Minimal singular compactifications of the affine plane

Hideo KOJIMA

Abstract

Let X be a minimal compactification of the complex affine plane $\mathbf{C}^{\mathbf{2}}$. In this paper, we show that X is a log del Pezzo surface of rank one and determine the singularity type of X in the case where X has at most quotient singularities.

2000 Mathematical Subject Classification. Primary 14J26, Secondary 14J17.
Key words and phrases. Compactification, Log del Pezzo surface.

0 Introduction

A normal compact complex surface X is called a compactification of the complex affine plane \mathbf{C}^{2} if there exists a closed subvariety Γ of X such that $X-\Gamma$ is biholomorphic to \mathbf{C}^{2}. We denote simply the compactification by the pair (X, Γ). A compactification (X, Γ) of \mathbf{C}^{2} is said to be minimal if Γ is irreducible.

Remmert-Van de Ven [26] proved that if (X, Γ) is a minimal compactification of \mathbf{C}^{2} and X is smooth then $(X, \Gamma)=\left(\mathbf{P}^{2}\right.$, line $)$. Brenton [3], Brenton-Drucker-Prins [4] and Miyanishi-Zhang [21] studied minimal compactifications of \mathbf{C}^{2} with at most rational double points and proved the following results.

Theorem 0.1 (cf. [3], [4] and [21]) If (X, Γ) is a minimal compactification of C^{2} and X has at most rational double points, then X is a log del Pezzo surface of rank one (for the definition, see Definition 2.1). Further, if Sing $X \neq \emptyset$, then the singularity type of X is given as one of the following:

$$
A_{1}, A_{1}+A_{2}, A_{4}, D_{5}, E_{6}, E_{7}, E_{8}
$$

Conversely, if X is a Gorenstein log del Pezzo surface of rank one such that the singularity type of X is given as one of the listed as above, then X is a minimal compactification of \mathbf{C}^{2}.

Theorem 0.2 (cf. [21, Theorem 2]) Let X be a Gorenstein log del Pezzo surface of rank one. Then X is a minimal compactification of \mathbf{C}^{2} if and only if $\pi_{1}(X-\operatorname{Sing} X)=(1)$.

Recently, Furushima [7] classified minimal compactifications of \mathbf{C}^{2} which are normal hypersurfaces of degree ≤ 4 in \mathbf{P}^{3}.

In the present article, we study minimal compactifications of \mathbf{C}^{2} with at most quotient singular points (cf. [2]). Let X be a minimal compactification of C^{2} with at most quotient singular points. We prove that X is a \log del Pezzo surface of rank one and determine the singularity type of X (see Theorem 1.1).

Here, we propose the following problems:
Problem 1 (Converse of Theorem 1.1) Let X be a log del Pezzo surface of rank one. Assume that the singularity type of X is given as one of the listed in Appendix C. Is then X a minimal compactification of \mathbf{C}^{2} ?
Problem 2 (cf. [20]) Let X be a log del Pezzo surface of rank one. Assume that $\pi_{1}(X-\operatorname{Sing} X)=(1)$. Is then X a minimal compactification of \mathbf{C}^{2} ?

In general, Problems 1 and 2 are false (see $\S \S 3$ and 4). However, Theorems 0.1 and 0.2 imply that Problems 1 and 2 are true in the case where X has at most rational double points. Recently, the author [17] classified the \log del Pezzo surfaces of rank one and of index two (see [17, Theorem 1]). By [17, Theorem 1], we know that Problems 1 and 2 are true if the index of X is equal to two. We prove that Problem 1 is true if the index of X is equal to three (Theorem 1.2).

In our forthcoming paper, we prove the following result.
With the same notation and assumptions as in Problem 1, assume further that X has a non-cyclic quotient singular point. Then X is a minimal compactification of \mathbf{C}^{2}.

Terminology. A ($-n$)-curve is a nonsingular complete rational curve with self-intersection number $-n$. A reduced effective divisor D is called an NC-divisor (resp. an SNC-divisor) if D has only normal (resp. simple normal) crossings. We employ the following notation:
K_{X} : the canonical divisor on X.
$\bar{\kappa}(X-D):$ the logarithmic Kodaira dimension of an open surface $X-D$ (cf. [11], etc.).
$\rho(X)$: the Picard number of X.
$\mathbf{F}_{n}(n \geq 0)$: the Hirzebruch surface of degree n.
$M_{n}(n \geq 0)$: a minimal section of a fixed ruling on \mathbf{F}_{n}.
\#D: the number of all irreducible components in Supp D.

1 Results

We state the main results of the present article.
In $\S 3$, we prove the following result.
Theorem 1.1 Let (X, Γ) be a minimal compactification of C^{2}. Assume that X has at most quotient singular points and $\operatorname{Sing} X \neq \emptyset$. Then the following assertions hold true:
(1) X is a log del Pezzo surface of rank one.
(2) Let $\pi:(V, D) \rightarrow X$ be the minimal resolution of X, where D is the reduced exceptional divisor, and let C be the proper transform of Γ on V. Then, $C \cong \mathbf{P}^{1}$, the divisor $C+D$ is an SNC-divisor and the weighted dual graph of $C+D$ is given as (n) $(1 \leq n \leq 32)$ in Appendix C. In particular, $\# \operatorname{Sing} X \leq 2$.

In $\S 5$, we prove the following result.
Theorem 1.2 Let X be a log del Pezzo surface of rank one. Assume that the index of X is equal to three, i.e., $\min \left\{n \in \mathbf{N} \mid n K_{X}\right.$ is Cartier $\}=3$. Then X is a minimal compactification of \mathbf{C}^{2} if and only if the singularity type of X is given as one of the following weighted dual graphs (1) $\sim(11)$.

(1)
(2)

(3)

2 Preliminary results

We recall some basic notions in the theory of peeling (cf. [19] and [22]). Let (X, D) be a pair of a nonsingular projective surface X and an SNCdivisor D on X. We call such a pair (X, D) an $S N C$-pair. A connected curve T consisting of irreducible components of D (a connected curve in D, for short) is a twig if the dual graph of T is a linear chain and T meets $D-T$ in a single point at one of the end components of T, the other end of T is called the tip of T. A connected curve R (resp. F) in B is a rod (resp. fork) if R (resp. F) is a connected component of D and the dual graph of R (resp. F) is a linear chain (resp. the dual graph of the exceptional curves of a minimal resolution of a non-cyclic quotient singularity (cf. [2])). A connected curve E in D is rational (resp. admissible) if each irreducible component of E is rational (resp. if there are no (-1)-curves in Supp E and the intersection matrix of E is negative definite). An admissible rational twig T in D is maximal if T is not extended to an admissible rational twig with
more irreducible components of D. For the list of the weighted dual graphs of all admissible rational forks, see [22, pp. $55 \sim 56]$ and [19, pp. $207 \sim 208$].

Now, let A be an admissible rational rod. Then the weighted dual graph of A is given as in Figure 1. Then we denote the admissible rational $\operatorname{rod} A$ by $\left[a_{1}, \ldots, a_{r}\right]$. We denote the determinant of A by $d(A)$ (cf. [22, p. 87], [6, (3.3)], etc.). The admissible rational rod $\left[a_{r}, \ldots, a_{1}\right]$ is called the $\operatorname{transposal}$ of A and denoted by ${ }^{t} A$. We define also $\bar{A}=\left[a_{2}, \ldots, a_{r}\right]$ and $\underline{A}=\left[a_{1}, \ldots, a_{r-1}\right]$. We call $e(A)=d(\bar{A}) / d(A)$ the inductance of A. By [6, Corollary (3.8)] (see also [5, Proposition A.5]), e defines a one-to-one correspondence from the set of all admissible rational rods to the set of rational numbers in the interval $(0,1)$. Hence there exists uniquely an admissible rational rod A^{*} whose inductance is equal to $1-e\left({ }^{t} A\right)$. We call the admissible rational rod A^{*} the adjoint of A.

$$
\left(r \geq 1, a_{i} \geq 2(1 \leq i \leq r)\right)
$$

Figure 1
We state some results concerning log del Pezzo surfaces of rank one wihch will be used in $\S \S 3 \sim 5$.

Definition 2.1 A \log del Pezzo surface X is a normal projective surface satisfying the following two conditions:
(i) X is singular but has at most quotient singularities.
(ii) The anticanonical divosor $-K_{X}$ is ample.
X is said to have rank one if $\rho(X)=1$.
Let X be a \log del Pezzo surface of rank one and let $\pi:(V, D) \rightarrow X$ be the minimal resolution of X, where D is the reduced exceptional divisor. Let $D=\sum_{i} D_{i}$ be the decomposition of D into irreducible components. Then there exists uniquely an effective \mathbf{Q}-divisor $D^{\#}=\sum_{i} \alpha_{i} D_{i}$ such that $D^{\#}+K_{V}$ is numerically equivalent to $\pi^{*} K_{X}$. In Lemmas $2.2 \sim 2.6$, we retain this situation.

Lemma 2.2 With the same notation as above, we have:
(1) $-\left(D^{\#}+K_{V}\right)$ is nef and big. Moreover, for any irreducible curve F, $-\left(D^{\#}+K_{V} \cdot F\right)=0$ if and only if F is a component of D.
(2) Every ($-n$)-curve with $n \geq 2$ is a component of D.
(3) V is a rational surface.

Proof. See [27, Lemma 1.1].
Lemma 2.3 There is no (-1)-curve E such that, after contracting E and consecutively (smoothly) contractible curves in $E+D$, the divisor $E+D$ becomes a union of admissible rational rods and forks.

Proof. See [27, Lemma 1.4].
By Lemma 2.2 (1), we can find an irreducible curve M such that -(M. $D^{\#}+K_{V}$) attains the smallest positive value. In Lemmas 2.4 and 2.5 , we fix such a curve M.

Lemma 2.4 Suppose that $\left|M+D+K_{V}\right| \neq \emptyset$ and X has a singular point P which is not a rational double point. Then P is a cyclic quotient singular point and the other singular points on X are rational double points.

Proof. By [27, Lemma 2.1], there exists a unique decomposition of D as a sum of effective integral divisors $D=D^{\prime}+D^{\prime \prime}$ such that:
(i) $\left(M \cdot D_{i}\right)=\left(D^{\prime \prime} \cdot D_{i}\right)=\left(K_{V} \cdot D_{i}\right)=0$ for any component D_{i} of D^{\prime}.
(ii) $M+D^{\prime \prime}+K_{V} \sim 0$.

Then Supp $D^{\prime} \cap \operatorname{Supp} D^{\prime \prime}=\emptyset$ and each connected component of D^{\prime} can be contracted to a rational double point. By the hypothesis, $D^{\prime \prime} \neq 0$. Since $M+D^{\prime \prime}+K_{V} \sim 0$, we know that $D^{\prime \prime}=\pi^{-1}(P)$ and $D^{\prime \prime}$ is a linear chain of smooth rational curves.
Q.E.D.

Suppose that $\left|M+D+K_{V}\right|=\emptyset$. The divisor $M+D$ is then an SNCdivisor, consisting of smooth rational curves and the dual graph of $M+D$ is a tree (see [27, Proof of Lemma 2.2]). Here we note the following lemma.

Lemma 2.5 Suppose that $\left|M+D+K_{V}\right|=\emptyset$. Then either (V, D) is $\left(\mathbf{F}_{n}, M_{n}\right)$, where $n=-\left(D^{2}\right) \geq 2$, or we may assume that M is a (-1)-curve.

Proof. See [27, Lemma 2.2] and [8, Proposition 3.6].
We recall the results in [15] concerning a classification of log del Pezzo surfaces of rank one with unique singular points.

Lemma 2.6 Suppose that \#Sing $X=1$. Put $P:=\operatorname{Sing} X$. Then the following assertions hold true:
(1) If P is a quotient singular point of type $E_{n}(n=6,7,8)(c f .[15]$ and [19, p. 208]), then there exists a (-1)-curve C such that $C+D$ is an SNCdivisor and the weighted dual graph of $C+D$ is given as $(n)(4 \leq n \leq 13)$ in Appendix C. In particular, X is a minimal compactification of \mathbf{C}^{2}.
(2) Assume that P is a quotient singular point of type D, i.e., the weighted dual graph of D is given as in Figure 2, where $r \geq 3$ and $a_{i} \geq 2$ for $i=0,3, \ldots, r$. Then there exists a (-1)-curve E such that $(E \cdot D)=$ $\left(E \cdot D_{t}\right)=1$, where $t=1$ or 2 .
(3) Assume that P is a cyclic quotient singular point. Then there exists $a(-1)$-curve C such that $(C \cdot D)=1$. Moreover, $X-\{P\}$ contains $\mathbf{C}^{*} \times \mathbf{C}^{*}$, where $\mathbf{C}^{*}=\mathbf{C}-\{0\}$, as a Zariski open subset.

Figure 2
Proof. (1) See [15, Theorem 2.1].
(2) See [15, Theorem 3.1].
(3) See [15, Theorem 4.1].

We recall Morrow's result [24, Theorem 9] concerning minimal normal compactifications of \mathbf{C}^{2}.

Definition 2.7 Let S be a smooth complex affine surface and let (V, D) be a pair of a smooth projective surface V and an NC-divisor D on V. We call the pair (V, D) a normal compactification (resp. a normal algebraic
compactification) of S if S is biholomorphic (resp. isomorphic) to $V-D$. A normal compactification (or a normal algebraic compactification) (V, D) of S is said to be minimal if $(E \cdot D-E) \geq 3$ for any (-1)-curve $E \subset \operatorname{Supp} D$.

Morrow [24] gave a list of all minimal normal compactifications of \mathbf{C}^{2}. In §3, we use the following result.

Lemma 2.8 Let (V, D) be a minimal normal compactification of \mathbf{C}^{2}. Then D is an SNC-divisor, each irreducible component of D is a smooth rational curve and the dual graph of D is a linear chain. Moreover, if $\rho(V) \geq 3$, then D contains exactly two irreducible components, say D_{1} and D_{2}, with non-negative self-intersection numbers and $\left(D_{1} \cdot D_{2}\right)=1$.

Proof. See [24].
For the list of all boundary dual graphs of the minimal normal compactifications of \mathbf{C}^{2}, see [24, Theorem 9].

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1.
Let (X, Γ) be a minimal compactification of \mathbf{C}^{2}. Assume that $\operatorname{Sing} X \neq \emptyset$ and X has only quotient singular points as singularities. Let $\pi:(V, D) \rightarrow X$ be the minimal resolution of X, where D is the reduced exceptional divisor, and let C be the proper transform of Γ on V.
Proof of the assertion (1). By [24, Theorems $9 \sim 11$] (see also [13]), V is a smooth projective rational surface and $V-D$ is isomorphic to \mathbf{C}^{2} as an algebraic variety. So X is a normal projective rational surface by [1] and $\bar{\kappa}(X-\operatorname{Sing} X)=-\infty$. Since X is a minimal compactification of \mathbf{C}^{2}, we have $\rho(X)=1$. Hence [27, Remark 1.2] and [19, Lemma 2.7] imply that X is a \log del Pezzo surface of rank one. This proves the assertion (1).
Proof of the assertion (2). Let $D=\sum_{i} D_{i}$ be the decomposition of D into irreducible components. Let $\mu: \tilde{V} \rightarrow V$ be a composite of blowing-ups such that $\tilde{D}:=\mu^{*}(C+D)_{\text {red }}$ becomes an NC-divisor and μ is the shortest among such birational morphisms. From now on, we call such a birational morphism μ a minimal $N C$-map for the pair $(V, C+D)$. Let \tilde{C} be the proper transform of C on \tilde{V}.

Lemma 3.1 With the same notation as above, C is a rational curve with at most unibranch singular points.

Proof. Since $\tilde{V}-\tilde{D} \cong \mathbf{C}^{2}$, we have $\left|\tilde{D}+K_{\tilde{V}}\right|=\emptyset$. By [18, Lemma I.2.1.3], each irreducible component of \tilde{D} is a smooth rational curve, \tilde{D} is an SNCdivisor and the dual graph of \tilde{D} is a tree. Hence C is a rational curve and each singular point of C is a unibranch singular point.
Q.E.D.

Lemma 3.2 With the same notation as above, we have \#Sing $X \leq 2$.
Proof. Suppose to the contrary that $\#$ Sing $X \geq 3$. Since $\operatorname{Sing} X \subset \Gamma$, we have

$$
(\tilde{C} \cdot \tilde{D}-\tilde{C}) \geq \# \operatorname{Sing} X \geq 3
$$

Since μ is a minimal NC-map for the pair $(V, C+D)$ and \tilde{D} is an SNC-divisor (cf. the proof of Lemma 3.1), we have

$$
(E \cdot \tilde{D}-E) \geq 3
$$

for every (-1)-curve $E \subset \operatorname{Supp}(\tilde{D}-\tilde{C})$. So the pair (\tilde{V}, \tilde{D}) is a minimal normal compactification of \mathbf{C}^{2} (see Definition 2.7). This contradicts Lemma 2.8 because the dual graph of \tilde{D} is not linear by the hypothesis. Q.E.D.

Remark 3.3 By [28], there exist a \log del Pezzo surface X of rank one such that $\pi_{1}(X-\operatorname{Sing} X)=(1)$ and $\# \operatorname{Sing} X \geq 3$. By Lemma 3.2 , such a surface is not a minimal compactification of \mathbf{C}^{2}. So Problem 2 is false.

Lemma 3.4 The divisor $C+D$ is an SNC-divisor. Namely, $\mu=\mathrm{id}$.
Proof. By Lemma 2.8, it suffices to show that the divisor $C+D$ is an NCdivisor. Suppose to the contrary that there exists a point $P \in \operatorname{Supp}(C+D)$ such that the divisor $C+D$ is not normal crossing at P. Since D is an SNCdivisor, μ is a composite of blowing-ups of infinitely near points on C. We note that the weighted dual graph of \tilde{D} is a tree because $\left|\tilde{D}+K_{\tilde{V}}\right|=\emptyset$. Let E be a (-1)-curve which is exceptional with respect to μ. By the minimality of $\mu,(E \cdot D-E) \geq 3$, i.e., \tilde{D} is not linear. By Lemma $2.8,(\tilde{V}, \tilde{D})$ is not a minimal normal compactification of \mathbf{C}^{2}. Hence there exisits a (-1)-curve
$H \subset \operatorname{Supp} \tilde{D}$ such that $(H \cdot \tilde{D}-H) \leq 2$. It then follows from the minimality of μ that $H=\tilde{C}$.

Let $f: \tilde{V} \rightarrow W$ be a sequence of contractions of (-1 -curves and subsequently contractible curves in Supp \tilde{D}, starting with the contraction of \tilde{C}, such that $\tilde{D}_{W}:=f_{*}(\tilde{D})$ is an NC-divisor and has no (-1)-curves F with $\left(F \cdot \tilde{D}_{W}-F\right) \leq 2$, i.e., the pair $\left(W, \tilde{D}_{W}\right)$ is a minimal normal compactification of \mathbf{C}^{2}. Note that $f_{*}(E) \neq 0$ because E is a (-1)-curve. Since $(E \cdot \tilde{D}-E) \geq 3$ and the dual graph of \tilde{D} is a tree, we know that the number of connected components of $\tilde{D}_{W}-f_{*}(E) \geq 2$ and if the equality holds then $\left(f_{*}(E)^{2}\right) \geq 0$ and every irreducible component of $\tilde{D}_{W}-f_{*}(E)$ has self-intersection number ≤-1. This contradicts Lemma 2.8 because $\rho(W) \geq 3$.
Q.E.D.

Lemma 3.5 Assume that $\left(C^{2}\right) \neq-1$. Then $V=\mathbf{F}_{n}(n \geq 2), D=M_{n}$ and C is a fiber of the ruling on V. Namely, the weighted dual graph of $C+D$ is given as (1) in Appendix C.

Proof. If C is not a (-1)-curve, then $(V, C+D)$ is a minimal normal compactification of \mathbf{C}^{2} by Lemma 3.4. Since every irreducible component of D has self-intersection number ≤-2, the assertion follows from [24, Theorem 9] (see also Lemma 2.8).
Q.E.D.

In the subsequent arguments, we assume that C is a (-1)-curve. Note that $(V, C+D)$ is then not a minimal normal compactification of \mathbf{C}^{2} because $(C \cdot D) \leq 2$ by Lemmas 3.2 and 3.4. Let $\nu: V \rightarrow W$ be a sequence of contractions of (-1)-curves and subsequently contractible curves in $\operatorname{Supp}(C+$ $D)$, starting with the contraction of C, such that $\left(W, D_{W}\right)$, where $D_{W}=$ $\nu_{*}(C+D)$, becomes a minimal normal compactification of \mathbf{C}^{2}.

Lemma 3.6 With the same notation and assumptions as above, $\left(W, D_{W}\right)=$ $\left(\mathbf{P}^{2}, H\right)$ or $\left(\mathbf{F}_{n}, M_{n}+\ell\right)$, where H is a line on \mathbf{P}^{2} and ℓ is a fiber of a fixed ruling on \mathbf{F}_{n}.

Proof. Put $Q:=\nu(C)$. We note that Q is a unique fundamental point of ν because C is a unique (-1)-curve in $\operatorname{Supp}(C+D)$.

Suppose that $\left(W, D_{W}\right)$ is isomorphic to neither (\mathbf{P}^{2}, line $)$ nor $\left(\mathbf{F}_{n}, M_{n}+(\right.$ a fiber of fixed ruling on \mathbf{F}_{n}). Then, by [24, Theorem 9] (see also Lemma 2.8), D_{W} contains two components D^{\prime} and $D^{\prime \prime}$ such that $\left(D^{\prime 2}\right)=0,\left(D^{\prime 2}\right)=n>0$ and $\left(D^{\prime} \cdot D^{\prime \prime}\right)=1$ (see Figure 3).

Figure 3
Since Q is a unique fundamental point of ν, we know that $\left(\nu^{\prime}\left(D^{\prime}\right)^{2}\right) \geq-1$ or $\left(\nu^{\prime}\left(D^{\prime \prime}\right)^{2}\right) \geq-1$. This is a contradiction because C is a (-1)-curve and every irreducible component of D has self-intersection number ≤-2.
Q.E.D.

We put $V=\operatorname{dil}_{Q_{\ell}} \circ \cdots \circ \operatorname{dil}_{Q_{1}}(W)$ and $\nu_{i}=\operatorname{dil}_{Q_{i}} \circ \cdots \circ \operatorname{dil}_{Q_{1}}$, where $\ell \geq 1$ and dil Q_{i} is a blowing-up with center $Q_{i}(i=1, \ldots, \ell)$. Put $E_{i}:=\operatorname{dil}_{Q_{i}}^{-1}\left(Q_{i}\right)$. Then Lemma 3.6 implies that $\left(E_{i} \cdot \nu_{i}^{*}\left(D_{W}\right)_{\text {red }}-E_{i}\right)=1$ or 2 . Hence we obtain the following:

Lemma 3.7 With the same notation and assumptions as above, assume further that \#Sing $X=2$. Let $D=D^{(1)}+D^{(2)}$ be the decomposition of D into connected components. Then we have:
(1) One of $D^{(1)}$ and $D^{(2)}$ is a rod.
(2) Assume that $D^{(1)}$ and $D^{(2)}$ are rods. Then C meets a terminal component of $D^{(1)}$ or $D^{(2)}$.
(3) Assume that $D^{(1)}$ is a fork $\left(D^{(2)}\right.$ is then a rod by the assertion (1)). Let $D_{0}^{(1)}$ be the branching component of $D^{(1)}$, i.e., $\left(D_{0}^{(1)} \cdot D^{(1)}-D_{0}^{(1)}\right)=3$. Then $\left(C \cdot D_{0}^{(1)}\right)=0$ and C meets a terminal component of $D^{(2)}$.

Now we determine the weighted dual graph of $C+D$ in the case where C is a (-1)-curve. We consider the following two cases separately.

Case 1: \#Sing $X=1$. Put $P:=\operatorname{Sing} X$. We consider the following three subcases $1-1 \sim 1-3$ separately.

Subcase 1-1: P is a cyclic quotient singular point. Note that, by taking a suitable birational morphism ν, we may assume that $W=\mathbf{F}_{n}(n \geq 2), D_{W}=$ $M_{n}+\ell$, where ℓ is a fiber of the ruling on \mathbf{F}_{n}, and that $Q:=\nu(C) \notin M_{n}$. Since D is a rod, the weighted dual graph of $\nu^{*}(\ell)_{\text {red }}$ is given as in Figure 4. In Figure 4, the subgraph denoted by the encircled A is given as in Figure 1
and the subgraph denoted by the encircled A^{*} is the weighted dual graph of the adjoint of A (cf. §2), where we consider A as an admissible rational rod whose weighted dual graph is given as in Figure 1. Hence the weighted dual graph of $C+D$ is given as (2) in Appendix C.

Figure 4
Subcase 1-2: P is a quotient singular point of type D. Let $D=\sum_{i=0}^{r} D_{i}$ be the decomposition of D into irreducible components such that the weighted dual graph of D is given as in Figure 2. It then follows form Lemma 3.6 and the argument before Lemma 3.7 that C meets D_{1} or D_{2} (see also [15, §3]). Hence we know that the weighted dual graph of $C+D$ is given as (3) in Appendix C.
Subcase 1-3: P is a quotient singular point of type $E_{n}(n=6,7,8)$. Since C is a (-1)-curve and $(C \cdot D)=1$, by using the same argument as in the proof of [15, Theorem 2.1], we know that the weighted dual graph of $C+D$ is given as $(n)(4 \leq n \leq 13)$ in Appendix C.

Case 2: \#Sing $X=2$. Let $D=D^{(1)}+D^{(2)}$ be the decomposition of D into connected components. By Lemma 3.7 (1), we may assume that $D^{(2)}$ is a rod. We consider the following two subcases separately.

Subcase 2-1: $D^{(1)}$ is a rod. By Lemma 3.7 (2), we may assume that C meets a terminal component of $D^{(2)}$. If C meets a terminal component of $D^{(1)}$ then, by Lemma 3.6, we know that the weighted dual graph of $C+D$ is given as (14) in Appendix C. Assume that C meets a component $D_{i}^{(1)}$ of $D^{(1)}$, which is not a terminal component of $D^{(1)}$. Then, by the argument before Lemma 3.7, $D_{i}^{(1)}+C+D^{(2)}$ can be contracted to a smooth point. So $D^{(2)}$ consists entirely of (-2)-curves and $\left(D_{i}^{(1)}\right)^{2}=-2-\# D^{(2)}$. Thus, we know that the weighted dual graph of $C+D$ is given as (15) in Appendix C.

Subcase 2-2: $D^{(1)}$ is a fork. Let $D_{0}^{(1)}$ be the branching component of $D^{(1)}$. Then Lemma 3.7 (3) implies that C meets a terminal component of $D^{(2)}$ and does not meet $D_{0}^{(1)}$. Let $T^{(1)}$ be the maximal (admissible rational) twig of $D^{(1)}$ meeting C. By the argument before Lemma 3.7, we know that $D_{0}^{(1)}+T^{(1)}+C+D^{(1)}$ can be contracted to a smooth point. So we can determine the weighted dual graph of $D_{0}^{(1)}+T^{(1)}+C+D^{(1)}$. Hence, by using Lemma 3.6, we know that the weighted dual graph of $C+D$ is given as (n) ($16 \leq n \leq 32$) in Appendix C. For example, if the weighted dual graph of D is given as in Figure 2 then, by virtue of Lemma 3.6, we know that $T^{(1)}$ is a (-2)-curve. Hence the weighted dual graph of $C+D$ is given as (16) in Appendix C.

The proof of Theorem 1.1 is thus completed.

4 Counterexamples

In this section, we give counterexamples to Problems 1 and 2 (see Examples 4.2 and 4.3).
Counterexample to Problem 1. Let X be a log del Pezzo surface of rank one and let $\pi:(V, D) \rightarrow X$ be the minimal resolution of X, where D is the reduced exceptional divisor. In Example 4.1 (resp. 4.2) below, we shall construct a log del Pezzo surface X of rank one such that the weighted dual graph of D is given as in Figure 5 and X is a compactification of \mathbf{C}^{2} (resp. not a compactification of \mathbf{C}^{2}).

Figure 5
Example 4.1 Let ℓ be a fiber of the ruling on \mathbf{F}_{2} (see Figure 6-(i)). Let μ : $V \rightarrow \mathbf{F}_{2}$ be a birational morphism such that the configuration of $\mu^{-1}\left(M_{2}+\ell\right)$ is shown as in Figure 6-(ii), where C is the last exceptional curve in the process of μ. Put $D:=\mu^{*}\left(M_{2}+\ell\right)_{\text {red }}-C$. Then the weighted dual graph of D is given as in Figure 5. Let $\nu: V \rightarrow X$ be the contraction of D and put $\Gamma:=\nu_{*}(C)$. It is then clear that (X, Γ) is a minimal compactification of \mathbf{C}^{2}.

Figure 6
Example 4.2 Let ℓ_{1} and ℓ_{2} be fibers of the ruling on F_{5} (see Figure 7-(i)). Let $\mu: V \rightarrow \mathbf{F}_{5}$ be a birational morphism such that the configuration of $\mu^{-1}\left(M_{5}+\ell_{1}+\ell_{2}\right)$ is shown as in Figure 7-(ii). Put $D:=\mu^{*}\left(M_{5}+\ell_{1}+\right.$ $\left.\ell_{2}\right)_{\text {red }}-\left(C_{1}+C_{2}\right)$. Then the weighted dual graph of D is given as in Figure 5. A divisor $\mu^{*}\left(\ell_{1}\right)$ defines a \mathbf{P}^{1}-fibration $\Phi:=\Phi_{\left|\mu^{*}\left(\ell_{1}\right)\right|}: V \rightarrow \mathbf{P}^{1}$ and $\varphi:=\left.\Phi\right|_{V-D}: V-D \rightarrow \mathbf{P}^{1}$ is an \mathbf{A}^{1}-fibration (i.e., a general fiber of φ is isomorphic to the affine line $\mathbf{A}^{\mathbf{1}}$) onto \mathbf{P}^{1}. So $\bar{\kappa}(V-D)=-\infty$ (cf. [18, Chapter I]). Let $\nu: V \rightarrow X$ be the contraction of D. Then $\rho(X)=1$. By [27, Remark 1.2] and [19, Lemma 2.7], X is then a log del Pezzo surface of rank one.

Now we calculate the fundamental group of $V-D=X-\operatorname{Sing} X$. Since Φ has just two singular fibers $\mu^{*}\left(\ell_{1}\right)$ and $\mu^{*}\left(\ell_{2}\right)$ and the multiplicity of C_{1} (resp. C_{2}) in $\mu^{*}\left(\ell_{1}\right)$ (resp. $\mu^{*}\left(\ell_{2}\right)$) is equal to two (resp. four), we know that every fiber of φ is irreducible and φ has just two multiple fibers $m_{1} \Gamma_{1}$ and $m_{2} \Gamma_{2}$ with $\left\{m_{1}, m_{2}\right\}=\{2,4\}$. By [6, Proposition (4.9)], $\pi_{1}(V-D)$ is generated by σ_{1} and σ_{2} with the relation $\sigma_{1} \sigma_{2}=\sigma_{1}^{2}=\sigma_{2}^{4}=1$. Hence $\pi_{1}(V-D) \cong \mathbf{Z} / 2 \mathbf{Z}$. Since $\pi_{1}(X-\operatorname{Sing} X) \neq(1)$, we know that X is not a compactification of \mathbf{C}^{2}.

Counterexample to Problem 2. In Remark 3.3, we note that there exists a log del Pezzo surface X of rank one such that $\pi_{1}(X-\operatorname{Sing} X)=(1)$ and \#Sing $X \geq 3$. Hence, by Theorem 1.1, Problem 2 is false. In Example 4.3 below, we give an example of a log del Pezzo surface X of rank one such that $\pi_{1}(X-\operatorname{Sing} X)=(1), \# \operatorname{Sing} X=1$ and X is not a compactification of \mathbf{C}^{2}.

Figure 7
Example 4.3 Let ℓ_{1} and ℓ_{2} be fibers of the ruling on $F_{n}(n \geq 2)$. See Figure 8-(i). Let $\mu: V \rightarrow \mathbf{F}_{n}$ be a birational morphism such that the configuration of $\mu^{-1}\left(M_{n}+\ell_{1}+\ell_{2}\right)$ is shown as in Figure 8-(ii). Put $D:=$ $\mu^{*}\left(M_{n}+\ell_{1}+\ell_{2}\right)-\left(C_{1}+C_{2}\right)$. Let $\nu: V \rightarrow X$ be the contraction of D. Similarly to Example 4.2, we know that X is a log del Pezzo surface of rank one with \#Sing $X=1$, and $\pi_{1}(X-\operatorname{Sing} X)=\pi_{1}(V-D)=(1)$. However, X is not a compactification of \mathbf{C}^{2} by Theorem 1.1.

$$
\mathbf{F}_{n}(n \geq 2)
$$

(i)

(ii)

Figure 8

We propose the following problem:
Problem 3 Let X be a log del Pezzo surface of rank one. Assume that $\pi_{1}(X-\operatorname{Sing} X)=(1)$ and the singularity type of X is given as one of the listed in Appendix C. Is then X a minimal compactification of \mathbf{C}^{2} ?

5 Proof of Theorem 1.2

In this section, we prove Theorem 1.2
Let X be a log del Pezzo surface of rank one and of index three and let $\pi:(V, D) \rightarrow X$ be the minimal resolution of X, where D is the reduced exceptional divisor. Since the index of X is equal to three, each singular point of X is either a rational double point or a quotient singular point of index three. It is clear that X has at least one quotient singular points of index three.

Lemma 5.1 Let $P \in X$ be a quotient singular point of index three. Then the singularity type of P is given as the following weighted dual graph (n) $(1 \leq n \leq 9)$. In particular, P is a cyclic quotient singular point or of type D.

(7)

(8)

(9)

Proof. See [29, Proposition 6.1].
By using Theorem 1.1 and Lemma 5.1, we can prove the following:
Lemma 5.2 Assume that X is a minimal compactification of \mathbf{C}^{2}. Then the weighted dual graph of D is given as $(n)(1 \leq n \leq 11)$ in Theorem 1.2.

Proof. Since X is a minimal compactification of $\mathbf{C}^{2}, \# \operatorname{Sing} X \leq 2$.
We first treat the case $\# \operatorname{Sing} X=1$. Put $P:=\operatorname{Sing} X$. Then P is a quotient singular point of index three. If P is a cyclic quotient singular point then, by Theorem 1.1, the weighted dual graph of D looks like (1) or (2) in Appendix C. So it follows from Lemma 5.1 that the weighted dual graph of D is given as one of $(1) \sim(4)$ in Theorem 1.2. If P is not a cyclic quotient singular point, then P is of type D and the weighted dual graph of D looks like (3) in Appendix C. So it follows from Lemma 5.1 that the weighted dual graph of D is given as (5) in Theorem 1.2.

We next treat the case \#Sing $X=2$. Assume that X has a non-cyclic quotient singular point, say P. Theorem 1.1 then implies that P is not a rational double point. So P is of type D by Lemma 5.1 and hence the weighted dual graph of D looks like (16) in Appendix C. By using Lemma 5.1 again, we know that the index of P is then not equal to three. This is a contradiction. Hence we know that all singular points of X are cyclic quotient singular points. Then the weighted dual graph of D looks like (14) or (15) in Appendix C. Hence, by using Lemma 5.1, we know that the weighted dual graph of D is given as $(n)(6 \leq n \leq 11)$ in Theorem 1.2.
Q.E.D.

We prove that if the singularity type of X is given as $(n)(1 \leq n \leq 11)$ in Theorem 1.2 then X contains C^{2} as a Zariski open subset. We treat the cases (3), (5) and (10) (see Theorem 1.2) only. The other cases can be treated similarly.
Case (3). Let $D=\sum_{i=1}^{6} D_{i}$ be the decomposition of D into irreducible components such that the weighted dual graph of D is given as in Figure 9. Lemma 2.6 (3) implies that there exists a (-1)-curve C such that $(C \cdot D)=1$. By Lemma 2.3, we may assume that $(C \cdot D)=\left(C \cdot D_{i}\right)=1, i=2$ or 3 .

Assume that $i=3$. Then, a divisor $F=2\left(C+D_{3}\right)+D_{2}+D_{4}$ defines a \mathbf{P}^{1}-fibration $\Phi:=\Phi_{|F|}: V \rightarrow \mathbf{P}^{1}, D_{1}$ and D_{5} are sections of Φ and D_{6} is contained in a singular fiber of Φ, say G. Since D_{6} is a (-4)-curve, we have $\# G \geq 5$. So we have

$$
\rho(V)=7 \geq 2+(\# F-1)+(\# G-1) \geq 9
$$

which is a contradiction. Hence, $i=2$.
Now, a divisor $F=4\left(C+D_{2}\right)+3 D_{3}+2 D_{4}+D_{1}+D_{5}$ defines a \mathbf{P}^{1}-fibration $\Phi:=\Phi_{|F|}: V \rightarrow \mathbf{P}^{1}$ and D_{6} is a section of Φ. Since $\rho(V)=7=2+(\# F-1)$, Φ has no singular fibers other than F. So $V-(C+D) \cong C^{2}$ and hence X becomes a minimal compactification of \mathbf{C}^{2}.

Figure 9
Case (5). Let $D=\sum_{i=0}^{4} D_{i}$ be the decomposition of D into irreducible components such that the weighted dual graph of D is given as in Figure 2, where we put $r=4, a_{0}=a_{3}=2$ and $a_{4}=4$. Lemma 2.6 (2) implies that there exists a (-1)-curve C such that $(C \cdot D)=\left(C \cdot D_{i}\right)=1, i=1$ or 2 . We may assume that $i=1$. Then, a divisor $F=2\left(C+D_{1}+D_{0}\right)+D_{2}+D_{3}$ defines a \mathbf{P}^{1}-fibration $\Phi:=\Phi_{|F|}: V \rightarrow \mathbf{P}^{1}$ and D_{4} is a section of Φ. Since $\rho(V)=6=2+(\# F-1), \Phi$ has no singular fibers other than F. So $V-(C+D) \cong \mathbf{C}^{2}$ and hence X becomes a minimal compactification of \mathbf{C}^{2}.

Case (10). Let $D=\sum_{i=1}^{6} D_{i}$ be the decomposition of D into irreducible components such that the weighted dual graph of D is given as in Figure 10.

Figure 10
We note that $\rho(V)=\# D+1=7$ and

$$
D^{\#}=\frac{2}{3} D_{1}+\frac{1}{3} D_{2}
$$

(for the definition of $D^{\#}$, see $\S 2$). Let M be an irreducible curve on V such that $-\left(M \cdot D^{\#}+K_{V}\right)$ attains the smallest positive value (cf. §2).

Suppose that $\left|M+D+K_{V}\right| \neq \emptyset$. Then Lemma 2.4 implies that $\left(M \cdot D_{1}\right)=$ $\left(M \cdot D_{2}\right)=1$ and $M+D_{1}+D_{2}+K_{V} \sim 0$. We have

$$
\left(M^{2}\right)=\left(D_{1}+D_{2}+K_{V}\right)^{2}=4
$$

and

$$
\left(M \cdot K_{V}\right)=\left(M \cdot-M-D_{1}-D_{2}\right)=-6 .
$$

Hence,

$$
-\left(M \cdot D^{\#}+K_{V}\right)=5
$$

On the other hand, since $\rho(V)=7$, there exists a (-1 -curve E on V. Then we have

$$
-\left(E \cdot D^{\#}+K_{V}\right)=1-\left(E \cdot D^{\#}\right) \leq 1<-\left(M \cdot D^{\#}+K_{V}\right)
$$

which is a contradiction. Hence we know that $\left|M+D+K_{V}\right|=\emptyset$.
By Lemma 2.5, we may assume that M is a (-1)-curve. Note that (M. $D)=1$ or 2 and $\left(M \cdot D_{1}+D_{2}\right)=0$ or 1 (see $\S 2$). We consider the following three subcases (10)-(i) $\sim(10)$-(iii) separately.
Subcase (10)-(i): $\left(M \cdot D_{1}+D_{2}\right)=0$. Then Lemma 2.3 implies that $(M \cdot D)=\left(M \cdot D_{i}\right)=1, i=4$ or 5 . We may assume that $i=4$. A divisor $F=2\left(M+D_{4}\right)+D_{3}+D_{5}$ defines a \mathbf{P}^{1}-fibration $\Phi:=\Phi_{|F|}: V \rightarrow \mathbf{P}^{1}, D_{6}$
is a section of Φ and $D_{1}+D_{2}$ is contained in a singular fiber of Φ, say G. Since Supp G contains D_{1} which is a (-5)-curve, we have $\# G \geq 5$. Then

$$
\rho(V)=7 \geq 2+(\# F-1)+(\# G-1) \geq 9
$$

which is a contradiction. Hence this subcase does not take place.
Subcase (10)-(ii): $\left(M \cdot D_{1}+D_{2}\right)=\left(M \cdot D_{2}\right)=1$. Then we have

$$
-\left(M \cdot D^{\#}+K_{V}\right)=\frac{2}{3}
$$

Lemma 2.3 implies that $\left(M \cdot D_{3}+D_{4}+D_{5}+D_{6}\right)=1$. We may assume that $\left(M \cdot D_{3}\right)=1$ or $\left(M \cdot D_{4}\right)=1$.

Assume that $\left(M \cdot D_{3}\right)=1$. Then, a divisor $F=2 M+D_{2}+D_{3}$ defines a \mathbf{P}^{1}-fibration $\Phi:=\Phi_{|F|}: V \rightarrow \mathbf{P}^{1}, D_{1}$ and D_{4} are sections of Φ and $D_{5}+D_{6}$ is contained in a singular fiber of Φ, say G. Since D_{1} is a section of Φ, Supp G contains an irreducible curve E with $\left(E \cdot D_{1}\right)=1$. By Lemma 2.2 (2), E is a (-1)-curve. Then we have

$$
-\left(E \cdot D^{\#}+K_{V}\right) \leq \frac{1}{3}<-\left(M \cdot D^{\#}+K_{V}\right)
$$

which is a contradiction. Similarly, we have a contradiction if $\left(M \cdot D_{4}\right)=1$. Hence this subcase does not take place.
Subcase (10)-(iii): $\left(M \cdot D_{1}+D_{2}\right)=\left(M \cdot D_{1}\right)=1$. By Lemma 2.3, $\left(M \cdot D_{3}+D_{4}+D_{5}+D_{6}\right)=1$. If $\left(M \cdot D_{3}\right)=1$ or $\left(M \cdot D_{6}\right)=1$, then we can easily see that $V-(M+D) \cong \mathbf{C}^{2}$ (cf. Cases (3) and (5)). Hence X becomes a minimal compactification of \mathbf{C}^{2}.

Suppose that $\left(M \cdot D_{4}\right)=1$ or $\left(M \cdot D_{5}\right)=1$. We may assume that $\left(M \cdot D_{4}\right)=1$. Then, a divisor $F=2\left(M+D_{4}\right)+D_{3}+D_{5}$ defines a \mathbf{P}^{1} fibration $\Phi:=\Phi_{|F|}: V \rightarrow \mathbf{P}^{1}, D_{6}$ is a section of Φ, D_{1} is a 2 -section of Φ, and D_{2} is contained in a singular fiber of Φ, say G. By Lemma 2.2 (2) and $\rho(V)=7$, we know that $G=E_{1}+D_{2}+E_{2}$, where E_{1} and E_{2} are (-1)-curves, $\left(E_{1} \cdot D_{2}\right)=\left(E_{2} \cdot D_{2}\right)=1$ and $\left(E_{1} \cdot E_{2}\right)=0$. Since D_{1} is a 2 -section of Φ and the multiplicity of D_{2} in G is equal to one, we may assume that E_{1} meets D_{1}. Then

$$
-\left(E_{1} \cdot D^{\#}+K_{V}\right)=1-\frac{2}{3}\left(E_{1} \cdot D_{1}\right)-\frac{1}{3}\left(E_{1} \cdot D_{2}\right) \leq 0
$$

which contradicts Lemma 2.2 (1).
Theorem 1.2 is thus verified.

Appendix

A Fundamental groups of some open rational surfaces with $\bar{\kappa}=-\infty$

Let X be a normal projective rational surface defined over \mathbf{C} with unique singular point. Assume that the singular point of X is a quotient singular point. In [10], Gurjar and Zhang proved the following result.

Theorem A. 1 With the same notation and assumptions as above, assume further that $\bar{\kappa}(X-\operatorname{Sing} X) \leq 1$. Then $\pi_{1}(X-\operatorname{Sing} X)$ is a finite group.

In this section, we prove the following result by using the results in [15].
Proposition A. 2 With the same notation and assumptions as above, assume further that $\bar{\kappa}(X-\operatorname{Sing} X)=-\infty$. Then $\pi_{1}(X-\operatorname{Sing} X)$ is a finite abelian group.

Proof. By [10, Lemma 1], it suffices to show that $\pi_{1}(X-\operatorname{Sing} X)$ is abelian.
Assume that X is not \log relatively minimal, i.e., there exists an irreducible curve E on X such that $\left(E^{2}\right)<0$ and $\left(E \cdot K_{X}\right)<0$ (cf. [22, Chapter II, §4]). Let $f: X \rightarrow X^{\prime}$ be the contraction of E. Since \#Sing $X=1$, it follows from [22, Capter II, §4] (see also [14]) that X^{\prime} has at most one quotient singular point and $\bar{\kappa}\left(X^{\prime}-\operatorname{Sing} X^{\prime}\right)=\bar{\kappa}(X-\operatorname{Sing} X)=-\infty$. It is clear that $\pi_{1}(X-\operatorname{Sing} X)$ is a subgroup of $\pi_{1}\left(X^{\prime}-\operatorname{Sing} X^{\prime}\right)$. Thus, to prove Proposition A.2, we may assume that X is \log relatively minimal.

Since $\bar{\kappa}(X-\operatorname{Sing} X)=-\infty$ and X is \log relatively minimal, one of the following two cases takes place by [19, Lemma 2.7] and [14, Theorem 1.1].
(i) There exists a \mathbf{P}^{1}-fibration $h: X \rightarrow \mathbf{P}^{1}$ such that every fiber of h is irreducible and h has only one multiple fiber F.
(ii) X is a log del Pezzo surface of rank one.

We consider the above two cases separately.
Case (i). By virtue of [14, Theorem 1.1], Sing $X \in \operatorname{Supp} F$. Then $X-$ Supp $F \cong \mathbf{P}^{1} \times \mathbf{A}^{1}$ and hence $\pi_{1}(X-\operatorname{Sing} X)=(1)$. In this case the assertion holds.
Case (ii). Put $P:=\operatorname{Sing} X$. If P is of type $E_{n}(n=6,7,8)$, then $\pi_{1}(X-P)=$ (1) because X is a minimal compactification of \mathbf{C}^{2} by Lemma 2.6 (1). If P is a cyclic quotient singular point, then $\pi_{1}(X-P)$ is abelian by Lemma 2.6 (3).

Assume that P is of type D. Let $\pi:(V, D) \rightarrow X$ be the minimal resolution of X and let $D=\sum_{i=0}^{r} D_{i}$ be the decomposition of D into irreducible components such that the weighted dual graph of D is given as in Figure 2. Then Lemma 2.6 (2) implies that there exisits a (-1)-curve E such that $(E \cdot D)=\left(E \cdot D_{i}\right)=1$, where $i=1$ or 2 . We may assume that $i=1$. Put $F:=2\left(E+D_{1}+D_{0}\right)+D_{2}+D_{3}$. By Lemma 2.3, $a_{0}=a_{3}=2$. So F defines a \mathbf{P}^{1}-fibration $\Phi:=\Phi_{|F|}: V \rightarrow \mathbf{P}^{1}, D_{4}$ is a section of Φ and D_{5}, \ldots, D_{r} are contained in a fiber G of Φ if $r \geq 5$. Here we note that $r \geq 4$ and if $r=4$ then $\pi_{1}(V-D)=(1)$. Assume that $r \geq 5$. Then, since $\rho(V)=\# D+1=r+2$, G contains a unique (-1)-curve E^{\prime} and $(G)_{\text {red }}=D_{5}+\cdots+D_{r}+E^{\prime}$. Let m be the multiplicity of E^{\prime} in G. By using the same argument as in Example 4.2, we know that

$$
\pi_{1}(V-D)= \begin{cases}(1) & \text { if } m \text { is odd } \\ \mathbf{Z} / 2 \mathbf{Z} & \text { if } m \text { is even }\end{cases}
$$

In particular, $\pi_{1}(V-D)=\pi_{1}(X-P)$ is abelian.
Q.E.D.

Remark A. 3 In Case (ii), we know that $\pi_{1}(X-\operatorname{Sing} X)$ is finite by virtue of [8] and [9].

B A proof of a result of Ramanujam

Let k be an algebraically closed field of arbitrary characteristic, which we fix as the ground field throughout the present section. Let S be a smooth affine algebraic surface defined over k. Let (V, D) be a pair of a smooth
projective surface V and a reduced normal crossing divisor D on V. We call (V, D) a normal algebraic compactification of S if S is isomrophic to $V-D$ (cf. Definition 2.7). A normal algebraic compactification (V, D) of S is said to be minimal if $(E \cdot D-E) \geq 3$ for any (-1)-curve $E \subset D$. Note that minimal normal algebraic compactifications of S exist since S is an affine algebraic surface.

When $S=\mathbf{C}^{2}$, Morrow [24, Theorem 9] gave a classification of minimal normal algebraic compactifications (V, D) of S. His argument depended heavily on the following theorem which is the main result of Ramanujam [25] (see also [23]).

Theorem B. 1 If (V, D) is a minimal normal algebraic compactification of the affine plane \mathbf{A}_{k}^{2}, then the dual graph of D is linear.

In this section, by using the similar argument to the proof of [16, Theorem 1.1], we give a new proof of Theorem B.1.

Let (V, D) be a minimal normal algebraic compactification of the affine plane $S:=\mathbf{A}_{k}^{2}$. The following lemma is easy but useful.

Lemma B. 2 (cf. [16, Lemma 2.2]) There exists an irreducible linear pencil Λ on V such that the following conditions (i) \sim (iii) are satisfied.
(i) Bs $\Lambda \subset D$ and a general member of Λ is a rational curve.
(ii) The morphism $\varphi:=\left.\Phi_{\Lambda}\right|_{S}$ is an \mathbf{A}_{k}^{1}-fibration onto the affine line \mathbf{A}_{k}^{1} without singular fibers.
(iii) Let $\mu: \tilde{V} \rightarrow V$ be a composition of blowing-ups with centers at the base points (including infinitely near base points) of Λ such that the proper transform $\tilde{\Lambda}$ of Λ by μ has no base points. Then $\tilde{\Lambda}$ gives rise to a \mathbf{P}^{1}-fibration $\Phi_{\tilde{\Lambda}}$ on \tilde{V} over \mathbf{P}^{1} and there exists a section of $\Phi_{\tilde{\Lambda}}$ in $\tilde{D}:=\tilde{V}-\mu^{-1}(S)$.

Proof. There exists a diagram

$$
V \stackrel{f}{\longleftarrow} W \xrightarrow{g} \mathbf{P}^{2},
$$

where f (resp. g) is a composition of blowing-ups with centers in D (resp. a line ℓ on $\mathbf{P}^{\mathbf{2}}$) including infinitely near points. Let P_{0} be a point on ℓ. Here
we may assume that P_{0} is blown up by g. Let Λ^{\prime} be the irreducible linear pencil on \mathbf{P}^{2} consisting of lines through P_{0}. Then the proper transform $g^{\prime}\left(\Lambda^{\prime}\right)$ gives rise to a \mathbf{P}^{1}-fibration $\Phi_{g^{\prime}\left(\Lambda^{\prime}\right)}: W \rightarrow \mathbf{P}^{1}$ and there exists a section of $\boldsymbol{\Phi}_{g^{\prime}\left(\Lambda^{\prime}\right)}$ in $W-g^{-1}(S)$. Moreover, $\left.\boldsymbol{\Phi}_{g^{\prime}\left(\Lambda^{\prime}\right)}\right|_{g^{-1}(S)}: g^{-1}(S) \cong S \rightarrow \mathbf{A}_{k}^{1}$ is an $\mathbf{A}_{k}^{1}-$ fibration onto \mathbf{A}_{k}^{1} without singular fibers. Hence $\Lambda:=f_{*}\left(g^{\prime}\left(\Lambda^{\prime}\right)\right)$ becomes an irreducible linear pencil on V satisfying the conditions (i) \sim (iii). Q.E.D.
Proof of Theorem B.1. Let Λ be an irreducible linear pencil satisfying the conditions (i) ~ (iii) in Lemma B.2. If Bs $\Lambda=\emptyset$, then it is clear that $\Phi_{\Lambda}: V \rightarrow \mathbf{P}^{1}$ is a \mathbf{P}^{1}-bundle over \mathbf{P}^{1}, i.e., V is a Hirzebruch surface, and D consists of a fiber of Φ_{Λ} and a section of Φ_{Λ} (cf. [12, Lemma 2.2]). So, in this case, the assertion holds.

Assume that Bs $\Lambda \neq \emptyset$. Then \#Bs $\Lambda=1$, Bs $\Lambda \in D$ and $P:=\operatorname{Bs} \Lambda$ is a one-place point for a general member of Λ. Let $\mu: \tilde{V} \rightarrow V$ be the shortest composition of blowing-ups with center P (including infinitely near points of P) such that the proper transform $\tilde{\Lambda}$ of Λ by μ has no base points. Put $\tilde{D}:=\mu^{-1}(D)$. Then $\tilde{V}-\tilde{D}=S$ and $\tilde{\Phi}:=\Phi_{\tilde{\Lambda}}: \tilde{V} \rightarrow \mathbf{P}^{1}$ is a \mathbf{P}^{1}-fibration. Let \tilde{D}_{0} be the last exceptional curve in the process μ. Then $\tilde{D}_{0} \subset \tilde{D}, \tilde{D}_{0}$ is a section of $\tilde{\Phi}$ and the other components of \tilde{D} are contained in fibers of $\tilde{\Phi}$. Let D_{1}, \ldots, D_{ℓ} be all components of D through P. Then $\ell=1$ or 2 since D is an NC-divisor. By the minimality of the pair (V, D), we know that every component of $D-\left(D_{1}+\cdots+D_{\ell}\right)$ has self-intersection number ≤-2. Note that every irreducible component of D is a nonsingular rational curve and the dual graph of D is a tree because $\bar{\kappa}(S)=-\infty$ (cf. [18, Lemma I.2.1.3]).

Suppose to the contrary that the dual graph of D is not linear, i.e., there exists an irreducible component D^{\prime} of D with $D^{\prime}\left(D-D^{\prime}\right) \geq 3$. Let $D-D^{\prime}=A_{1}+\cdots+A_{t}$ be a decomposition of $D-D^{\prime}$ into connected components. Since the dual graph of D is a tree, we have $t \geq 3$. So we may assume that $P \notin A_{1} \cup A_{2}$. Let \tilde{F} be a fiber of $\tilde{\Phi}$ containing $\mu^{\prime}\left(D^{\prime}\right)$. Then $\mu^{\prime}\left(A_{1}+A_{2}\right) \subset \operatorname{Supp}(\tilde{F})$. Hence \tilde{F} is a singular fiber.

Let $f: \tilde{V} \rightarrow \tilde{V}_{1}$ be a sequence of contractions of (-1)-curves and subsequently contractible curves in $\operatorname{Supp}(\tilde{F})$ such that $f\left(\mu^{\prime}\left(D^{\prime}\right)\right)$ becomes a (-1)-curve. Note that such a birational morphism exists and $f\left(\tilde{D}_{0}\right)$ is a section of the \mathbf{P}^{1}-fibration $\tilde{\Phi} \circ f^{-1}: \tilde{V}_{1} \rightarrow \mathbf{P}^{\mathbf{1}}$. If $\operatorname{Supp}(\tilde{F}) \subset \tilde{D}$ then the weighted dual graph of $f_{*}\left(\mu^{\prime}\left(A_{i}\right)\right)(i=1,2)$ is the same as that of A_{i}. Hence we have $\left(f_{*}\left(\mu^{\prime}\left(D^{\prime}\right)\right) \cdot f_{*}\left(\tilde{F}_{\text {red }}+\tilde{D}_{0}-\mu_{\tilde{C}}^{\prime}\left(D^{\prime}\right)\right)\right) \geq 3$, which is a contradiction.

Suppose that $\operatorname{Supp}(\tilde{F}) \not \subset \tilde{D}$. Let \tilde{G} be a sum of irreducible components
of $\tilde{F}_{\text {red }}$ which are not contained in \tilde{D}. Since $\left.\tilde{F}\right|_{\tilde{S}}$ is a fiber of φ, we know that \tilde{G} is irreducible and the multiplicity of \tilde{G} in \tilde{F} is equal to one. So we may assume that \tilde{G} is not contracted in the process of f. Then the weighted dual graph of $f_{*}\left(\mu^{\prime}\left(A_{i}\right)\right)(i=1,2)$ is the same as that of A_{i}. Hence, by using the same argument as in the case $\operatorname{Supp}(\tilde{F}) \subset \tilde{D}$, we obtain a contradiction.
Q.E.D.

Remark B. 3 (1) Recently, Kishimoto [12] gave an algebraic proof of [24, Theorem 9] without using Theorem B.1.
(2) In [24] and [25], Morrow and Ramanujam considered (minimal normal) "analytic" compactifications of \mathbf{C}^{2} and proved that they are also algebraic compactifications of \mathbf{C}^{2}. In [6, Corollary (9.2)], Fujita proved the same result by using a different method.

C List of configurations

In the following list of configurations, the weight of the vertex corresponding to a (-2 -curve of D is omitted. In (2), (14) and (15), the subgraph denoted by the encircled A is given as in Figure 1 and the subgraph denoted by the encircled A^{*} is the weighted dual graph of the adjoint of A, where we consider A as an admissible rational rod whose weighted dual graph is given as in Figure 1. In (1), (2), (14), (15) and (16), $n \geq 2$. In (2) $\sim(32), C$ is a (-1)-curve. In (15), D consists of two rods.
(1)

(2)

(3)

(4)

(5)

(7)

(8)

(9)

(10)
(11)
(12)

(13)

(14)

(15) $\overbrace{-n}^{C}$

(18)

(20)

(21)

(23)

(25)

(27)

(28)

(29)

(30)

References

[1] M. Artin, Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962), 485-496.
[2] E. Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1968), 336-358.
[3] L. Brenton, On singular complex surfaces with negative canonical bundle, with applications to singular compactifications of \mathbf{C}^{2} and to 3dimensional rational singuarities, Math. Ann. 248 (1980), 117-124.
[4] L. Brenton, D. Drucker and G. C. E. Prins, Graph theoretic techniques in algebraic geometry I: The extended Dynkin diagram E_{8} and minimal singular compactifications of \mathbf{C}^{2}, Recent Developments in Several Complex Variables, pp. 47-63, Princeton Univ. Press, 1981.
[5] T. Fujisawa, On non-rational numerical del Pezzo surfaces, Osaka J. Math. 32 (1995), 613-636.
[6] T. Fujita, On the topology of non-complete algebraic surfaces, J. Fac. Sci. Univ. Tokyo 29 (1982), 503-566.
[7] M. Furushima, On minimal compactifications of \mathbf{C}^{2}; Errata, Math. Nachr. 186 (1997), 115-129; 193 (1998), 255.
[8] R. V. Gurjar and D.-Q. Zhang, π_{1} of smooth points of a log del Pezzo surface is finite: I, J. Math. Sci. Tokyo 1 (1994), 137-180.
[9] R. V. Gurjar and D.-Q. Zhang, π_{1} of smooth points of a log del Pezzo surface is finite: II, J. Math. Sci. Tokyo 2 (1995), 165-196.
[10] R. V. Gurjar and D.-Q. Zhang, On the fundamental groups of some open rational surfaces, Math. Ann. 306 (1996), 15-30.
[11] S. Iitaka, Algebraic Geometry, Graduate Texts in Math., SpringerVerlag, vol. 76, 1981.
[12] T. Kishimoto, A new proof of a theorem of Ramanujam-Morrow, J. Math. Kyoto Univ., to appear.
[13] K. Kodaira, Holomorphic mappings of polydiscs into compact complex manifolds, J. Differential Geom. 6 (1971), 69-88.
[14] H. Kojima, Almost minimal embeddings of quotient singular points into rational surfaces, J. Math. Kyoto Univ. 38 (1998), 77-99.
[15] H. Kojima, Logarithmic del Pezzo surfaces of rank one with unique singular points, Japan. J. Math. 25 (1999), 343-375.
[16] H. Kojima, Algebraic compactifications of some affine surfaces, Algebra Colloq., to appear.
[17] H. Kojima, Rank one log del Pezzo surfaces of index two, submitted.
[18] M. Miyanishi, Non-complete algebraic surfaces, Lecture Notes in Mathematics, No. 857, Berlin-Heiderberg-New York, Springer, 1981.
[19] M. Miyanishi and S. Tsunoda, Non-complete algebraic surfaces with logarithmic Kodaira dimension $-\infty$ and with non-connected boundaries at infinity, Japan. J. Math. 10 (1984), 195-242.
[20] M. Miyanishi, Open problems, The 23rd Internat. Symp., Division of Math., The Taniguchi Found., 1988.
[21] M. Miyanishi and D.-Q. Zhang, Gorenstein log del Pezzo surfaces of rank one, J. Algebra 118 (1988), 63-84.
[22] M. Miyanishi, Open algebraic surfaces, CRM monograph series, vol. 12, Amer. Math. Soc., 2000.
[23] S. Mori, Embeddings of \mathbf{A}^{2} into rational ruled surfaces, RIMSKôkyûroku 183 (1973), 31-50 (in Japanese).
[24] J. A. Morrow, Minimal normal compactifications of \mathbf{C}^{2}, Rice Univ. Stud. 59 (1973), 97-112.
[25] C. P. Ramanujam, A topological characterization of the affine plane as an algebraic variety, Ann. of Math. 94 (1971), 69-88
[26] R. Remmert and T. Van de Ven, Zwei Sätze üver die komplexprojective Ebene, Nieuw Arc. Wisk. 8 (1960), 147-157.
[27] D.-Q. Zhang, Logarithmic del Pezzo surfaces of rank one with contractible boundaries, Osaka J. Math. 25 (1988), 461-497.
[28] D.-Q. Zhang, Logarithmic del Pezzo surfaces with rational double and triple singular points, Tohoku Math. J. 41 (1989), 399-452.
[29] D.-Q. Zhang, Logarithmic Enriques surfaces, J. Math. Kyoto Univ. 31 (1991), 419-466.

Hideo Kojima
Department of Mathematics
Naruto University of Education
Takashima, Naruto-cho, Naruto-shi 772-8502
Japan
E-mail: kojima@naruto-u.ac.jp

Received October 8, 2001

