A REMARK OF THE NUMERICAL RANGES OF OPERATORS ON HILBERT SPACES

HIDEO TAKEMOTO AND ATSUSHI UCHIYAMA

ABSTRACT. The usual numerical ranges of an operator a acting on a Hilbert space \mathcal{H} is defined as $W(a)=\{(a\xi|\xi); \xi\in\mathcal{H}, \ \|\xi\|=1\}$. This numerical range depends on the Hilbert space. In this paper, we consider a von Neumann algebra containing a and introduce another notion of numerical range for a. Under this consideration, we shall show that the numerical range of every operator does not depend on the Hilbert space in a sense.

We deal with bounded linear operators on a separable Hilbert space with inner product (|). Let $\mathcal{B}(\mathcal{H})$ be the von Neumann algebra consisting of all bounded operators on \mathcal{H} .

The numerical range of an operator a is the subset of the complex numbers \mathbb{C} , given by

$$W(a) = \{(a\xi|\xi); \xi \in \mathcal{H}, ||\xi|| = 1\}.$$

Then W(a) is a convex set (for example see, [6, p.314]).

Many authors gave the properties of numerical ranges of the operators concerned with the spectrum $\sigma(a)$ and the norm ||a||. We know many results for these properties.

Furthermore, Berberian and Orland [1] introduce the following notion by which they gave a result on the closure of the numerical range of an operator: Let a be an operator on \mathcal{H} and \mathcal{A} a C^* -algebra containing a and the identity operator 1 on \mathcal{H} . Let write $S(\mathcal{A})$ for the set of all states of \mathcal{A} , that is the set of all linear functional on \mathcal{A} such that $\phi(1) = 1$ and $\phi(x^*x) \geq 0$ for all $x \in \mathcal{A}$; then $S(\mathcal{A})$ is a convex subset of the dual space of \mathcal{A} , and is compact in the weak*-topology. Let $U(a) = {\phi(a); \phi \in S(\mathcal{A})}$, then U(a) is a compact and convex subset of \mathbb{C} .

²⁰⁰⁰ Mathematics Subject Classification. 47A12.

And Berberian and Orland gave a characterization of the closure $\overline{W(a)}$ of W(a) by showing $U(a) = \overline{W(a)}$.

By considering the notion of numerical range of every operator a introduced by Berberian and Orland and von Neumann algebra containing a, we shall introduce the following another notion of numerical range for an operator a.

Let a be an operator on \mathcal{H} and \mathcal{M} a von Neumann algebra containing a and 1. Let $NS(\mathcal{M})$ denote the set of all normal states of \mathcal{M} and define $V(a) = \{\phi(a); \phi \in NS(\mathcal{M}).\}$ Then, since $NS(\mathcal{M})$ is a convex set in the dual space \mathcal{M}^* of \mathcal{M} , V(a) is a convex subset of \mathbb{C} and has the properties as the usual numerical range;

$$V(\alpha 1 + \beta a) = \alpha + \beta V(a) \text{ for } \alpha, \beta \in \mathbb{C},$$
 $V(a^*) = \{\overline{\lambda}; \lambda \in V(a)\},$ $V(u^*au) = V(a) \text{ for every unitary } u \in \mathcal{B}(\mathcal{H}).$

Furthermore, the linear functional (so called vector states) ω_{ξ} ($\xi \in \mathcal{H}, ||\xi|| = 1$) defined by

$$\omega_{\xi}(x) = (x\xi|\xi)$$
 for all $x \in \mathcal{M}$

is a normal state of \mathcal{M} , thus $W(a) \subset V(a)$. And also, we have the relation

$$W(a) \subset V(a) \subset U(a)$$
.

Let \mathcal{M} be a von Neumann algebra acting on \mathcal{H} and \mathcal{N} a von Neumann subalgebra of \mathcal{M} , then $NS(\mathcal{N}) = \{\phi|_{\mathcal{N}}; \phi \in NS(\mathcal{M})\}$. If b is an element of \mathcal{N} , then $V_{\mathcal{M}}(b) = V_{\mathcal{N}}(b)$. Furthermore, we have the following fundamental properties.

Let \mathcal{M} be a von Neumann algebra containing a and 1. If \mathcal{M} has a cyclic and separating vector, then any normal state is a vector state (for example, see [4, \mathbb{II} , Chapter 1, Theorem 4]) and so W(a) = V(a). Furthermore, if the Hilbert space \mathcal{H} on which a is acting is finite dimensional, then $\dot{W}(a)$ is a compact subset (for example see [5; Theorem 5.1-1]) and so W(a) = V(a) = U(a).

By considering the definition for V(a), we have the following property.

Proposition 1. Let a be an operator on \mathcal{H} . Let \mathcal{H}^{∞} be the Hilbert space of direct summand $\mathcal{H} \oplus \mathcal{H} \oplus \mathcal{H} \oplus \cdots$ and (a_n) the operator on \mathcal{H}^{∞} with $a_n = a$ for every n. Then $V(a) = W((a_n))$.

Proof. Let \mathcal{M} be a von Neumann algebra generated by a and 1. Let λ be an element of V(a), then there exists an element ϕ of $NS(\mathcal{M})$ with $\phi(a) = \lambda$. Put $\phi = \sum_{n=1}^{\infty} \omega_{\xi_n}$ with $\phi(1) = \sum_{n=1}^{\infty} ||\xi_n||^2 = 1$ that ξ_n is not zero vector. Furthermore, put $\alpha_n = ||\xi_n||$ and $\eta_n = \frac{1}{\alpha_n} \xi_n$ for $n = 1, 2, \dots$, then $||\eta_n|| = 1$ and

$$\phi(a) = \sum_{n=1}^{\infty} (a\xi_n | \xi_n) = \sum_{n=1}^{\infty} (a(\alpha_n \eta_n) | \alpha_n \eta_n) = \lambda.$$

Let $\eta = (\alpha_n \eta_n)$ in \mathcal{H}^{∞} , then $||\eta|| = 1$ and

$$\omega_{\eta}((a_n)) = ((a_n)\eta|\eta) = \sum_{n=1}^{\infty} (a(\alpha_n\eta_n)|\alpha_n\eta_n) = \phi(a) = \lambda.$$

Thus λ is an element of $W((a_n))$.

On the other hand, let λ be an element of $W((a_n))$, then there exists an element $\zeta = (\zeta_n)$ of \mathcal{H}^{∞} with $\omega_{\zeta}((a_n)) = \lambda$ and $\|\zeta\| = \sqrt{\sum_{n=1}^{\infty} \|\zeta_n\|^2} = 1$. Define a normal state φ of \mathcal{M} with $\varphi = \sum_{n=1}^{\infty} \omega_{\zeta_n}$, then

$$\varphi(a) = \sum_{n=1}^{\infty} (a\zeta_n|\zeta_n) = \omega_{\zeta}((a_n)) = \lambda.$$

Thus λ is an element of V(a). Therefore, $V(a) = W((a_n))$.

Furthermore, we can show the relation W(a) = V(a). For the proof of this fact, we have the following considerations.

Lemma 2. Let \mathcal{M} be a von Neumann algebra containing an operator a. If $\{\lambda_n\}_{n=1}^{\infty}$ be a sequence of element in V(a) and $\{\alpha_n\}_{n=1}^{\infty}$ a sequence of non-negative numbers with $\sum_{n=1}^{\infty} \alpha_n = 1$, then $\sum_{n=1}^{\infty} \alpha_n \lambda_n$ is an element of V(a). In particular, $V(a) = \left\{\sum_{j=1}^{\infty} \alpha_j \lambda_j; \lambda_j \in W(a), \alpha_j \geq 0, \sum_{j=1}^{\infty} \alpha_j = 1\right\}$.

Proof. Since $\{\lambda_n\}_{n=1}^{\infty}$ is a sequence of elements in V(a), there exists a normal state ϕ_n with $\phi_n(a) = \lambda_n$ for every n. Then, we have the relation;

$$\sum_{n=1}^{\infty} \|\alpha_n \phi_n\| = \sum_{n=1}^{\infty} \alpha_n \|\phi_n\| = \sum_{n=1}^{\infty} \alpha_n = 1.$$

Since $NS(\mathcal{M})$ is a Banach space, $\sum_{n=1}^{\infty} \alpha_n \phi_n$ converges to an element of $NS(\mathcal{M})$. Put $\phi = \sum_{n=1}^{\infty} \alpha_n \phi_n$, then $\phi \in NS(\mathcal{M})$ and

$$\phi(a) = \sum_{n=1}^{\infty} \alpha_n \phi_n(a) = \sum_{n=1}^{\infty} \alpha_n \lambda_n$$

is an element of V(a).

By considering the properties appeared in Lemma 2, we shall give a property for the bounded convex sets in the complex plane C.

Lemma 3. Let A be a bounded convex subset of the complex number plane \mathbb{C} , then we have the following relation

$$A = \left\{ \sum_{j=1}^{\infty} a_j \lambda_j; \lambda_j \in A, a_j \ge 0, \sum_{j=1}^{\infty} a_j = 1 \right\}.$$

Proof. Let $B = \left\{ \sum_{j=1}^{\infty} a_j \lambda_j; \lambda_j \in A, a_j \geq 0, \sum_{j=1}^{\infty} a_j = 1 \right\}$, then B is contained the closure \overline{A} of A. We suppose that $B \setminus A \neq \emptyset$. If λ is an element of $B \setminus A$, then λ is an element of $\overline{A} \setminus A$. Since A is a convex set and λ is not an element of A,

there exists a line ℓ of support A at λ . We can in general suppose that $\lambda=1$, $\ell=\{z\in\mathbb{C}; \operatorname{Re} z=1\}$ and $A\subset\{z\in\mathbb{C}; \operatorname{Re} z\leq1\}$. Put $1=\lambda=\sum_{j=1}^\infty a_j\lambda_j$.

Since $\operatorname{Re}\lambda_j \leq 1$, $a_j \geq 0$ $(j=1,2,\cdots)$ and $\sum_{j=1}^{\infty} a_j = 1$, we can show the relation $\operatorname{Re}\lambda_j = 1$ $(j=1,2,\cdots)$. Thus, each λ_j is on the line $\ell (=\{z\in\mathbb{C}; \operatorname{Re}z=1\})$. Since all λ_j $(j=1,2,\cdots)$ are elements of A, A is a convex set and λ is not an element of A, each λ_j is on the half part of the line ℓ with respect to λ . Thus, we have the relation $\operatorname{Im}\lambda_j > 0$ for every j or $\operatorname{Im}\lambda_j < 0$ for every j. Therefore, we have the following relation;

$$0 = \operatorname{Im} \lambda = \operatorname{Im} \left(\sum_{j=1}^{\infty} a_j \lambda_j \right) = \sum_{j=1}^{\infty} a_j (\operatorname{Im} \lambda_j) \neq 0.$$

This is a contradiction. Therefore λ is an element of A.

We get the following properties from the above mentioned Lemma 2 and Lemma 3 that it is the main part in this paper.

Theorem 4. The original numerical range W(a) and our numerical range V(a) for every operator a coincide.

Corollary 5. If ϕ is a normal state on a von Neumann algebra \mathcal{M} acting on a Hilbert space \mathcal{H} and a in \mathcal{M} , then there exists a vector ξ of \mathcal{H} satisfying $\phi(a) = \omega_{\xi}(a)$.

Remark. In general, W(a) does not equal to U(a) by [1]. The referee gave the following example.

Example. We consider the operator $a: l^2 \to l^2$ defined by $a(x_1, x_2, x_3, \cdots) = (x_1, \frac{1}{2}x_2, \frac{1}{3}x_3, \cdots)$. Then W(a) = (0, 1]. But $\phi(a) = 0$ for any singular state ϕ on $\mathcal{B}(l^2)$.

Let a be an operator acting on a Hilbert space \mathcal{H} and \mathcal{M} a von Neumann algebra containing a and 1. If π is a faithful normal *-representation of \mathcal{M} onto a von

Neumann algebra \mathcal{N} on a Hilbert space \mathcal{K} , then ${}^t\pi(NS(\mathcal{N})) = NS(\mathcal{M})$ and so $V(a) = V(\pi(a))$. Thus, by considering Theorem 4, we have the following theorem.

Theorem 6. Let a be an operator acting on a Hilbert space \mathcal{H} and \mathcal{M} a von Neumann algebra containing a. Let π be a faithful normal representation of \mathcal{M} , then $W(a) = W(\pi(a))$.

Berberian and Orland introduced the numerical ranges of elements of C^* -algebras. Furthermore, Bonsal and Duncan introduced the numerical ranges for elements of normed algebras and Banach algebras in [3] and [4]. As an application of Theorem, we can introduce the numerical ranges in a sense of notions in [1], [3] and [4]:

Let \mathcal{M} be a W^* -algebra with the pre-dual space \mathcal{M}_* and $(\mathcal{M}_*)_1^+ = \{\phi \in \mathcal{M}_*; \phi(1) = 1 \text{ and } \phi(x^*x) \geq 0 \text{ for every } x \in \mathcal{M}\}$. For every element a in \mathcal{M} , define $V_{\mathcal{M}}(a) = \{\phi(a); \phi \in (\mathcal{M}_*)_1^+\}$. Then we have the following corollary.

Corollary 7. Let \mathcal{M} be a W^* -algebra with pre-dual space \mathcal{M}_* and a an element of \mathcal{M} . If π is a faithful normal *-representation of \mathcal{M} to a Hilbert space \mathcal{H}_{π} , then $V_{\mathcal{M}}(a) = V(\pi(a)) = W(\pi(a))$.

REFERENCES

- [1] S. K. Berberian and G. H. Orland, On the closure of the numerical range of an operator, Proc. Amer. Math. Soc., 18 (1967), 499-503.
- [2] F. F. Bonsal and J. Duncan, Numerical ranges of operators on normed spaces and elements of normed algebras, London Mathematical Society Lecture Note Series 2, Cambridge University Press, 1971.
- [3] F. F. Bonsal and J. Duncan, *Numerical ranges* I, London Mathematical Society Lecture Note Series 10, Cambridge University Press, 1973.
- [4] J. Dixmier, Von Neumann algebras, North-Holland, 1981.
- [5] K. E. Gustafson, D. K. M. Rao, Numerical range, Springer-Verlag, New York, 1997.
- [6] P. Halmos, A Hilbert space problem book, 2nd ed., Springer-Verlag, New York, 1982.

HIDEO TAKEMOTO

DEPARTMENT OF MATHEMATICS,

MIYAGI UNIVERSITY OF EDUCATION,

ARAMAKI AOBA, AOBA-KU,

SENDAI 980-0845,

JAPAN

ATSUSHI UCHIYAMA
MATHEMATICAL INSTITUTE,
TOHOKU UNIVERSITY,
SENDAI 980-8578,
JAPAN

Received October 22, 2001 Revised February 14, 2002