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Transcendental entire solution of
some g-difference equation
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Abstract
We treat linear g-difference equations with polynomial coefficients, in
which ¢ = €2™, X € (0,1) \ Q. Supposing that there is a transcedental
entire solution f(z) for this equation, we will show that f(z) takes any
finite value infinitely often in any sector.
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1 Introduction

We consider here a g¢-difference equation
(1.1) bp(2)f(qP2) + -+ + bo(2) f(2) = b(2), bi(2), b(z) € Clz],

with b,(z) = f;o bij)zk (bg} # 0),0 < j < p, in which we suppose that
lgl =1, i.e., ¢ = e2"**. Further we suppose that
(1.2) g=€"?, 2e(0,)\Q

The equation (1.1) with ¢ in (1.2) may have transcendental entire solution. In
fact, Driver et al. [2] p. 474 showed that there exists a pair (g, 4), ¢ in (1.2)
and |A] = 1, such that the equation

(1.3) gzf(gz) + (1 - Az)f(2) = 1

has a transcendental entire solution f(2). See also [6].
By the way, Ramis (7] questioned whether (1.1) with ¢ in (1.2) would have
transcendental entire solution which also satisfies a linear differential equation.
Here we will consider some properties of solutions of (1.1) with ¢ in (1.2).
First, we introduce some notations: Put B* = ax B; (Bj = deglb;(2)])
and j; < --- < jr be such that B* = B;, (1 <t < 1) with B; < B* (j # ji)-
Write b; = bg'.) and set

(1.4) &(z) = i bz7t =9 = 0.
t=1
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Lemma 1.1 Let (1.1) be with ¢ = €2™* X € (0,1), and ¢(z) be as in (1.4).
Suppose (1.1) admits a transcendental entire solution f(z). Then the equation
(1.4) has at least one root of modulus 1.

Thus, if (1.1) has the only one coefficient of the highest degree, then ¢(2) is a
non-zero const., and (1.1) cannot have any transcendental entire solution. E.g.,
zf(qz) — f(z) = ¢®23 — 2% has no transcendental entire solution, while it has a
polynomial solution f(z) = z2. It may be A € Q or A ¢ Q in the lemma.

In (1.4), write j, — j, = ¢. Denote by £;,1 < j < ¢ the roots of (1.4). By
Lemma 1.1, at least one of §{; has modulus 1. Let |§;] = 1 for 1 < j < &, and
{651 # 1 for k < j < 1. We write £;(1 < j < &) also as ¢;(1 < j < k).

For (1.3), we have ¢(2) =gz — Aand §; = ¢q; = A/q, that is, L=k = 1.

We will show an intersting property of solution of (1.3), i.e.,

Theorem 1.2 Suppose (1.1), with A in (1.2), admits a transcendental entire
solution f(z). Further assume that ¢(z) in (1.4) has only one root of the modulus

1, i.e.,, kK =1 (« may be > 1). Then, in any sector, f(z) takes any finite value
infinitiely often.

When A € Q, the theorem does not hold. In fact, consider f(z) = cosz which
satisfies f(—z) = f(z), with A = 1/2. Thus, value distributions of solutions
depend heavily on the irrationality of .

Though the condition k = 1 is very restrictive, the equation (1.3) satisfies
this condition.

2 Proof of Lemma 1.1

We write the entire solution f(z) as

(2.1) @) =) anz™.

n=0

Denote by v(r) the central index of f(z), [3] p.318.
We have, by (1.1) and (2.1), for any n > deg[b(2)],

T B* -1 P .
I D> (Z B "") ns e R 20
t=1 k

=0 j=0

Write B(k,n) (2) = anipe-+2"t5 "% /a, 2", when @y, # 0. Then |B(x (- (2)] < 1
for |z} = r. Thus

T B* -1 P
et M o) PR
t=1 k=0

Jj=0
(2:2) = ¢(¢"") + 0(1/2) =0,
hence any accumulation value of {g*(")} is a root of (1.4). a
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3 Proof of Theorem 1.2

Let f(z) be the transcendental entire solution of (1.1). Let j; < --- < j- and
b; (1 <t<7)beasin (1.4). Write v = j, — j1 as before.
Put fo(2) = f(2) and

fi(2) = fi—1(qz) = & fi—1(z) for 1< 5 <.

T P
Since we can write (1.1) as Z bz f(g72) = Z b3 (2) f(g’ z) + b(2) with some
t=1 =0
polynomials b}(2), where deg[b}(z)] < B*, we have

b,—f,,(l) = Sp—j1 (z)f(qp—jlz) +---+5_5 (Z)f(q—jl z) + 5(2):

with rational coefficients s;(2),5 = —ji1,--. ,p — j1, which is O(1/|z]|) for large
|z], and a ratioal function s(z). Let M(r, f) = max;|=, | f(2)|-
Thus f.(2z) = O(;;M(|2], f)) = o(M(|z], f))- If ¢ = k=1, then

@ f(2) = f(g2) = a1 f(2) = O(lz| 7 M(l2l, f))-
If « > K, then |£,| # 1. Hence we have

|fma (DL = &Il  1£ul2)] = Oz 7" M(I2], £))-

Repeating this procedure, using the fact that |¢;] # 1, 1 < j < ¢, we obtain the
above inequality (Q) also.

Hence, if ¢ = ¢(r) is a point such that || = 7, |f({)| = M(r, f), then we
have

f(g¢) = a1 f(S)(1 + o(1)),
generally for N € N,

(3-1) f(@*Q) =gt f(OA+0(1), If(@*O) =M, f)1+0(1)), 1<k<N.

Suppose there is a sector A(a, 8,70) = {z ; a < arg[z] < 8, |z| > 7o}, in
which f(z) has no zeros. Let ro <71 <r2 and 0 < e < %.

There is 6* such that |log | f(r;€2™)| —log|f(r;€*"* )|| < €,j = 1,2, when-
ever 8,0' € (a,B),|0 — ¢'| < ™.

Let a <6 <0y < B.Let § >0bed < min(6; — a,B — 62,%(92 - 91),(5*),
and let C(0,8) : z = z5(r;0) = re?™¥s(n0) 0 < r < oo, be a curve such
that |f(25(r;6)))| = supjs_g<s|f(re?*)|. The local maximum curve C(6,9)
is obtained by finding local maximum points of U(r,9) = f(re?"*?) f(re27¥) in
6 — & <9 < 0 + 4, by differentiation or others. It is a locally analytic curve.

By the way, the maximum curve, which is nothing but a trace of { = {(r),
was given in a classical work of O. Blumenthal [1].

Take N; € N so large that, each arc v(r,8,0) = {z = re?"%;0 -5 <9 <
0 + 0} with opening 24 contains at least one rg*,1 < k < Nj, by the uniform
distribution property of kA, k € N [5].
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Let ¢(r), I¢(r)| = r, be such that |£(¢(r))| = M(r, f). Since ~(r,6;,8),j =
1,2, contain at least one g*{(r), we have that | f(zs(r,6;))| = M(r, f)(1+0(1)) >
M(r, f)(1 — ¢€). Further, for any 6 € [0, 6;], the arc y(r;,8,8) contains ¢*¢(r;),
and |f(g*¢(r;))| > M(rj, f)(1 — €) by (3.1). Therefore for any 6; < 6 < 65,
there is k such that

log | f(r;e*™*)| > log |f(g*C(r;))] — € > log M(r;, f) — 2, j=1,2.

u(r) = log M (r, f) is convex with respect to logr, hence V2u > 0, and can be
considered as subharmonic [4] p.41. Since log|f(z)| is harmonic, we get that

log |f(z)] >logM(r,f) —2¢ ifr; <|z| <71y, 6, +6< arg[z] < 6, - 6.

For any z, r, < |2] < 1y, there is a (, arg[(] € (61 + 6,82 — §), such that
z = g*( for some k,1 < k < N;. Hence f(z) # 0 for r; < |z| < rs. Since r; < 1y
are arbitrary, we see that f(z) # 0 for |z| > ro. Further we see that f(z) — oo
as z —» 0o, which shows that the point at infinity is not essential singularity for
f(2), hence f(z) is a polynomial, a contradiction.

For any a € C, we have only to consider f(z) — a for f(z). a

The authors wish to express their hearty thanks to the referee, for his cordial
and valuable advice.
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