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SOME EXTENSIONS OF GR\"USS’ INEQUALITY AND ITS
APPLICATIONS

SAICHI IZUMINO* AND JOSIP E. PE\v{C}ARI\’{C}**

ABSTRACT. (Discrete) Gruss’ inequality, a complement of $6eby\check{s}evs$ in-
equality, is one which gives an upper bound of the absolute difference

$|\frac{1}{n}\sum_{k=1}^{n}a_{k}b_{k}-\frac{1}{n^{2}}\sum_{k=1}^{n}a_{k}\sum_{k=1}^{n}b_{k}|$

for n-tuples $a=(a_{1}, \ldots,a_{n})$ and $b=(b_{1}, \ldots,b.)$ of real numbers with
certain conditions.

We $\dot{g}ve$ some extensions of Grttss’ inequality by using certain convex
functions. As an application, we show another weighted Ozeki’s inequality
which is a complement of the Cauchy-Schwartz inequality.

1. INTRODUCTION
$\check{C}eby\check{s}ev’ s$ inequality

$\frac{1}{n}\sum_{k=1}^{n}a_{k}b_{k}\geq\frac{1}{n^{2}}\sum_{k=1}^{\mathfrak{n}}a_{k}\sum_{k=1}^{n}b_{k}$ (1.1)

for n-tuples $a=(a_{1}, \ldots, a_{n})$ and $b=(b_{1}, \ldots,b_{n})$ of positive numbers with
nonincreasing (or nondecreasing) order is well known. As a complement of
this inequality, under the condition

$0<m_{1}<M_{1},0<m_{2}<M_{2},$ $m_{1}\leq a_{k}\leq M_{1}$

(1.2)and $m_{2}\leq b_{k}\leq M_{2}(k=1, \ldots,n)$ ,

the following (discrete) Gr\"uss’ inequality [4] (cf. [7, p. 296]) holds:

$|\frac{1}{n}\sum_{k=1}^{n}a_{k}b_{k}-\frac{1}{n^{2}}\sum_{k=1}^{n}a_{k}\sum_{k=1}^{n}b_{k}|\leq\frac{1}{4}(M_{1}-m_{1})(M_{2}-m_{2})$ . (1.3)
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A refinement of the above inequality due to M. Biernacki, H. Pidek and C.
Ryll-Nardzewski [2] (cf. [7, p. 299]) is

$|\frac{1}{n}\sum_{k=1}^{n}a_{k}b_{k}-\frac{1}{n^{2}}\sum_{k=1}^{n}a_{k}\sum_{k=1}^{n}b_{k}|$

(1.4)
$\leq\frac{1}{n}[\frac{n}{2}](1-\frac{1}{n}[\frac{n}{2}])(M_{1}-m_{1})(M_{2}-m_{2})$ .

There are a number of further (discrete or integral type) refinements and
generalizations of Gr\"uss’ inequality; D. Andrica and C. Badea [1], G. T.
Cargo and O. Shisha [3], J. E. Pe\v{c}ari\v{c} [9], [10] and etc.

In somewhat similar fashion as Grtiss’ inequality, the following Ozeki’s
inequality [8], [5] holds, as a complement of the Cauchy-Schwartz inequality:
Under the condition (1.2)

$\frac{1}{n}\sum_{k=1}^{n}a_{k}^{2}\frac{1}{n}\sum_{k=1}^{n}b_{k}^{2}-(\frac{1}{n}\sum_{k=1}^{\mathfrak{n}}a_{k}b_{k})^{2}\leq\frac{1}{3}(M_{1}M_{2}-m_{1}m_{2})^{2}$ . (1.5)

${\rm Re} cently$ some extensions of this inequality were given in [5], [6].
In this paper we give some extensions of Grfiss’ inequality by using convex

functions, and show some refinements of Ozeki’s inequality as applications.

2. GR\"USS INEQUALITIES FOR CONVEX FUNCTIONS

An n-tuple $a=(a_{1}, \ldots, a_{\mathfrak{n}})$ with $m\leq a_{k}\leq M(k=1, \ldots,n)$ for $m<M$ is
considered as a point in the n-dimensional cube $[m, M]^{n}$ . Related to extreme
points of the sets of monotonically ordered points in $[m,M]^{\mathfrak{n}}$ , it is not difficult
to see the $follow\dot{i}g$ :

Lemma 2.1. Let
$K=\{(a_{1}, \ldots,a_{n})\in[m,M]^{n};a_{1}\leq\cdots\leq a_{n}\}$

and
$L=\{(a_{1}, \ldots,a_{\mathfrak{n}})\in[m,M]^{n};a_{1}\geq\cdots\geq a_{\mathfrak{n}}\}$ .

Then both $K$ and $L$ are convex subsets, and their extreme points are vertices
of the cube $[m,M]^{n}$ .

An n-tuple $p=(p_{1}, \ldots,p_{n})$ is called an n-weight if it satisfies

$p_{1},$ $\ldots,p_{\mathfrak{n}}\geq 0$ and $\sum_{k=1}^{\mathfrak{n}}p_{k}=1$ . (2.1)
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Put

$P_{l}=\sum_{k=1}^{l}p_{k}$ $(l=1, \ldots, n)$ (2.2)

for an n-weight $p=(p_{1}, \ldots,p_{n})$ . For convenience, we write $I_{n}=\{1, \ldots, n\}$

and
$\Delta=\{(i,j)\in I_{n}xI_{n};i<j\}$ . (2.3)

The following lemma is a key point in this paper:

Lemma 2.2. Let $a=(a_{1}, \ldots, a_{n})$ be an n-tuple of real numbers $satis\ovalbox{\tt\small REJECT} ng$

$M\geq a_{1}\geq\cdots\geq a_{\mathfrak{n}}\geq m$ .
Then for any n-weight $p=(p_{1}, \ldots,p_{n})$

$D(a;p):=\sum_{(ji)\in\Delta}p_{1}\cdot p_{j}(a_{i}-a_{j})$

$\leq(M-m)\max_{\leq 1k\leq n-1}P_{k}(1-P_{k})(\leq\frac{1}{4}(M-m))$ . (2.4)

Proof. Since $D_{p}(a)=D(a;p)$ is a linear (hence convex) function on $ L\subset$

$[m,M]$“, it follows from Lemma 2.1 that its maximum is attained at an
extreme point of $L$ , i.e., a vertex of $[m,M]^{n}$ . Hence we may consider the
values of $D_{p}(a)$ only for $a=a^{(l)},$ $l=1,$ $\ldots,n-1$ , where

Then we have

$D[I]:=D_{p}(a^{(l)})=\sum_{(i,j)\in(I_{I}xI_{l}^{c})}p:p_{j}(M-m)=(M-m)\sum_{:=1j}^{l}\sum_{=l+1}^{n}p_{1}p_{j}$

$=(M-m)P_{I}(1-P_{I})\leq(M-m)\max_{1\leq k\leq n-1}P_{k}(1-P_{k})$ .
Since $P_{k}(1-P_{k})\leq\frac{1}{4}$ , we see that $D[l]\leq\frac{1}{4}(M-m)$ .

Now extending the notion of the cumulative sum (2.2) for an n-weight
$p=(p_{1}, \ldots,p_{n})$ , we put

$P(J)=\sum_{k\in J}p_{k}$ for J C $I_{n}$ .

We then have the following theorem which is regarded as an extension of
Gr\"uss’ inequality.
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Theorem 2.3. Let $f(x)$ be a convex even function defined on $[m-M,$ $M-$

$m](0<m<M)$ urith $f(O)=0$ . Then for each n-tuple $a=(a_{1}, \ldots, a_{n})$

satisfy ing $m\leq a_{k}\leq M(k=1, \ldots,n)$ and for each n-weight $p=(p_{1}, \ldots,p_{n})$

$D_{f}(a;p):=\sum_{\langle i,j)\in\Delta}p:p_{j}f(a_{i}-a_{j})$

(2.5)
$\leq f(M-m)mrP(J)(1-P(J))J\subset I_{\hslash}$

Proof. First note that by the assumptions on $f(x)$

$D_{f}(a;p)=\frac{1}{2}\sum_{i,j\in I_{*}}p:p_{j}f(a_{i}-a_{j})$ .

lfurthermore, $D_{f,p}(a)=D_{f}(a;p)$ is a convex function on $[m,M]^{\mathfrak{n}}$ . Hence it
attains its maximum at a vertex of $[m,M]$“. Let $a$ be a vertex and put

$J_{a}=\{k\in I_{\mathfrak{n}};a_{k}=M\}$ .
Then since $f(m-M)=f(M-m),$ $f(O)=0$ and

$\sum_{(i,j)\in J_{l}xJ_{n}^{c}}p:p_{j}=\sum_{(:,j)\in J_{a}^{e}xJ_{0}}p:p_{j}=P(J_{a})(1-P(J_{n}))$
,

we have

$D_{f,p}(a)=\frac{1}{2}\{\sum_{\langle i,j)\in J_{a}xJ_{l}^{c}}p:p_{j}f(M-m)+\sum_{\langle i,j)\in J_{n}^{c}xJ_{a}}p:p_{j}f(m-M)\}$

$=P(J_{a})(1-P(J_{a}))f(M-m)$

$\leq f(M-m)\max P(J)(1-P(J))J\subset I_{*}(\leq\frac{1}{4}f(M-m))$ .
$\square $

Applying the above theorem to the functions $f(x)=|x|$ and $x^{2}$ , we obtain
the folowing two facts.

CoroUary 2.4. ([3, Lemma 4.1]) For any n-tuple a urith the same assump-
tions as in Theorem 2.3 and for any $n\leftarrow weightp$

$\sum_{(i,j)\in\Delta}p\wp_{j}|a_{i}-a_{j}|\leq(M-m)\max P(J)(1-P(J))J\subset I.(\leq\frac{1}{4}(M-m))$ .

-162–



Corolary 2.5. ([1, Lemma]) For any n-tuple $a$ with the same assumptions
as in Theorem 2.3 and for any n-weight $p$

$\sum_{\langle i,j)\in\Delta}p:p_{j}(a_{i}-a_{j})^{2}\leq(M-m)^{2}\max_{J\subset I_{n}}P(J)(1-P(J))(\leq\frac{1}{4}(M-m)^{2})$ .

Now for two n-tuples $a=(a_{1}, \ldots, a_{n})$ and $b=(b_{1}, \ldots, b_{n})$ , put

$D(a,b;p)=\sum_{k=1}^{n}p_{k}a_{k}b_{k}-\sum_{k=1}^{n}p_{k}a_{k}\sum_{k=1}^{n}p_{k}b_{k}$ , (2.6)

which is the difference derived from weighted \v{C}eby\v{s}ev’s inequality. Then
note that

$D(a,b;p)=\sum_{(i,j)\in\Delta}p_{i}p_{j}(a_{i}-a_{j})(b_{i}-b_{j})$
(2.7)

holds, as a weighted version of Korkine’s identity [7, p. 242]. Applying Corol-
lary 2.4, we obtain, by a short proof, the following generalization of (1.4) due
to Andrica and Badea [1]:

Corollary 2.6. ([1, Theorem 2]) Let $a$ and $b$ be n-tuples satisfying (1.2).
Then for any n-weight $p$

$|D(a,b;p)|\leq(M_{1}-m_{1})(M_{2}-m_{2})\max P(J)(1-P(J))J\subset I$,
(2.8)

Proof It follows from (2.7) and Corollary 2.4 that

$|D(a,b;p)|=|\sum_{(i,j)\in\Delta}p:p_{j}(a_{i}-a_{j})(b_{i}-b_{j})|$

$\leq\sum_{(i,j)\in\Delta}p_{i}p_{j}|a_{i}-a_{j}||b_{i}-b_{j}|\leq(M_{2}-m_{2})\sum_{\langle 2,j)\in\Delta}p_{i}p_{j}|a;-a_{j}|$

$\leq(M_{1}-m_{1})(M_{2}-m_{2})mascP(J)(1-P(J))J\subset I_{n}$

Applying (2.7) and Lemma 2.2, we obtain the folowing corollary which is
an improvement of [9, Theorem 8]:

Corolary 2.7. Let $a$ and $b$ be n-tuples satisfying (1.2), and furthermore
assume that $a$ is monotonicdly decreasing (or increasing). Then for any
n-weight $p$

$|D(a, b;p)|\leq(M_{1}-m_{1})(M_{2}-m_{2})\max_{1\leq k\leq n-1}P_{k}(1-P_{k})$ . (2.9)
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3. APPLICATIONS TO OZEKI’S INEQUALITY

Recently, as a refinement of Ozeki’s inequality (1.5), we gave the following
result [6, Theorem 3.2]: For each n-weight $p$

$D_{2}(a, b;p):=\sum_{k=1}^{n}p_{k}a_{k}^{2}\sum_{k=1}^{n}p_{k}b_{k}^{2}-(\sum_{k=1}^{n}p_{k}a_{k}b_{k})^{2}$

$\leq M_{1}^{2}M_{2}^{2}\max J\subset I_{n}\{\frac{(1-\alpha\beta)^{2}}{4}(1-P(J))^{2}+(1-\beta)^{2}P(J)(1-P(J))\},$ (31)

where $\alpha=m_{1}/M_{1},$ $\beta=m_{2}/M_{2}$ and $\alpha\geq\beta$ is assumed.

In this section we discuss some applications of Corolaries 2.5 and 2.7, by
which we simplify weighted Ozeki’s inequalities.

Theorem 3.1. Let $a=(a_{1},\ldots,a_{n})$ and $b=(b_{1,}b_{n})$ be n-tuples satisfy-
ing the condition (1.2). Assume that $\alpha=m_{1}/M_{1}\geq m_{2}/M_{2}=\beta$ . Then for
any n-weight $p=(p_{1}, \ldots,p_{n})$

$D_{2}(a,b;p)\leq\frac{M_{1}^{2}M_{2}^{2}(1-\alpha\beta)^{2}}{\alpha^{2}}\max_{J\subset I}P(J)(1-P(J))$ . (3.2)

Proof. First note that

$D_{2}(a,b;p)=\sum_{(ij)\in\Delta}p_{i}p_{j}(a_{i}b_{j}-a_{j}b_{i})^{2}$

holds as a weighted version of Lagrange’s formula (cf. [7, p. 84]). Put $c_{k}=$

$b_{k}/a_{k}(k=1, \ldots,n)$ . Then $m_{2}/M_{1}\leq c_{k}\leq M_{2}/m_{1}$ , so that Corollary 2.5
implies

$D_{2}(a, b;p)=\sum_{(ij)\in\Delta}p:p_{j}a^{2}:a_{j}^{2}(G-c_{j})^{2}$

$\leq M_{1}^{4}(\frac{M_{2}}{m_{1}}-\frac{m_{2}}{M_{1}})^{2}\max P(J)(1-P(J))$ (3.3)

$=\frac{M_{1}^{2}M_{2}^{2}(1-\alpha\beta)^{2}}{\alpha^{2}}\max P(J)(1-P(J))J\subset I_{*}$

Remark. Theorem 3.1 is another weighted version of Ozeki’s inequality.
In fact, put $A,$ $B$ and $C$ the right-sides of Ozeki’s inequality (1.5), of the
above inequality (3.1) and of the one (3.2) in Theorem (3.1), respectively.
For convenience, assume that $M_{1}=M_{2}=1$ . Then:
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(i) Since $P(J)(1-P(J))\leq 1/4$ , we see that if $\alpha^{2}\geq 3/4(\alpha\geq\beta)$ then

$A=\frac{(1-\alpha\beta)^{2}}{3}\geq\frac{(1-\alpha\beta)^{2}}{4\alpha^{2}}\geq\frac{(1-\alpha\beta)^{2}}{\alpha^{2}}P(J)(1-P(J))$ .

Hence $A\geq C$. This implies that in this case Theorem 3.1 is a refinement of
Ozeki’s inequality (1.5).

(ii) As for the relation betweenB and C, first it is easy to see that if $\alpha$ is
sufficiently near $0$ then $B\leq C$. Indeed, for $a=(1,1,1/4)$ and $b=(1/4,1,1)$ ,
and $p_{i}=1/3(i=1,2,3)$ we have $B=0.2226\ldots<3.125=C$. Next since

$\alpha\rightarrow ll\dot{r}mB=_{J}\max_{\subset J_{*}}\{\frac{(1-\beta)^{2}}{4}(1-P(J))^{2}+(1-\beta)^{2}P(J\rangle(1-P(J))\}$

$\geq(1-\beta)^{2}\max_{I_{\mathfrak{n}}}P(J)(1-P(J))r\subset=\lim_{\alpha\rightarrow 1}C$,

we see that $B\geq C$ for $\alpha$ sufficiently close to 1. Indeed, for $a=(1,1,0.9)$

and $b=\langle 0.2,1,1$ ), and $p:=1/3$ , we have $B=0.2169\ldots>0.1844\ldots=C$.
We believe that Ozeki’s inequality was originally represented in the fo.llow-

ing form:

Theorem 3.2. Let $a=(a_{1}, \ldots, a_{n})$ and $b=(b_{1}, \ldots,b_{n})$ be n-tuples $satis\hslash-$

$ing$

$m_{1}\leq a_{1}\leq\cdots\leq a_{n}\leq M_{1}$ and $m_{2}\leq b_{1}\leq\cdots\leq\Lambda_{\mathfrak{n}}\leq M_{2}$ .
Then for-any $n-we$-ight $p=(p_{1}, \ldots,p_{n})$

$D_{2}(a,b;p)\leq(M_{1}M_{2}-m_{1}m_{2})^{2}$ masc $P_{k}(1-P_{k})$
$1\leq k\leq n-1$

$(\leq\frac{1}{4}(M_{1}M_{2}-m_{1}m_{2})^{2})$ .
(3.4)

Proof. First by weighted \v{C}eby\v{s}ev’s inequality [7, p. $240I$ we have

$\sum_{k=1}^{n}p_{k}a_{k}^{2}\sum_{k=1}^{n}p_{k}b_{k}^{2}-\sum_{k=1}^{n}p_{k}\alpha_{k}^{2}b_{k}^{2}\leq 0$ . (3.5)

Next put $c=(a_{1}b_{1}, \ldots,a_{\mathfrak{n}}b_{\mathfrak{n}})$ , then $c$ is monotonically increasing and $ m_{1}m_{2}\preceq$

$c_{A}\leq M_{t}M_{-2}$ . $Repl^{\tau}ac\dot{\overline{m}}g$ both $a$ and $b$ by the same $c$ in (2.9) of Corollary $Z.\mathcal{T}$,
$weha\nu\alpha$

$\sum_{k=1}^{\mathfrak{n}}p_{k}a_{k}^{2}b_{k}^{2}-(\sum_{k=1}^{\mathfrak{n}}p_{k}a_{k}b_{k})^{-z}$

$(=D(c,c;p))\leq(M_{1}M_{2}-m_{1}m_{2})^{z_{1}}\max_{\leq k\leq n-1}P_{k}(1-P_{k})$ . $(3.6)$
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Adding the inequalities (3.5) and (3.6), we obtain the desired inequality.

In [6, Theorem 5.1], considering a close relation between $\alpha=m_{1}/M_{1}$

and $\beta=m_{2}/M_{2}$ , we gave rather a complicated estimation of $D_{2}(a, b;p)([6$ ,
Theorem 5.1]) with the same assumptions as in Theorem 3.2.
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