ANALYTIC CLUSTER SETS

Valerian Gavrilov, Shamil Makhmutov*

Abstract. We study the cluster sets for analytic functions in the unit disk. Lindelöf and Meier types theorems are proved for analytic cluster sets.

1. Introduction

Let $D=\{z:|z|<1\}$ be the unit disk in the finite complex plane \mathbf{C} and $\Gamma=\{z:|z|=1\}$. For each pair of points $a, b=\in D$ the hyperbolic distance between a and b is defined by

$$
\sigma(a, b)=\frac{1}{2} \log \frac{|1-\bar{a} b|+|a-b|}{|1-\bar{a} b|-|a-b|}
$$

and if L is any curve contained in D, we set

$$
\sigma(a, L)=\inf _{b \in L} \sigma(a, b) .
$$

Let $h(\zeta, \alpha)$ denote the chord which is terminating at the point $\zeta=e^{i \theta} \in \Gamma$ and make up the angle of openning $\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$, with the radius of D at ζ. The subset bounded by the chords $h\left(\zeta, \alpha_{1}\right)$ and $h\left(\zeta, \alpha_{2}\right)$ and by the circle $\left|z-\frac{1}{2} \zeta\right|=\frac{1}{2}$ is denoted by $\Delta\left(\zeta, \alpha_{1}, \alpha_{2}\right)$ (or, simply, by $\Delta(\zeta)$ if we are not interested in the magnitude of angle $\Delta\left(\zeta, \alpha_{1}, \alpha_{2}\right)$).

Let f be an arbitrary real or complex-valued function defined on D. We denote by $C(f, \zeta, D), C(f, \zeta, h(\zeta, \alpha))$ and $C(f, \zeta, \Delta(\zeta))$, respectively, the cluster set of f at the point $\zeta=e^{i \theta} \in \Gamma$ with respect to the disk D, the chord $h(\zeta, \alpha)$ and the angle $\Delta(\zeta)$.

A point $\zeta=e^{i \theta} \in \Gamma$ belongs to the set $K(f)$ if $C\left(f, \zeta, \Delta_{1}(\zeta)\right)=C\left(f, \zeta, \Delta_{2}(\zeta)\right)$ for any two angles $\Delta_{1}(\zeta)$ and $\Delta_{2}(\zeta)$ with the vertix at the point ζ. A point $\zeta=e^{i \theta} \in \Gamma$ belongs to the set $C(f)$ if $\bigcap_{\Delta} C(f, \zeta, \Delta(\zeta))=C(f, \zeta, D)$ (over all angles $\Delta(\zeta)$). By definition, $C(f) \subset K(f)$.

The structure of cluster sets of meromorphic functions in D was studied by many authors (see e.g. [CL], [G], [GH]). For example, by the strengthens version of Meier's theorem [G], for any meromorphic function f in D the unit circle Γ can be represented as union of disjoint sets of Meier points, precised Plessner points $I^{*}(f)$, set $P(f)$ and a set E of first Baire category and of type F_{σ} on Γ. The sets $I^{*}(f)$ and $P(f)$ are disjoint subsets of the set $I(f)$ of Plessner points for a meromorphic function f in D and a point $\zeta=e^{i \theta} \in \Gamma$ belongs to the set $I(f)$ if $\cap_{\Delta} C(f, \zeta, \Delta(\zeta))=\Omega$, where Ω denotes the Reimann sphere. Moreover, by definition the sets $I^{*}(f)$ and $P(f)$ are connected with the concept of a P-sequence, related the property of

[^0]normalacy for a meromorphic function f in D (see [G]). For a normal meromorphic function f in D (in particular, for an unbounded univalent function f in D) the set $P(f)$ is empty and $I^{*}(f)=I(f)$ (see $[\mathrm{G}]$).

In this paper we study cluster sets of analytic functions defined in the unit disk D using results on analytically normal functions (Bloch functions) [ACP], [M], and prove the Lindelöf and Meier type theorems for analytic functions.
Let $d_{f}(z)=\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|$. An analytic function f in D satisfying the condition $\sup _{z \in D} d_{f}(z)<\infty$ is called Bloch function and the space of Bloch functions is denoted by \mathcal{B} $z \in D$
[ACP], $[\mathrm{M}]$. In $[\mathrm{M}]$ the second author defined the concept of $\rho_{\mathcal{B}}$-sequences of points for analytic functions in the unit disk. A sequence $\left\{z_{n}\right\} \in D, \lim _{n \rightarrow \infty}\left|z_{n}\right|=1$, is called $\rho_{\mathcal{B}}$-sequence for function f if for each sequence of positive numbers $\left\{\epsilon_{n}\right\}, \lim _{n \rightarrow \infty}\left|\epsilon_{n}\right|=0$, there is a sequence of positive numbers $\left\{M_{n}\right\}, \lim _{n \rightarrow \infty}\left|M_{n}\right|=\infty$, such that

$$
\operatorname{diam} f\left(D\left(z_{n}, \epsilon_{n}\right)\right) \geq M_{n}, \quad n=1,2, \ldots
$$

According to Theorem $5.3[\mathrm{M}]$ an analytic function f in D is a Bloch function if and only if it doesn't have $\rho_{\mathcal{B}}$-sequences of points. Any Bloch function doesn't possess a P-sequence too, but on the other hand, there is an analytic function g in D that possesses a $\rho_{\mathcal{B}}$-sequence and doesn't have P-sequences; for example, the function $g(z)=(1-z)^{-1}$.

2. Meier type theorem

Let f be an analytic function in D. We say that a point $\zeta=e^{i \theta} \in \Gamma$ belongs to the $M_{\mathcal{B}}(f)$ if $C(f, \zeta, D)=C(f, \zeta, h(\zeta, \varphi))$ for each chord $h(\zeta, \varphi),-\frac{\pi}{2}<\varphi<\frac{\pi}{2}$, and $\operatorname{diam} C(f, \zeta, D)<\infty$. We say that a point $\zeta=e^{i \theta} \in \Gamma$ belongs to the set $P_{\mathcal{B}}(f)$ if each chord $h(\zeta, \alpha)$ ending at ζ contains a $\rho_{\mathcal{B}}$-sequence of points for f. We say that a point $\zeta=e^{i \theta} \in \Gamma$ belongs to the set $I_{\mathcal{B}}^{*}(f)$ if
(1) $\bigcap_{h} C(f, \zeta, h(\zeta, \alpha))=\bigcup_{\Delta} C(f, \zeta, \Delta(\zeta))$;
(2) $\operatorname{diam} \bigcap_{h} C(f, \zeta, h(\zeta, \alpha))=\infty$;
(3) $\operatorname{diam} \bigcup_{\Delta} C\left(d_{f}, \zeta, \Delta(\zeta)\right)<\infty$.

It is easy to see (and it follows from the definitions) that sets $M_{\mathcal{B}}(f), P_{\mathcal{B}}(f)$ and $I_{\mathcal{B}}^{*}(f)$ are mutually disjoint.

Theorem 1. Let f be an analytic function in the unit disk D. Then

$$
\Gamma=M_{\mathcal{B}}(f) \cup P_{\mathcal{B}}(f) \cup I_{\mathcal{B}}^{*}(f) \cup E
$$

where E is a set on Γ of the first Baire category and of type F_{σ} on Γ.
The proof of Theorem 1 is based on Collingwood's Theorem on maximality, by analogy with the proof of Meier type Theorem in [G].
Lemma 1 ([CL], pp.382-395). If g is a continuos function in the unit disk D then the complement of $C(g)$ with respect to Γ is a set of first Baire category and of type F_{σ}.

By applying Lemma 1 to functions f and d_{f} we obtain the following decompositions

$$
\begin{equation*}
\Gamma=C(f) \cup E_{1} \tag{1}
\end{equation*}
$$

$$
\Gamma=C\left(d_{f}\right) \cup E_{2}
$$

where E_{1} and E_{2} are sets of first Baire category and of type F_{σ}. By taking intersection of (1) and (2) we obtain $\Gamma=M \bigcup E$ where $M=C(f) \bigcap C\left(d_{f}\right)$ and $E=E_{1} \bigcup E_{2}$. It is clear that E is a set of first category and of type F_{σ}. It remains us to describe the set M.

For any point $\zeta=e^{i \theta} \in M$ there are four possibilities:
(I) $\operatorname{diam} C(f, \zeta, D)<\infty$ and $\limsup d_{f}(z)<\infty$;
(II) $\operatorname{diam} C(f, \zeta, D)=\infty$ and $\limsup d_{f}(z)<\infty$;
(III) $\operatorname{diam} C(f, \zeta, D)=\infty$ and $\underset{z \rightarrow \zeta}{\lim \sup } d_{f}(z)=\infty$;
(IV) $\operatorname{diam} C(f, \zeta, D)<\infty$ and $\underset{z \rightarrow \zeta}{\limsup } d_{f}(z)=\infty$.

In fact, case (IV) cannot happen since the condition $\limsup _{z \rightarrow \zeta} d_{f}(z)=\infty$ implies, by Theorem $z \rightarrow \zeta$
5.3 in $[\mathrm{M}]$, the existence of a $\rho_{\mathcal{B}}$-sequence for f tending to $\zeta \in \Gamma$, and hence, $\operatorname{diam} C(f, \zeta, D)$ must be unbounded.
Lemma 2. A chord $h(\zeta, \alpha)$ doesn't contain $\rho_{\mathcal{B}}$-sequence of points for analytic function f in D if and only if there exists some angle $\Delta\left(\zeta, \alpha_{1}, \alpha_{2}\right)$ containing the chord $h(\zeta, \alpha)$ for which $C\left(d_{f}, \zeta, \Delta\left(\zeta, \alpha_{1}, \alpha_{2}\right)\right)$ is bounded.
Proof. The necessity of the conditions of Lemma 2 were proved in $[M]$, Theorem 5.3. In order to prove the sufficiency, we assume that, for some angle $\Delta\left(\zeta, \alpha_{1}, \alpha_{2}\right)$ containing the chord $h(\zeta, \alpha)$ the cluster set $C\left(d_{f}, \zeta, \Delta\left(\zeta, \alpha_{1}, \alpha_{2}\right)\right)$ is bounded and the chord $h(\zeta, \alpha)$ contains a $\rho_{\mathcal{B}}$-sequence of points $\left\{z_{n}\right\}$ for f. By Theorem $5.4[\mathrm{M}]$, there exists a sequence $\left\{z_{n}^{\prime}\right\}$, $\lim _{n \rightarrow \infty} \sigma\left(z_{n}, z_{n}^{\prime}\right)=0$, for which $\lim _{n \rightarrow \infty} d_{f}\left(z_{n}^{\prime}\right)=\infty$. Since the condition $\lim _{n \rightarrow \infty} \sigma\left(z_{n}^{\prime}, h(\zeta, \alpha)\right)=0$, beginning with some index N all the points z_{n}^{\prime} get into the angle $\Delta\left(\zeta, \alpha_{1}, \alpha_{2}\right)$. This contradicts our assumption that $\Delta\left(\zeta, \alpha_{1}, \alpha_{2}\right)$ doesn't contain a $\rho_{\mathcal{B}}$-sequence for f.

Lemma 2 implies that if assertion (III) is realized then every angle $\Delta\left(\zeta, \alpha_{1}, \alpha_{2}\right)$ with vertix at ζ contains a $\rho_{\mathcal{B}}$-sequence for f and, consequently, $\zeta \in P_{\mathcal{B}}(f)$.
Lemma 3. Let f be an analytic function in D and $\zeta=e^{i \theta} \in K(f)$. If $C\left(d_{f}, \zeta, \Delta\left(\zeta, \alpha_{1}, \alpha_{2}\right)\right)$ is bounded for any angle $\Delta\left(\zeta, \alpha_{1}, \alpha_{2}\right)$ with vertix at ζ then for any chord $h(\zeta, \alpha)$ the set $C(f, \zeta, h(\zeta, \alpha))$ coincides with $C\left(f, \zeta, \Delta\left(\zeta, \alpha_{1}, \alpha_{2}\right)\right)$. In particular, if the set $C\left(d_{f}, \zeta, D\right)$ is bounded at the point $\zeta \in C(f)$ then $\cap_{h} C(f, \zeta, h(\zeta, \alpha))=C(f, \zeta, D)$.
Proof. Assume that there exists a chord $h\left(\zeta, \alpha_{0}\right)$ and value $a \in \overline{\mathbf{C}}=\mathbf{C} \cup\{\infty\}$ such that $a \notin C\left(f, \zeta, h\left(\zeta, \alpha_{0}\right)\right)$ and also that in each angle $\Delta\left(\zeta, \alpha_{1}, \alpha_{2}\right)$ covering the chord $h\left(\zeta, \alpha_{0}\right)$ there exists a sequence of points $\left\{z_{n}^{(\Delta)}\right\}, \lim _{n \rightarrow \infty} z_{n}^{(\Delta)}=\zeta$, for which $\lim _{n \rightarrow \infty} f\left(z_{n}^{(\Delta)}\right)=a$. By shrinking the angle $\Delta\left(\zeta, \alpha_{1}, \alpha_{2}\right)$ to the chord $h\left(\zeta, \alpha_{0}\right)$ we choose a subsequence $\left\{z_{k}\right\}$ such that $\lim _{k \rightarrow \infty} z_{k}=\zeta, \lim _{k \rightarrow \infty} f\left(z_{k}\right)=a$ and $\lim _{k \rightarrow \infty} \sigma\left(z_{k}, h\left(\zeta, \alpha_{0}\right)\right)=0$. We also take on the chord $h\left(\zeta, \alpha_{0}\right)$ a sequence of points $\left\{z_{k}^{\prime}\right\}$ such that $\lim _{k \rightarrow \infty} \sigma\left(z_{k}, z_{k}^{\prime}\right)=0$. By assumption, $\lim _{k \rightarrow \infty} f\left(z_{k}^{\prime}\right) \neq a$. According to Theorem $5.4[\mathrm{M}]$, each of the sequence $\left\{z_{k}\right\}$ and $\left\{z_{k}^{\prime}\right\}$ is a $\rho_{\mathcal{B}}$-sequence for f. By Lemma 2 , the set $C\left(d_{f}, \zeta, \Delta\left(\zeta, \alpha_{1}, \alpha_{2}\right)\right)$ is unbounded for some angle $\Delta\left(\zeta, \alpha_{1}, \alpha_{2}\right)$ covering the chord $h\left(\zeta, \alpha_{0}\right)$. It contrudicts our assumption.

Lemma 3 implies that if the possibility (I) is realized then $\zeta=e^{i \theta} \in M_{\mathcal{B}}(f)$ and if the possibility (II) is realized then $\zeta=e^{i \theta} \in I_{\mathcal{B}}^{*}(f)$ and hence Theorem 1 is proved.

3. Lindelöf type theorem

We say that $\zeta=e^{i \theta} \in \Gamma$ is an analytic Lindelöf point for analytic function f in D if $C\left(f, \zeta, h\left(\zeta, \alpha_{1}\right)\right)=C\left(f, \zeta, h\left(\zeta, \alpha_{2}\right)\right)$ for any two chords $h\left(\zeta, \alpha_{1}\right)$ and $h\left(\zeta, \alpha_{2}\right)$ and $\operatorname{diam} C(f, \zeta, h(\zeta, \alpha))<\infty,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$. The set of analytic Lindelöf points for a function f is denoted by $L_{\mathcal{B}}(f)$.

We define the notion of σ-porous set introduced by E.P.Dolzhenko [D]. Let E be a set on Γ, a point $\zeta=e^{i \theta} \in \Gamma$ and a real $\epsilon>0$. We denote by $r(\zeta, E, \epsilon)$ the length of the largest open arc which belongs to the arc $\gamma_{\zeta, \epsilon}=\left\{\xi=e^{i \varphi}: \quad|\varphi-\theta|<\epsilon\right\}$ and doesn't intersect E (if there is no such an arc, we put $r(\zeta, E, \epsilon)=0$). The point $\zeta=e^{i \theta}$ is called a point of porosity of the set E if

$$
r(\zeta, E)=\limsup _{\epsilon \rightarrow 0} \frac{r(\zeta, E, \epsilon)}{\epsilon}>0
$$

The set E is called porous on Γ if every point of the set E is a point of porosity for E. A set on Γ is called a σ-porous set if it is the union of not more than a countable collection of porous sets.

It follows from the definition that any porous set, and therefore, any σ-porous set is a set of the first Baire category and of linear Lebesgue measure zero on Γ. The converse assertions are not, in general, true (see also $[\mathrm{R}],[\mathrm{Y}]$).

Denote by $p(E)$ the collection of all points of a set E such that any point of $p(E)$ is nonisolated point of the set E and it is a point of porosity for E. A set E on Γ is called a perfect σ-porous set if there exists a finite or countable collection of closed sets $\left\{F_{n}\right\}$ on Γ such that $E=\bigcup_{n=1}^{\infty} p\left(F_{n}\right)$.

Lemma $4[\mathrm{~K}]$. For an arbitrary mapping $f: D \rightarrow \overline{\mathbf{C}}$ the set $\Gamma \backslash K(f)$ is a perfect σ-porous set on Γ. Converse, for any perfect σ-porous set E on Γ there exists an analytic and bounded function g in D such that $K(g)=\Gamma \backslash E$.

Theorem 2. Let f be an analytic function in D. Then $\Gamma=L_{\mathcal{B}}(f) \cup I_{\mathcal{B}}^{*}(f) \cup P_{\mathcal{B}}(f) \cup E$ where E is a perfect σ-porous set on Γ.

Proof. By analogy with the proof of Theorem 1, we apply Lemma 4 to the functions f and d_{f} and obtain $\Gamma=M \cup E$ where $M=K(f) \cap K\left(d_{f}\right)$ and $E=E_{1} \cup E_{2}$. It is clear that E is a perfect σ-porous set on Γ. It remains to describe the set M.

For any point $\zeta=e^{i \theta} \in M$ there are four possibilities:

As in the proof of Theorem 1, an analogical argument shows that the case (IV') cannot happen. By Lemma 2, if case (III') is realized then $\zeta=e^{i \theta} \in P_{\mathcal{B}}$. Lemma 3 implies that if case (I^{\prime}) holds then $\zeta=e^{i \theta} \in L_{\mathcal{B}}$, and if case (II') is realized then $\zeta=e^{i \theta} \in I_{\mathcal{B}}^{*}$, and hence Theorem 2 is proved.

References

[ACP] J. M. Anderson, J. Clunie, Ch. Pommerenke, On Bloch funct ions and normal functions, J. Reine. Angew. Math. 270 (1974), 12-37.
[CL] E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge Univ. Press, Cambridge, 1966.
[D] E. P. Dolzhenko, Boundary properties of arbitrary functions, Izv. Akad. Nauk SSSR 31 (1967), no. 1, 3-14; English transl. in Math. USSR Izv. 1 (1967), 1-13.
[G] V. I. Gavrilov, Behavior of meromorphic function along a chord in the unit disk, Dokl. Akad. Nauk SSSR 216 (1974), no. 1, 21-23; English transl. in Soviet Math. Dokl. 15 (1974), no. 3, 725-728.
[GH] Abdu Al'Rahman Hassan and V. I. Gavrilov, The set of Lindelöf points for meromorphic functions, Matemachki Vesnik 40 (1988), no. 3-4, 181-184.
[K] S. V. Kolesnikov, On boundary singularities of analytic functions, Matem. Zametki 28 (1980), no. 6, 809-820.
[M] Sh. A. Makhmutov, Integral characterizations of Bloch functions, New Zealand Journal of Mathematics 26 (1997), 201-212.
$[\mathrm{R}] \quad \mathrm{D} . \mathrm{C}$. Rung, Meier type theorems for general boundary approach and σ-porous exceptional sets, Pacific J. Math. 76 (1978), no. 1, 201-213.
[Y] N. Yanagihara, Angular cluster sets and horocyclic angular cluster sets, Proc. Japan Acad. 45 (1969), no. 6, 423-428.

V.I.Gavrilov
Faculty of Mechanics and Mathematics
Moscow State University
Moscow, 119899
RUSSIA

S.A.Makhmutov

Department of Mathematics
Ufa State Aviation Technical University
K.Marx Str. 12,

Ufa 450000
RUSSIA
e-mail: makhm@ugatu.ac.ru

Received November 30, 1998

[^0]: 1991 Mathematics Subject Classification. Primary 30D35, 30D40.
 Key words and phrases. Cluster set, Bloch function.
 *The second author was partially supported by the grant of Ministry of Education of the Russian Federation for basic research in 1998

