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A REMARK OF THE NUMERICAL RANGES OF
OPERATORS ON HILBERT SPACES

HIDEO TAKEMOTO AND ATSUSHI UCHIYAMA

ABSTRACT. The usual numerical ranges of an operator a acting on a Hilbert space
H is defined as W{(a) = {(a&l€); € € H, ||&|| = 1}. This numerical range depends
on the Hilbert space. In this paper, we consider a von Neumann algebra containing
a and introduce another notion of numerical range for a. Under this consideration,
we shall show that the numerical range of every operator does not depend on the

Hilbert space in a sense.

We deal with bdunded linear operators on a separable Hilbert space with inner
product (|). Let B(#) be the von Neumann algebra consisting of all bounded
operators on H.

The numerical range of an operator a is the subset of the complex numbers C,

given by
W(a) = {(a&l€); £ € H, |I€]l = 1}.

Then W (a) is a convex set (for example see, [6, p.314]).
| Many authors gave the properties of numerical ranges of the operators concerned
with the spectrum o(a) and the norm [la||. We know many results for these proper-
ties.

Furthermore, Berberian and Orland [1] introduce the following‘ notion. by which
they gave a result on the closure of the numerical range of an operator: Let a be
an operator on H and A a C*-algebra containing a and the identity operator 1
on H. Let write S(A) for the set of all states of .4, that is the set of all linear
functional on A such that ¢(1) = 1 and ¢(z*z) > 0 for all z € A; then S(A)
is a convex subset of the dual space of A, and is compact in the weak*-topology.
Let U(a) = {#(a); 9 € S(A)}, then U(a) is a compact and convex subset of C.
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And Berberian and Orland gave a characterization of the closure W (a) of W(a) by
showing U(a) = W (a).

By considering the notion of numerical range of every operator a introduced by
Berberian and Orland and von Neumann algebra containing a, we shall introduce
the following another notion of numerical range for an operator a.

Let a be an operator on H and M a von Neumann algebra containing a and 1.
Let NS(M) denote the set of all normal states of M and define V(a) = {¢(a); ¢ €
NS(M).} Then, since NS(M) is a convex set in the dual space M* of M, V(a) is

a convex subset of C and has the properties as the usual numerical range;

V(al + Ba) = a + BV (a) for o, 8 € C,
V(a*)y = {2 e V(a)},

V(u*au) = V(a) for every unitary u € B(H).

Furthermore, the linear functional (so called vector states) we (¢ € #,||&]| = 1)
defined by

we(z) = (z€[€) for all z € M

is a normal state of M, thus W(a) C V(a). And also, we have the relation
W(a) C V(a) C U(a).

Let M be a von Neumann algebra acting on 4 and A/ a von Neumann subalgebra
of M, then NS(N) = {¢|n; ¢ € NS(M)}. If b is an element of N, then Vj,(b) =
Vi (b). Furthermore, we have the following fundamental properties.

Let M be a von Neumann algebra containing a and 1. If M has a cyclic and
separating vector, then any normal state is a vector state (for example, see [4, I,
Chapter 1, Theorem 4]) and so W(a) = V(a). Furthermore, if the Hilbert space
‘H on which a is acting is finite dimensional, then W(a) is a compact subset (for
example see [5; Theorem 5.1-1]) and so W(a) = V(a) = U(a).

By considering the definition for V' (a), we have the following property.



Proposition 1. Let a be an operator on H. Let H*™ be the Hilbert space of direct
summand H®H D H & --- and (a,) the operator on H*™ with a, = a for every n.
Then V(a) = W((ax,)).

Proof. Let M be a von Neumann algebra generated by a and 1. Let A be an element

o0
of V(a), then there exists an element ¢ of NS(M) with ¢(a) = A. Put ¢ = ngn

n=1

o0
with ¢(1) = lefnll2 = 1 that &, is not zero vector. Furthermore, put a, = ||&|

n=1
and 7, = ;~§, forn =1,2,---, then ||n,]| =1 and
o0 (o o]
$(a) = Y (a€alén) =D _(alannn)lanna) = A.
n=1 n=1

Let 7 = (anny) in H™, then ||n|| = 1 and

o

wn((an)) = ((@a)nln) = 3 (@(@nma)lonmn) = é(a) = A.

n=1

Thus A is an element of W ((ay,)).

On the other hand, let X be an element of W ((a,)), then there exists an element

¢ = () of H*® with we((an)) = A and ||¢]| = Z||Cn||2 = 1. Define a normal state

n=1

o0
@ of M with ¢ = chn, then

n=1
p(a) =D _(alnlCn) = we((an)) = A.
- n=1
Thus ) is an element of V' (a). Therefore, V(a) = W((a,)). O

Furthermore, we can show the relation W(a) = V(a). For the proof of this fact,

we have the following considerations.



Lemma 2. Let M be a von Neumann algebra containing an operator a. If {1, }32,

be a sequence of element in V(a) and {an}32, a sequence of non-negative num-
o0 o0

bers with Zan =1, then Zan n 15 an element of V(a). In particular, V(a) =

n=1

{ZaJ/\J,)\ € W(a),0; >0, Ea, = 1}

j=1

Proof. Since {A\,}2, is a sequence of elements in V' (a), there exists a normal state

@n with ¢,(a) = A, for every n. Then, we have the relation;
o o) o0 o0
Y llondall =D anllgnll = > an = 1.
n=1 n=1 n=1

Since NS(M) is a Banach space, Zanqbn converges to an element of NS(M). Put

n=1
o= Zand)n, then ¢ € NS(M) and
n=1
$(a) = Zancpn (a) = Zan
is an element of V (a). O

By considering the properties appeared in Lemma 2, we shall give a property for

the bounded convex sets in the complex plane C.

Lemma 3. Let A be a bounded convez subset of the complexr number plane C, then

we have the following relation

= {Za]—/\j;/\j S A,G,j > O,Zaj = 1} .
7j=1 i=1

o0 o0
Proof. Let B = {Zaj)\j; Aj€Aa; >0, Zaj = 1}, then B is contained the clo-
.=1 ’=

sure A of A. We suppose that B\ A # 0. If ) is an element of B \ A, then A

is an element of A\ A. Since A is a convex set and A is not an element of A,



there exists a line £ of support A at \. We can in general suppose that A = 1,
o0

¢ ={z € CGRez = 1} and A C {z € GRez < 1}. Put1l = X = Zaj/\j.
7j=1

Since ReX; < 1,a; > 0(j = 1,2,---) and Zaj = 1, we can show the relation
=1

Red; =1(j =1,2,--+). Thus, each A; is on the line /(= {2z € C;Rez = 1}). Since
all \; (j =1,2,--) are elements of A, A is a convex set and A is not an element
of A, each }; is on the half part of the line ¢ with respect to A. Thus, we have
the relation Im); > 0 for every j or Im); < 0 for every j. Therefore, we have the

following relation;
0=1ImA=Im(} _a;};) =) a;(Im};) #0.
. ji=1 j=1

This is a contradiction. Therefore ) is an element of A. 0

We get the following properties from the above mentioned Lemma 2 and Lemma, 3

that it is the main part in this paper.

Theorem 4. The original numerical range W(a) and our numerical range V' (a) for

every operator a coincide.

Corollary 5. If ¢ is a normal state on a von Neumann algebra M acting on a

Hilbert space H and a in M, then there ezists a vector & of H satisfying ¢(a) = we(a).

Remark. In general, W(a) does not equal to U(a) by [1]. The referee gave the

following example.

Example. We consider the operator a : 12 = [2 defined by a(zy,zs,%3,+) =
(z1, 1z2, 23, -+). Then W(a) = (0,1]. But #(a) = 0 for any singular state ¢ on
B(1?).

Let a be an operator acting on a Hilbert space H and M a von Neumann algebra

containing a and 1. If 7 is a faithful normal *-representation of M onto a von



Neumann algebra A on a Hilbert space K, then ‘r(NS(N)) = NS(M) and so

V(a) = V(m(a)). Thus, by considering Theorem 4, we have the following theorem.

Theorem 6. Let a be an operator acting on a Hilbert space H and M a von Neu-
mann algebra containing a. Let w be a faithful normal representation of M, then
W(a) = W(r(a)).

Berberian and Ofland introduced the numerical ranges of elements of C*-algebras.
Furthermore, Bonsal and Duncan introduced the numerical ranges for elements of
normed algebras and Banach algebras in (3] and [4]. As an application of Theorem,
we can introduce the numerical ranges in a sense of notions in [1], [3] and [4]:

Let M be a W*-algebra with the pre-dual space M, and (M,)} = {¢ € M,; (1)
1 and ¢(z*z) > 0 for every z € M}. For every element a in M, define Vy,(a) =
{#(a); ¢ € (M.)}}. Then we have the following corollary.

Corollary 7. Let M be a W*-algebra with pre-dual space M, and a an element
of M. If m is a faithful normal x-representation of M to a Hilbert space H,, then
Vam(a) = V(m(a)) = W(n(a))-
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