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A REMARK OF THE NUMERICAL RANGES OF

OPERATORS ON HILBERT SPACES

HIDEO TAKEMOTO AND ATSUSHI UCHIYAMA

ABSTRACT. The usual numerical ranges of an operator $a$ acting on a Hilbert space
$\mathcal{H}$ is defined as $W(a)=\{(a\xi|\xi);\xi\in \mathcal{H}, ||\xi||=1\}$ . This numerical range depends

on the Hilbert space. In this paper, we consider a von Neumann algebra containing
$a$ and introduce another notion of numerical range for $a$ . Under this consideration,

we shall show that the numerical range of every operator does not depend on the

Hilbert space in a sense.

We deal with bounded linear operators on a separable Hilbert space with inner
product $(|)$ . Let $\mathcal{B}(\mathcal{H})$ be the von Neumann algebra consisting of all bounded

operators on $\mathcal{H}$ .
The numerical range of an operator $a$ is the subset of the complex numbers $\mathbb{C}$,

given by

$W(a)=\{(a\xi|\xi);\xi\in \mathcal{H}, ||\xi||=1\}$ .

Then $W(a)$ is a convex set (for example see, [6, p.314]).

Many authors gave the properties of numerical ranges of the operators concerned
with the spectrum $\sigma(a)$ and the norm $\Vert a\Vert$ . We know many results for these proper-
ties.

Furthermore, Berberian and Orland [1] introduce the following notion by which
they gave a result on the closure of the numerical range of an operator: Let $a$ be

an operator on $\mathcal{H}$ and $\mathcal{A}$ a $C^{*}$-algebra containing $a$ and the identity operator 1
on $\mathcal{H}$ . Let write $S(\mathcal{A})$ for the set of all states of $\mathcal{A}$ , that is the set of all linear
functional on $\mathcal{A}$ such that $\phi(1)=1$ and $\phi(x^{*}x)\geq 0$ for all $x\in \mathcal{A}$ ; then $S(\mathcal{A})$

is a convex subset of the dual space of $\mathcal{A}$ , and is compact in the weak*-topology.

Let $U(a)=\{\phi(a);\phi\in S(\mathcal{A})\}$ , then $U(a)$ is a compact and convex subset of $\mathbb{C}$ .
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And Berberian and Orland gave a characterization of the closure $\overline{W(a)}$ of $W(a)$ by

showing $U(a)=\overline{W(a)}$ .
By considering the notion of numerical range of every operator $a$ introduced by

Berberian and Orland and von Neumann algebra containing $a$ , we shall introduce
the following another notion of numerical range for an operator $a$ .

Let $a$ be an operator on $\mathcal{H}$ and $\mathcal{M}$ a von Neumann algebra containing $a$ and 1.

Let $NS(\mathcal{M})$ denote the set of all normal states of $\mathcal{M}$ and define $ V(a)=\{\phi(a);\emptyset\in$

$NS(\mathcal{M}).\}$ Then, since $NS(\mathcal{M})$ is a convex set in the dual space $\mathcal{M}^{*}$ of $\mathcal{M},$ $V(a)$ is
a convex subset of $\mathbb{C}$ and has the properties as the usual numerical range;

$V(\alpha 1+\beta a)=\alpha+\beta V(a)$ for $\alpha,$ $\beta\in \mathbb{C}$ ,

$V(a^{*})=\{\overline{\lambda};\lambda\in V(a)\}$ ,

$V(u^{*}au)=V(a)$ for every unitary $u\in \mathcal{B}(\mathcal{H})$ .

Furthermore, the linear functional (so called vector states) $\omega_{\xi}(\xi\in \mathcal{H}, \Vert\xi||=1)$

defined by

$\omega_{\zeta}(x)=(x\xi|\xi)$ for all $x\in \mathcal{M}$

is a normal state of $\mathcal{M}$ , thus $W(a)\subset V(a)$ . And also, we have the relation

$W(a)\subset V(a)\subset U(a)$ .

Let $\mathcal{M}$ be a von Neumann algebra acting on $\mathcal{H}$ and $\mathcal{N}$ a von Neumann subalgebra
of $\mathcal{M}$ , then $NS(\mathcal{N})=\{\phi|_{\mathcal{N}};\phi\in NS(\mathcal{M})\}$ . If $b$ is an element of $\mathcal{N}$ , then $V_{M}(b)=$

$V_{\mathcal{N}}(b)$ . Furthermore, we have the following fundamental properties.
Let $\mathcal{M}$ be a von Neumann algebra containing $a$ and 1. If $\mathcal{M}$ has a cyclic and

separating vector, then any normal state is a vector state (for example, see [4, $m$ ,

Chapter 1, Theorem 4]) and so $f’\dagger^{\gamma}(a)=V(a)$ . Furthermore, if the Hilbert space
$\mathcal{H}$ on which $a$ is acting is finite dimensional, then $\dot{W}(a)$ is a compact subset (for

example see [5; Theorem 5.1-1]) and so $W(a)=V(a)=U(a)$ .

By considering the definition for $V(a)$ , we have the following property.
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Proposition 1. Let $a$ be an operator on $\mathcal{H}$ . Let $\mathcal{H}^{\infty}$ be the Hilbert space of direct

summand $\mathcal{H}\oplus \mathcal{H}\oplus \mathcal{H}\oplus\cdots$ and $(a_{n})$ the operator on $\mathcal{H}^{\infty}$ with $a_{n}=a$ for every $n$ .

Then $V(a)=W((a_{n}))$ .

Proof. Let $\mathcal{M}$ be a von Neumann algebra generated by $a$ and 1. Let $\lambda$ be an element

of $V(a)$ , then there exists an element $\phi$ of $NS(\mathcal{M})$ with $\phi(a)=\lambda$ . Put $\phi=\sum_{n=1}^{\infty}\omega_{\zeta_{\mathfrak{n}}}$

with $\phi(1)=\sum_{n=1}^{\infty}||\xi_{n}\Vert^{2}=1$ that $\xi_{n}$ is not zero vector. Furthermore, put $\alpha_{n}=||\xi_{n}||$

and $\eta_{n}=\frac{1}{\alpha_{n}}\xi_{n}$ for $n=1,2,$ $\cdots$ , then $\Vert\eta_{n}||=1$ and

$\phi(a)=\sum_{n=1}^{\infty}(a\xi_{n}|\xi_{n})=\sum_{n=1}^{\infty}(a(\alpha_{n}\eta_{n})|\alpha_{n}\eta_{n})=\lambda$ .

Let $\eta=(\alpha_{n}\eta_{n})$ in $\mathcal{H}^{\infty}$ , then $\Vert\eta\Vert=1$ and

$\omega_{\eta}((a_{n}))=((a_{n})\eta|\eta)=\sum_{n=1}^{\infty}(a(\alpha_{n}\eta_{n})|\alpha_{n}\eta_{n})=\phi(a)=\lambda$ .

Thus $\lambda$ is an element of $W((a_{n}))$ .

On the other hand, let $\lambda$ be an element of $W((a_{n}))$ , then there exists an element

$\zeta=(\zeta_{n})$ of $\mathcal{H}^{\infty}$ with $\omega_{\zeta}((a_{n}))=\lambda$ and $||\zeta$ Il $=\sqrt{\sum_{n=1}^{\infty}||\zeta_{n}||^{2}}=1$ . Define a normal state

$\varphi$ of $\mathcal{M}$ with $\varphi=\sum_{n=1}^{\infty}\omega_{\zeta_{n}}$ , then

$\varphi(a)=\sum_{n=1}^{\infty}(a\zeta_{n}|\zeta_{n})=\omega_{\zeta}((a_{n}))=\lambda$ .

Thus $\lambda$ is an element of $V(a)$ . Therefore, $V(a)=W((a_{n}))$ . $\square $

Furthermore, we can show the relation $\nu V(a)=V(a)$ . For the proof of this fact,

we have the following considerations.
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Lemma 2. Let $\mathcal{M}$ be a von Neumann algebra containing an operator $a$ . If $\{\lambda_{n}\}_{n=1}^{\infty}$

be a sequence of element in $V(a)$ and $\{\alpha_{n}\}_{n=1}^{\infty}$ a sequence of non-negative num-

bers with $\sum_{n=1}^{\infty}\alpha_{n}=1$ , then $\sum_{n=1}^{\infty}\alpha_{n}\lambda_{n}$ is an element of $V(a)$ . In particular, $V(a)=$

$\sum_{j=1}^{\infty}\alpha_{j}\lambda_{j};\lambda_{j}\in W(a),$ $\alpha_{j}\geq 0,$ $\sum_{j=1}^{\infty}\alpha_{j}=1$

Proof. Since $\{\lambda_{n}\}_{n=1}^{\infty}$ is a sequence of elements in $V(a)$ , there exists a normal state
$\phi_{n}$ with $\phi_{n}(a)=\lambda_{n}$ for every $n$ . Then, we have the relation;

$\sum_{n=1}^{\infty}$ II $\alpha_{n}\phi_{n}||=\sum_{n=1}^{\infty}\alpha_{n}\Vert\phi_{n}\Vert=\sum_{n=1}^{\infty}\alpha_{n}=1$ .

Since $NS(\mathcal{M})$ is a Banach space, $\sum_{n=1}^{\infty}\alpha_{n}\phi_{n}$ converges to an element of $NS(\mathcal{M})$ . Put

$\phi=\sum_{n=1}^{\infty}\alpha_{n}\phi_{\mathfrak{n}}$ , then $\phi\in NS(\mathcal{M})$ and

$\phi(a)=\sum_{n=1}^{\infty}\alpha_{n}\phi_{n}(a)=\sum_{n=1}^{\infty}\alpha_{n}\lambda_{n}$

is an element of $V(a)$ . $\square $

By considering the properties appeared in Lemma 2, we shall give a property for
the bounded convex sets in the complex plane $\mathbb{C}$ .

Lemma 3. Let $A$ be a bounded convex subset of the complex number plane $\mathbb{C}$, then
we have the following relation

$A=\{\sum_{j=1}^{\infty}a_{j}\lambda_{j};\lambda_{j}\in A,$ $a_{j}\geq 0,\sum_{j=1}^{\infty}a_{j}=1\}$ .

Proof. Let $B=\{\sum_{j=1}^{\infty}a_{j}\lambda_{j}$ ; $\lambda_{j}\in A,$ $a_{j}\geq 0,$ $\sum_{j=1}^{\infty}a_{j}=1\}$ , then $B$ is contained the clo-

sure $\overline{A}$ of $A$ . We suppose that $ B\backslash A\neq\emptyset$ . If $\lambda$ is an element of $B\backslash A$ , then $\lambda$

is an element of $\overline{A}\backslash A$ . Since $A$ is a convex set and $\lambda$ is not an element of $A$ ,
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there exists a line $p$ of support $A$ at $\lambda$ . We can in general suppose that $\lambda=1$ ,

$\ell=\{z\in \mathbb{C};{\rm Re} z=1\}$ and $A\subset\{z\in \mathbb{C};{\rm Re} z\leq 1\}$ . Put 1 $=\lambda=\sum_{j=1}^{\infty}a_{j}\lambda_{j}$ .

Since ${\rm Re}\lambda_{j}\leq 1,$ $a_{j}\geq 0(j=1,2, \cdots)$ and $\sum_{j=1}^{\infty}a_{j}=1$ , we can show the relation

${\rm Re}\lambda_{j}=1(j=1,2, \cdots)$ . Thus, each $\lambda_{j}$ is on the line $\ell(=\{z\in \mathbb{C};{\rm Re} z=1\})$ . Since

all $\lambda_{j}(j=1,2, \cdots)$ are elements of $A,$ $A$ is a convex set and $\lambda$ is not an element

of $A$ , each $\lambda_{j}$ is on the half part of the line $\ell$ with respect to $\lambda$ . Thus, we have

the relation ${\rm Im}\lambda_{j}>0$ for every $j$ or ${\rm Im}\lambda_{j}<0$ for every $j$ . Therefore, we have the

following relation;

$0={\rm Im}\lambda={\rm Im}(\sum_{j=1}^{\infty}a_{j}\lambda_{j})=\sum_{j=1}^{\infty}a_{j}({\rm Im}\lambda_{j})\neq 0$ .

This is a contradiction. Therefore $\lambda$ is an element of A. $\square $

We get the following properties from the above mentioned Lemma 2 and Lemma 3
that it is the main part in this paper.

Theorem 4. The original numerical range $W(a)$ and our numerical mnge $V(a)$ for
every operator a coincide.

Corollary 5. If $\phi$ is a normal state on a von Neumann algebra $\mathcal{M}$ acting on a

Hilbert space $\mathcal{H}$ and $a$ in $\mathcal{M}$ , then there exists a $ vector\xi$ of $\mathcal{H}$ satisfying $\phi(a)=\omega_{\xi}(a)$ .

Remark. In general, $W(a)$ does not equal to $U(a)$ by [1]. The referee gave the

following example.

Example. We consider the operator $a$ : $l^{2}\rightarrow l^{2}$ defined by $a(x_{1}, x_{2}, x_{3}, \cdots)=$

$(x_{1}, \frac{1}{2}x_{2}, \frac{1}{3}x_{3}, \cdots)$ . Then II$’(a)=(0,1$ ]. But $\phi(a)=0$ for any singular state $\phi$ on
$\mathcal{B}(l^{2})$ .

Let $a$ be an operator acting on a Hilbert space $\mathcal{H}$ and $\mathcal{M}$ a von Neumann algebra

containing $a$ and 1. If $\pi$ is a faithful normal $*$-representation of $\mathcal{M}$ onto a von
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Neumann algebra $\mathcal{N}$ on a Hilbert space $\mathcal{K}$ , then ${}^{t}\pi(NS(\mathcal{N}))=NS(\mathcal{M})$ and so
$V(a)=V(\pi(a))$ . Thus, by considering Theorem 4, we have the following theorem.

Theorem 6. Let $a$ be an opemtor acting on a Hilbert space $\mathcal{H}$ and $\mathcal{M}$ a von Neu-
mann algebra containing $a$ . Let $\pi$ be a faithful normal representation of $\mathcal{M}_{f}$ then
$W(a)=W(\pi(a))$ .

Berberian and Orland introduced the numerical ranges of elements of C’-algebras.
Furthermore, Bonsal and Duncan introduced the numerical ranges for elements of
normed algebras and Banach algebras in [3] and [4]. As an application of Theorem,
we can introduce the numerical ranges in a sense of notions in [1], [3] and [4]:

Let $\mathcal{M}$ be a $W$“-algebra with the pre-dual space $\mathcal{M}_{*}$ and $(\mathcal{M}_{*})_{1}^{+}=\{\phi\in \mathcal{M}_{*};\phi(1)=$

$1$ and $\phi(x^{*}x)\geq 0$ for every $x\in \mathcal{M}$ }. For every element $a$ in $\mathcal{M}$ , define $V_{\mathcal{M}}(a)=$

$\{\phi(a);\phi\in(\mathcal{M}_{*})_{1}^{+}\}$ . Then we have the following corollary.

Corollary 7. Let $\mathcal{M}$ be a $W^{*}$ -algebra with pre-dual space $\mathcal{M}_{*}$ and $a$ an element
of $\mathcal{M}$ . If $\pi$ is a faithful $normal*$ -representation of $\mathcal{M}$ to a Hilbert space $\mathcal{H}_{\pi f}$ then
$V_{M}(a)=V(\pi(a))=W(\pi(a))$ .
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