\left(\omega_{\ell} X_{\ell}\right) & =\sum g_{M}\left(\nabla_{E_{\alpha}}^{M}\left(\omega_{\ell} X_{\ell}\right), E_{\alpha}\right) \\
& =\sum E_{\alpha} g_{M}\left(\omega_{\ell} X_{\ell}, E_{\alpha}\right)=\sum E_{\alpha}<\tilde{\nabla}_{E_{\alpha}} \phi, \omega_{\ell}^{2} \phi>.
\end{aligned}
$$

By integrating and by the divergence theorem([1]), which is applicable to Lipschitz continuous forms, we obtain our results.

From (2.4) and Lemma 3.2, we have

$$
\begin{aligned}
\frac{1}{2}\left\|\omega_{\ell} \tilde{\nabla} \phi\right\|_{B(2 \ell)}^{2} & +\ll S(\phi), \omega_{\ell}^{2} \phi>_{B(2 \ell)}-\frac{8 A}{\ell^{2}}\|\phi\|_{B(2 \ell)}^{2} \\
& \leq \ll \Delta \phi, \omega_{\ell}^{2} \phi>_{B(2 \ell)} \\
& \leq \frac{3}{2}\left\|\omega_{\ell} \tilde{\nabla} \phi\right\|_{B(2 \ell)}^{2}+\ll S(\phi), \omega_{\ell}^{2} \phi>_{B(2 \ell)}+\frac{8 A}{\ell^{2}}\|\phi\|_{B(2 \ell)}^{2} .
\end{aligned}
$$

From the first inequality above, we have the following Proposition.

Proposition 3.3 ([1]) Suppose $\left.\langle S(\phi), \phi>\geq-C| \phi\right|^{2}$ for some constant $C>0$ independent of $x \in M$ and every $\phi \in A^{r}(Q)$. If ϕ and $\Delta \phi$ are in $L_{2}^{r}(Q)$, then $\tilde{\nabla} \phi$ is in L_{2}.

Lemma 3.4 Suppose $<S(\phi), \phi>\geq-C|\phi|^{2}$ for some constant $C>0$ independent of $x \in M$ and every $\phi \in A^{r}(Q)$. If ϕ and $\Delta \phi$ are in $L_{2}^{*}(Q)$, then

$$
\frac{1}{2}\|\tilde{\nabla} \phi\|^{2}+\mathcal{S}(\phi) \leq \limsup \ll \Delta \phi, \omega_{\ell}^{2} \phi \gg_{B(2 \ell)} \leq \frac{3}{2}\|\tilde{\nabla} \phi\|^{2}+\mathcal{S}(\phi)
$$

where $\mathcal{S}(\phi)=$ limsup $\ll S(\phi), \omega_{\ell}^{2} \phi>_{B(2 \ell)}$.
Hence if the foliation has finite energy (i.e., $\|\pi\|^{2}<\infty$) such that $\Delta \pi \in$ $L_{2}^{1}(Q)$, then we have

$$
\begin{equation*}
\frac{1}{2}\|\tilde{\nabla} \pi\|^{2}+\mathcal{S}(\pi) \leq \limsup <\Delta \pi, \omega_{\ell}^{2} \pi>_{B(2 \ell)} \leq \frac{3}{2}\|\tilde{\nabla} \pi\|^{2}+\mathcal{S}(\pi) \tag{3.2}
\end{equation*}
$$

From (3.2) and Lemma 3.1, we have the following Proposition.
Proposition 3.5 Let \mathcal{F} be a Riemannian foliation with finite energy on a complete Riemannian manifold. If $\Delta \pi \in L_{2}^{1}(Q)$ and $<S(\pi), \pi>\geq-C|\pi|^{2}$ for some constant $C>0$, then we have

$$
\begin{aligned}
& \frac{1}{2}\|\tilde{\nabla} \pi\|^{2}+\mathcal{S}(\pi) \leq \frac{3}{2}\left\|d_{\nabla}^{*} \pi\right\|^{2} \\
& \frac{1}{2}\left\|d_{\nabla}^{*} \pi\right\|^{2} \leq \frac{3}{2}\|\tilde{\nabla} \pi\|^{2}+\mathcal{S}(\pi)
\end{aligned}
$$

To analyze the sign of the term $\mathcal{S}(\pi)$, it is convenient to introduce the self-adjoint operator $B_{\pi}: T M \rightarrow T M$ ([2]) by

$$
\begin{equation*}
g_{M}\left(B_{\pi} X, Y\right)=g_{Q}(\pi(X), \pi(Y)) \quad \text { for } X, Y \in T M \tag{3.3}
\end{equation*}
$$

Clearly, $\operatorname{Ker} B_{\pi}=L, \operatorname{Im} B_{\pi}=\sigma Q \cong L^{\perp}$. We further refine the choice of local framings by requiring that the orthogonal basis e_{1}, \cdots, e_{n} of $T_{x} M$ also diagonalize B_{π}, i.e.,

$$
\begin{equation*}
B_{\pi}\left(e_{i}\right)=0(i=1, \cdots, p) ; B_{\pi}\left(e_{a}\right)=\lambda_{a} e_{a}(a=p+1, \cdots, n) \tag{3.4}
\end{equation*}
$$

where $\lambda_{a}>0$, since g_{Q} is positive definite. Clearly we have

$$
\begin{equation*}
g_{Q}\left(\pi\left(e_{a}\right), \pi\left(e_{b}\right)\right)=\lambda_{a} \delta_{a b} . \tag{3.5}
\end{equation*}
$$

Now, we consider the normal sectional curvature $K^{\nabla}\left(e_{a}, e_{b}\right)$ in direction of the normal 2-plane spanned by e_{a}, e_{b} defined by

$$
\begin{equation*}
K^{\nabla}\left(e_{a}, e_{b}\right)=\frac{1}{\lambda_{a} \lambda_{b}} g_{Q}\left(R_{\pi\left(e_{a}\right), \pi\left(e_{b}\right)}^{\nabla} \pi\left(e_{b}\right), \pi\left(e_{a}\right)\right), \tag{3.6}
\end{equation*}
$$

where $R_{X, Y}^{\nabla}=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$ is the curvautre tensor on Q. Note that since ∇ is a basic connection, $i(X) R^{\nabla}=0$ for $X \in \Gamma L([2])$, hence $R_{\pi\left(e_{a}\right),-}^{\nabla}=$ $R_{e_{a},-}^{\nabla}$. The transversal Ricci operator $\rho^{\nabla}: Q \rightarrow Q$ and the transversal scalar curvature σ^{∇} are given respectively by

$$
\begin{equation*}
\rho^{\nabla}(X)=\sum_{a} R_{X, e_{a}}^{\nabla} e_{a}, \quad \sigma^{\nabla}=\operatorname{Tr}\left(\rho^{\nabla}\right) . \tag{3.7}
\end{equation*}
$$

All these geometric quantities should be thought of as the corresponding curvature properties of a Riemannian manifold serving as a model space for \mathcal{F}. Furthermore, we have

$$
\begin{align*}
g_{Q}\left(\pi\left(\rho^{\nabla^{M}}\left(e_{a}\right)\right), \pi\left(e_{a}\right)\right) & =g_{M}\left(\left(B_{\pi} \circ \rho^{\nabla^{M}}\right) e_{a}, e_{a}\right) \\
& =g_{M}\left(\rho^{\nabla^{M}}\left(e_{a}\right), B_{\pi} e_{a}\right) \tag{3.8}\\
& =\lambda_{a} g_{M}\left(\rho^{\nabla^{M}}\left(e_{a}\right), e_{a}\right),
\end{align*}
$$

where $\rho^{\nabla^{M}}$ is the Ricci operator of ∇^{M} given by $\rho^{\nabla^{M}}(X)=\sum R_{X, e_{\alpha}}^{M} e_{\alpha}$. From (1.7), we obtain

$$
\begin{equation*}
<S(\pi), \pi>_{x}=-\sum_{a \neq b} \lambda_{a} \lambda_{b} K^{\nabla}\left(e_{a}, e_{b}\right)+\sum_{a} \lambda_{a} g_{M}\left(\rho^{\nabla^{M}}\left(e_{a}\right), e_{a}\right) . \tag{3.9}
\end{equation*}
$$

Thus non-negative Ricci curvature on M and non-positive normal sectional curvature K^{∇} imply $<S(\pi), \pi>\geq 0$. From Proposition 3.5 and (3.9), we obtain the following Theorem.

Theorem 3.6 Let \mathcal{F} be a Riemannian foliation with finite energy on a complete Riemannian manifold (M, g_{M}) with holonomy invariant metric g_{Q} on Q (g_{M} is not assumed to be bundle-like). Assume that the Ricci curvature ρ^{M} on M is non-negative and the normal sectional curvature K^{∇} of g_{Q} is non-positive. Then

$$
d_{\nabla}^{*} \pi=0 \text { if and only if } \tilde{\nabla} \pi=0 \text { and limsup } \ll S(\pi), \omega_{\ell}^{2} \pi \gg=0 .
$$

Note that for the normal bundle Q of a foliation on M the connection ∇^{\prime} on Q defined by a Riemannian metric g_{M} via (3.10) below need not be metric with respect to g_{Q} induced by g_{M}. Thus we say that $\phi \in A^{r}(M, Q)$ is harmonic if $d_{\nabla} \phi=0$ and $d_{\nabla}^{*} \phi=0$. In case ∇ is metric, this condition is equivalent to $\Delta \phi=0$ for ϕ with $\phi, \Delta \phi \in L_{2}^{*}(Q)$.

The condition $\tilde{\nabla} \pi=0$ implies that

$$
(\tilde{\nabla} \pi)(X, Y)=\left(\tilde{\nabla}_{X} \pi\right)(Y)=\nabla_{X} \pi(Y)-\pi\left(\nabla_{X}^{M} Y\right)=0 .
$$

In particular, for $X, Y \in \Gamma L, \nabla_{X}^{M} Y \in \Gamma L$. This means that each leaf \mathcal{L} is a totally geodesic submanifold of M. Hence we have the following Corollary.

Corollary 3.7 Let \mathcal{F} be a Riemannian foliation satisfying the conditions in Theorem 3.6.
(1) If π is a harmonic form, then each leaf is a totally geodesic submanifold of M.
(2) If there exists some point $x \in B(2 \ell)$ such that $<S(\pi), \omega_{\ell}^{2} \pi>_{x} \neq 0$, then π is not a harmonic form.

If the codimension of \mathcal{F} is one, then the normal sectional curvature K_{∇} is zero. Hence Corollary 3.7 holds under the assumption that the Ricci curvature of g_{M} is non-negative.

Now we discuss the bundle-like metric case([2]), i.e., g_{Q} can be assumed to be induced by g_{M} as

$$
g_{Q}(s, t)=g_{M}(\sigma(s), \sigma(t))
$$

for any $s, t \in \Gamma Q$. The projection $\pi: T M \rightarrow Q$ is then an orthogonal projection. The particular connection ∇^{\prime} in Q defined by

$$
\begin{cases}\nabla_{X}^{\prime} s=\pi([X, \sigma(s)]) & \text { for } X \in \Gamma L \tag{3.10}\\ \nabla_{X}^{\prime} s=\pi\left(\nabla_{X}^{M} \sigma(s)\right) & \text { for } X \in \Gamma L^{\perp}\end{cases}
$$

is then the unique metric and torsion-free connection with respect to g_{Q}. The harmonicity of π, i.e., the condition $d_{\nabla}^{*}, \pi=0$ (since we already have $d_{\nabla^{\prime}} \pi=0$), is then equivalent to the property that all leaves of \mathcal{F} are minimal submanifolds of $\left(M, g_{M}\right)([2])$. Noting that $\left(\tilde{\nabla}_{X} \pi\right)(X)=0$ for any $X \in \Gamma Q$, we see that $\tau=d_{\nabla}^{*}, \pi$. Then \mathcal{F} is harmonic if and only if $\tau=0$ (see Appendix or [2]).

The operator $B_{\pi}: T M \rightarrow T M$ defined by (3.3) is the map $\sigma \circ \pi$ and the non-zero eigenvalues λ_{a} equal 1 . Then we have

$$
<S \pi, \pi>_{x}=-\sigma^{\nabla^{\prime}}+\sum_{a}<\rho^{\nabla^{M}}\left(e_{a}\right), e_{a}>
$$

where $\sigma^{\nabla^{\prime}}$ is the transversal scalar curvature of Q. Hence from Theorem 3.6, we have the following Corollary.

Corollary 3.8 Let \mathcal{F} be a Riemannian foliation with finite energy on M with a complete bundle-like metric g_{M}. Assume that the Ricci curvature ρ^{M} on M is non-negative and the transversal scalar curvature is non-positive. If \mathcal{F} is harmonic, then \mathcal{F} is totally geodesic.

Appendix

Let \mathcal{F} be a foliation on a Riemannian manifold (M, g_{M}) with bundle-like metric g_{M}. The Q-valued symmetric bilinear form $\alpha=-\tilde{\nabla} \pi$ restricted to any leaf $\mathcal{L} \subset M$ of \mathcal{F} is then the second fundamental form of the Riemannian submanifold $\mathcal{L} \subset M$. By [2], the tension $\tau=\operatorname{Tr} \alpha$ of \mathcal{F} is evaluated at $x \in M$ by

$$
\tau_{x}=\operatorname{Tr} \alpha=\sum_{\beta} \alpha\left(e_{\beta}, e_{\beta}\right)=\sum_{i} \alpha\left(e_{i}, e_{i}\right) \in Q_{x}
$$

It is immediate that $\tau=d_{\nabla}^{*}, \pi$, and \mathcal{F} is harmonic iff $\tau=0([2])$.
This tension field τ plays an important role in studying a foliated Riemannian manifold. When a foliation is minimal, i.e., $\tau=0$, many results are similar to those in an ordinary manifold. So an apparent weakening of the condition of the vanishing tension field would be to require $\nabla^{\prime} \tau=0$. But the ∇^{\prime}-parallel condition of τ is meaningless on a compact manifold because $\nabla^{\prime} \tau=0$ implies $\tau=0([2])$. On a complete Riemannian manifold, we obtain the following result which is similar to the one in [2].

Theorem A. Let \mathcal{F} be a Riemannian foliation with finite energy on M with a complete bundle-like metric g_{M}. Then we have

$$
\nabla^{\prime} \tau=0 \Longrightarrow \tau=0
$$

Proof. For a 0 -form $\tau \in A^{0}(Q)$, we have by definition $d_{\nabla^{\prime}} \tau=\nabla^{\prime} \tau$. Since $d_{\nabla^{\prime}} \pi=0$, we have

$$
\Delta \pi=d_{\nabla^{\prime}} d_{\nabla^{\prime}}^{*} \pi=d_{\nabla^{\prime}} \tau=\nabla^{\prime} \tau .
$$

This implies that if $\nabla^{\prime} \tau=0$, then $\Delta \pi=0$. From the first inequality in Lemma 3.4, we obtain $\tau=d_{\nabla^{\prime}}^{*} \pi=0$.

Acknowledgements

The authors would like to thank the referee for his helpful and kind suggestions.

References

[1] J. Dodziuk, Vanishing theorems for square-integrable harmonic forms, Geometry and Analysis, Papers dedicated to the memory of V. K. Patodi, 21-27 Springer-Verlag, 1981.
[2] F. W. Kamber and Ph. Tondeur, Harmonic foliations, Proc. National Science Foundation Conference on Harmonic Maps, Tulane, Dec. 1980, Lecture Notes in Math, 949, Springer-Verlag, New York, 1982, 87-121.
[3] F. W. Kamber and Ph. Tondeur, Curvature properties of harmonic foliations, Illinois J. Math. 28 (1984), 458-471.
[4] H. Wu, A remark on the Bochner technique in differential geometry, Proc. Amer. Math. Soc. 78 (1980), 403-408.
S.D. Jung

Department of Mathematics, Cheju National University, Cheju 690-756, Korea
B.H. Kim

Department of Mathematics, Kyung Hee University, Suwon 449-701, Korea

T.H. Kang

Department of Mathematics, University of Ulsan, Ulsan 680-749, Korea

H.K. Pak

Department of Mathematics, Kyungsan University, Kyungsan 712-240, Korea
J.S. Pak

Department of Mathematics, Teachers College, Kyungpook National University, Taegu 702-701, Korea

Received September 30, 2002 Revised May 6, 2003

[^0]: 2000 Mathematics Subject Classification. 53C12, 57R30
 Key words and phrases. Cut off function, Harmonic foliation, Totally geodesic foliation

 This work is supported by Korea Research Foundation Grant(KRF-2000-042D00007)

