Nihonkai Math. J.
Vol. 11(2000), 151-158

AN INEQUALITY FOR LOGARITHMIC MAPPING AND
APPLICATIONS FOR THE RELATIVE ENTROPY

S.S. DRAGOMIR

ABSTRACT. Using the concavity property of the log mapping and the weighted
arithmetic mean - geometric mean inequality, we point out an analytic inequal-
ity for the logarithmic map and apply it for the Kullback-Leibler distance in
Information Theory. Some applications for Shannon’s entropy are given as
well.

1. INTRODUCTION

Let p(z),q(x),z € X,card (X) < oo, be two probability mass functions. Define
the Kullback-Leibler distance (see (1] or [2]) by

(L) KL(.0):= 3 p(@)log pie

the x2—distance (see for example [3]) by

(1.2) Dy (pg):=Y P’ (z) — ¢ (z)
TE€EX 9 (x)

and the variation distance (see for example [3]) by

(1.3) V(p,q) =) lp(z) —q(=)l

z€X

The following theorem is of fundamental importance in Information Theory [4,
p. 26].

Theorem 1. (Information Inequality). Under the above assumptions for p and g,
we have

(1.4) KL(p,q) 20,
with equality iff p(z) =q(x) for allz € X.

As a matter of fact, the inequality (1.4) can be improved as follows (see [4, p.
300]):

Theorem 2. Let p,q be as above. Then
(15) KL(p,g) 2 3V (pa) 20,
with equality iff p(x) = q(z) for all x € X.
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In [5] (see also [6]), the authors proved the following counterpart of (1.5).
Theorem 3. Let p(x),q(z) > 0,z € X be two probability mass functions. Then
(16) Dy (,9) > KL(p,q) >0,
with equality iff p(z) =q(z), z € X.

In the same paper [6], the authors applied (1.6) for Shannon’s entropy, mutual
information, etc....

In the present paper, we point out an improvement of (1.6) and apply it in the
same manner as in [6)].

2. AN ELEMENTARY INEQUALITY
The following analytic inequality for the logarithmic function holds.

Theorem 4. Leta € (0,1) and b € (0,00). Then we have the inequality

a? a\° ~ b\*°
. ——a>(=) -1> - >1—(~-) >a-0b.
(2.1) - a_(b) 1>alna—alnb>1 (a) >a—b
The equality holds in each inequality iff a = b.

Proof. We know that for a differentiable strictly convex mapping f : I — R, we
have the double inequality .

(2:2) ff@)(@z-v)2f@)-f@)=fF@E-v)

for all =,y € I, z < y. The equality holds in (2.2) iff z = y.
Now, if we apply this inequality to the strictly convex mapping —In(:) on the
interval (0, co), we obtain

(2.3) %(r—'y)zlnx—lnyz %(Jr—y)

for all z > y > 0, with equality iff z = y.
Choose in (2.3) z = a® and y = b2 to get

(9-)“—12a1na—a1nb21- (9) ; a,b>0,
b a

with equality iff a = b, and the second and third inequalities in (2.1) are proved.
Further, we are going to use the weighted arithmetic mean - geometric mean
inegquality for two positive numbers, i.e., we recall

(2.4) a'fl"t <ta+(1-t)Bfora,B>0andte (0,1),

with equality iff a = 8.
Choose a =1, 8=} and t = a in (2.4) to obtain

Q) ()=t

with equality iff a = b, which is equivalent to

| (2.5) G)a (%)M <141 ;“.
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If we multiply (2.5) by b > 0, we have

a
(E) <1l+4+b-a,
a

with equality iff a = b, and the last mequahty 1n (2.1) is proved.
In addition, if we choose in (2.4) a = b, B = a.nd t = a, we obtain

B Q) <3+

with equality iff a = b.
If we multiply (2.6) by a > 0, then we get

a® 2

a
_— < — -
W =% a+1

with equality iff a = b, which is the first inequality in (2.1). §

o

3. INEQUALITIES FOR SEQUENCES OF POSITIVE NUMBERS
The following inequality for sequences of positive numbers holds.

Theorem 5. Leta; € (0,1) andb; >0 (i = L. wn). Ifpi >0 (i=1,..,n) is such
that 3 ., pi =1, then we have

(3-1) exp | pipt - piaz]
i n» a; ay 7 n a; a;p;
> ep|d pily) -1 2]I%
. (3 ,J . 3
i n bs a;’]
2 exp 1"2?:‘ (j)
1

with equality iff a; = b; for alli € {1,...,n}.
Proof. Choose in (3.1) a =a;, b=0b; (i =1,...,n) to obtain

2 L\ @8 Y\ &
(3.2) &-—a,-z (gt-) —1>a;lna; —a;lnb; > 11— (E) >a; —b;
b,' b,; Qa;

for alli € {1,...,n}.
Multiplying (3.2) by p; > 0 and summing over i from 1 up to n, we get

(3.3) E :Pi%’:' - E pia;
. 3 r—
1; N 1‘“1 . N
T )
> 1§= Di (E) -12 ;Piailn (E:)
n b a; n n
> 13w () 2 Lope- Yowt
i=1 a; i=1 i=1

which is equivalent to (3.1).
The case of equality follows from the fact that in each of the inequalities (3.2),
we have an equality iff a; = b; foralli € {1,...,n}. I
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The following corollary is obvious.

Corollary 1. With the above assumptions for a;, b; (i = 1, ..., 1), we have the in-
equality

(3.4) exp (

v
g
S|
i s
—~
RS
N
8
i
ot

-GG

> mcp:l—-}; 3 (f’z) ( Za‘——Zb)

i=1 i=1

with equality iff a; = b; for alli € {1,...,n}.
Another result for sequences of positive numbers is the following one.

Theorem 6. Let a; € (0,1) (i=1,..,n) and b; > 0 (j=1,..,m). If p; > O
(i=1,..,n) is such that 3\, p; = 1 and g; > 0 (j=1,...,m) is such that
23—1‘1.1 = 1, then we have the inequality

e

(35) (Zpta Zpta,)

,1-1 =1
n m T n aipi
a; l'[ —q G5
S D) ST ) WY R 1
S="\s) T L e
A n m
> exp l_zzp.q,( N ECI Ik
i=1 j=1 j i=1 =1
The equality holds in (3.5) iffa; = ... =a, =b; = ... = b,,.
Proof. Using the inequality (2.1), we can state that
g L\ G . A\ % ’
(3.6) &—aiz(&) —IZa;lnag—a,-lnb_,-Zl—(-bi) > a; — b
b; b; a;

for all i € {1,...,,n} and j € {1,...,m}.
Multiplying (3.6) by p:;¢; > 0 and summing over i from 1 to n and over j from
1 to m, we deduce

n
Zpaa2 Zp.a.

=1 I=1 " i=1
n m n n m
2 ZZPJIJ ( ) -12 Zpiai Ina; —Zpiai qu Inb;
i=1 _1—1 i= i j=1
. a;
2 Zzpt‘b ( ’) 2 ZP:G; ZQJ
i=1 j=1 i=1

which is clearly equivalent to (3.5).
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The case of equality follows from the fact that in each of inequalities in (3.6),
we have an equality iff a; = b; for all ¢ € {1,...,n} and j € {1....,mn}. which is
equivalent toa; =...=a,=b1 =...=b,,.. B

The following corollary holds.

Corollary 2. Under the above assumptions for a;, bj, we have the inequality R

on e (iTant i)

v

1 > (a")ai VIliz, a7
exp | — =] -1| > —F——=="
nm ;J—Zl ‘] vnu,n;’;l b]z"‘"ai
> exp 1—;1;22(%,_)‘ Zup(%zai—%zlbj).
)=

=1
with equality iffa; = ... = a, = b = ... = bp,.

4. SOME INEQUALITIES FOR DiSTANCE FUNCTIONS

In 1951, Kullback and Leibler introduced the following distance function in In-
formation Theory (see [2] or [3])

n
(4.1) KL(p,q):=) pilog §-
i=1 :

provided that p,g € R}, = {z = (z1,....,2p) €R™, 2; > 0, i =1,....n} .
Another useful distance function is the x2—distance given by (see [3])

LI JS
(4.2) Dy (pg) = ) B %,

=1

where p,g € R} .
In this section, we introduce the following two new distance functions

a3

and -
(4.4 Py (pr0) = ; [(2)"-1].

provided p,g € R} .
The following inequality connecting all the above four distance functions holds.

Theorem 7. Let p,q € R}, with p; € (0,1). Then we have the inequality:
(4'5) I)x2 (p’Q) +Qn—FP, 2P, (P’Q) > KL(p:Q) > 5 (P,Q) > Py —Qu,

where P, :=Y i pi=1, Qn:=Y 1, 4.
The equality holds in (4.5) iff pi = q; for alli € {1,...,n}.
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Proof. Apply inequality (2.1) for a = p;, b = ¢; to get

P? Pi qi P
(4.6) 2 —-p;i>2 (=) 2pilnp; —pilng; >1- (=) >p;—g
qi qi Pi

for alli € {1,...,n}.
Summing over ¢ from 1 to n, we have

Z‘-Z-?-P,, > Py (p.q) 2 KL(p,q) = P; (p,q) > Pn — Qn.
i=1 1*

However, it is easy to see that

n 2
Z&_Q"-*-Q"_Pﬂ:Dxa(p.vQ)'*'Qn_'Pn

i=1 ¥

and the inequality (4.5) is obtained.
The case of equality is also obvious by Theorem 4. §

Corollary 3. Let p,q be a probability distribution. Then we have the inequality:

(4'7) Dx’(p,Q)ZP2(p,q)ZKL(p,Q)2P1(paQ)ZO
The equality holds in (4.7) iff p=gq.

The proof is obvious by Theorem 7, on ol;serving that for p,q as probability
distributions we have P, = Q,, = 1.

5. APPLICATIONS FOR SHANNON’S ENTROPY

The entropy of a random variable is a measure of the uncertainty of the random
variable, it is a measure of the amount of information required on the average to
describe the random variable.

Let p(x), = € X be a probability mass function. Define the Shannon’s entropy
f of a random variable X having the probability distribution p by

1
(5.1) H(X):= ;p (z)log P @)
In the above definition we use the convention (based on continuity arguments)
that Olog (2) = 0 and plog (8) = co.
Now assume that |X| (card (X) = |X]) is finite and let u (z) = ﬁ be the uniform
probability mass function in A'. It is well known that [4, p. 27]

S eyiog (22
(5.2 KL = 3 ytog (2633
= log|X|— H(X).

The following result is important in Information Theory [4, p. 27]

Theorem 8. Let X,p and X be as above. Then
(5-3) H(X) <log|x],
with equality if and only if X has a uniform distribution over X.

In what follows, by the use of Corollary 3, we are able to point out the fnllowihg
estimate for the difference log |X| — H (X).
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Theorem 9. Let X, p and X be as above. Then
(5.4) XIEX)-1 > Y [, X7 [p ()P — 1]

zeX

> In|X|- H(X)
5 (1177 70 1] 20
z€EX

where E (X) is the informational energy of X, i.e., E(X):=3 . P ().
The equality holds in (5.4) iff p(z) = T%f forallz e X.

v

The proof is obvious by Corollary 3 by choosing u (z) = ]—,%,-[

6. APPLICATIONS FOR MUTUAL INFORMATION

We consider mutual information, which is a measure of the amount of informa-
tion that one random variable contains about another random variable. It is the
reduction of uncertainty of one random variable due to the knowledge of the other
[4, p. 18].

To be more precise, consider two random variables X and Y with a joint prob-
ability mass function r (r,y) and marginal probability mass functions p(z) and
q(y), z € X, y € Y. The mutual information is the relative entropy between the
joint distribution and the product distribution, that is,

, _ (x r(z,y)
ey = 3 S Cero)
= D(rpa).

The following result is well known (4, p. 27].

Theorem 10. (Non-negativity of mutual information) For any two random vari-
ables X,Y

(6.1) I(X,Y) >0,
with equality iff X and Y are independent.

In what follows, by the use of Corollary 3, we are able to point out the following
estimate for the mutual information.

Theorem 11. Let X and Y be as above. Then we have the inequality

2 (z,y)
2 5:10( Ja(y)

TzEX y€Y
> @)\ oy
:%;y%:, _(p(w)q(y)) ]
[ r(z,y) \ "]
> 11— —2= > 0.
,ezxy% ] (p(fv)q(y)) ]

The equality holds in all inequalities iff X and Y are independent.
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