Leaf space of a certain Hopf r-foliation

Shinsuke YOROZU

Abstract

The Hopf r-foliation \mathcal{F}^{r} on S^{3} is a generalization of the classical Hopf fibration of S^{3}. When r is an integer and is greater than 1 , we describe the leaf space S^{3} / \mathcal{F}^{r} of the Hopf r-foliation as a surface of revolution ($\mathbf{S}_{r}, d s_{\mathbf{S}_{r}}^{2}$) in $\left(R^{3}, d s_{R^{3}}^{2}\right)$. Then the natural projection $\tilde{p}:\left(S^{3}, d s_{S^{3}}^{2}\right) \longrightarrow\left(\mathbf{S}_{r}, d s_{\mathbf{S}_{r}}^{2}\right)$ becomes a C^{∞} Riemannian V-submersion.

1 Introduction

For a given positive number r, we consider a foliation $\mathcal{F}^{\boldsymbol{r}}$ defined on the unit 3 -sphere S^{3} whose leaves are given by the flow

$$
\gamma_{t}^{r}(z, w)=\left(e^{i r t} z, e^{i t} w\right), \quad(z, w) \in S^{3}, \quad t \in R
$$

on $S^{3} \subset \mathbf{C}^{2}([1,10])$. We call \mathcal{F}^{r} the Hopf r-foliation on S^{3} ([10]). It should be remark that the Hopf 1 -foliation \mathcal{F}^{1} on S^{3} is the one given by the classical Hopf fiberation of S^{3}. If r is a rational number, then each leaf of \mathcal{F}^{r} is closed and the canonical metric $d s_{s^{3}}^{2}$ on S^{3} is a bundle-like metric with respect to \mathcal{F}^{r}. Thus the leaf space S^{3} / \mathcal{F}^{r} becomes a C^{∞} Riemannian V-manifold([7,8]). See Satake[9] for the notion of V-manifolds. When r is an integer and is greater than 1 , we can realize the leaf space $S^{3} / \mathcal{F}^{\boldsymbol{r}}$ as a surface of revolution ($\mathbf{S}_{r}, d s_{\mathbf{S}_{r}}^{2}$) in a Euclidean 3-space R^{3}, where $d s_{\mathbf{S}_{r}}^{2}$ is the metric induced from the canonical metric $d s_{R^{3}}^{2}$ on R^{3}. A parametrization of the surface S_{r} is given explicitly in section 3. Consequently, the natural projection $p: S^{3} \longrightarrow S^{3} / \mathcal{F}^{r}$ induces a mapping $\tilde{p}: S^{3} \longrightarrow \mathbf{S}_{r}$. Then our main theorem in this paper is

Theorem. Let r be an integer and suppose $r>1$. Let \mathcal{F}^{r} be the Hopf r-foliation on S^{3}. Then the leaf space S^{3} / \mathcal{F}^{r} is homeomorphic to the surface of revolution $\mathrm{S}_{\boldsymbol{r}}$ in R^{3}, and the mapping $\tilde{p}:\left(S^{3}, d s_{S^{3}}^{2}\right) \longrightarrow\left(\mathbf{S}_{r}, d s_{\mathbf{S}_{r}}^{2}\right)$ is a C^{∞} Riemannian V-submersion.

When r is a positive rational number and is not an integer, we can also construct a surface of revolution ($\hat{\mathbf{S}}_{r}, d s_{\mathbf{S}_{r}}^{2}$) and obtain a C^{∞} V-submersion $\hat{p}: S^{3} \longrightarrow \hat{\mathbf{S}}_{r}$. However, $\hat{p}:\left(S^{3}, d s_{S^{3}}^{2}\right) \longrightarrow\left(\hat{\mathbf{S}}_{r}, d s_{\mathbf{S}_{r}}^{2}\right)$ is not a C^{∞} Riemannian V-submersion (Remark in section 4).

We shall work in C^{∞} category. The author would like to thank Professor S. Nishikawa for his helpful remarks. The author would like to thank the referee for the elimination for errors.

2 Hopf r-foliation

The unit 3-sphere S^{3} in R^{4} is regarded as

$$
S^{3}=\left\{\left.(z, w) \in \mathbf{C}^{2}| | z\right|^{2}+|w|^{2}=1\right\}
$$

where $|z|^{2}=z \cdot \bar{z}, \bar{z}$ beimg the complex conjugate of z. For a fixed positive number r, a one-dimensional foliation $\mathcal{F}^{\boldsymbol{r}}$ on S^{3} is defined by the flow

$$
\gamma_{t}^{r}(z, w)=\left(e^{i r t} z, e^{i t} w\right), \quad(z, w) \in S^{3}, \quad t \in R
$$

that is, the leaf of \mathcal{F}^{r} through the point $(z, w) \in S^{3}$ is the orbit $\left\{\gamma_{t}^{r}(z, w) \mid t \in R\right\}$ of γ_{t}^{r}. Since the classical Hopf fibration of S^{3} is regarded as the foliation \mathcal{F}^{1} (the case of $r=1$), we call \mathcal{F}^{r} the Hopf r-foliation on $S^{3}([10])$. Each foliation \mathcal{F}^{r} has two special leaves $T_{0}=\left\{\gamma_{t}^{r}(0,1) \mid t \in R\right\}$ and $T_{1}=\left\{\gamma_{t}^{r}(1,0) \mid t \in R\right\}$, which are great circles in S^{3}. Regarding the stucture of $\mathcal{F}^{\boldsymbol{r}}$, we have the following facts:
(F.1) If $r \neq 1$, then the foliation \mathcal{F} is not regular([1,5,7,8,10]).
(F.2) With respect to the canonical metric $d s_{S^{3}}^{2}$ on S^{3}, the vector field Z^{r} generating the flow γ_{t}^{r} is a Killing vector field on $S^{3}([1,10])$.
(F.3) The foliation \mathcal{F}^{r} is a Riemannian foliation, and the metric $d s_{S^{z}}^{2}$ is a bundle-like metric with respect to $\mathcal{F}([3,7])$.
(F.4) If r is a rational number, then the leaves of \mathcal{F}^{r} are closed, and the leaf space S^{3} / \mathcal{F}^{r} is a C^{∞} Riemannian V-manifold $([4,8])$.

The vector field Z^{r} generating the flow γ_{t}^{r} is given by

$$
Z_{(z, w)}^{r}=(i r z, i w), \quad(z, w) \in S^{3}
$$

We consider two vector fields X and Y on S^{3} defined by

$$
\begin{aligned}
& X_{(z, w)}=\left(|w|^{2} z,-|z|^{2} w\right), \\
& Y_{(z, w)}=\left(i|w|^{2} z,-i r|z|^{2} w\right) .
\end{aligned}
$$

Remark that X and Y vanish on T_{0} and T_{1} and that ,for example, the vector field Y has the expression in the natural coordinates $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ of R^{4} as follows:

$$
\begin{aligned}
Y_{(x, w)} & =Y_{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)} \\
& =\left(\left(x_{3}\right)^{2}+\left(x_{4}\right)^{2}\right)\left(-x_{2} \frac{\partial}{\partial x_{1}}+x_{1} \frac{\partial}{\partial x_{2}}\right)-r\left(\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}\right)\left(-x_{4} \frac{\partial}{\partial x_{3}}+x_{3} \frac{\partial}{\partial x_{4}}\right) .
\end{aligned}
$$

The following lemmas are easily proved.

Lemma 1 It holds that

$$
\begin{aligned}
& \left\|X_{(z, w)}\right\|^{2}=|z|^{2}|w|^{2} \\
& \left\|Y_{(z, w)}\right\|^{2}=|z|^{2}|w|^{2}\left(r^{2}|z|^{2}+|w|^{2}\right) .
\end{aligned}
$$

Lemma 2 The vector fields X and Y on S^{3} are infinisetimal automorphisms of \mathcal{F}^{r}.
Lemma 3 The vector fields X, Y and Z^{r} are orthogonal to each other on $S^{3} \backslash\left\{T_{0}, T_{1}\right\}$.
The sectional curvature for the plane spanned by X and Y is called the basic Riemannian sectional curvature of \mathcal{F}^{r}, which is regarded as a real-valued function K_{r} on $S^{3} \backslash\left\{T_{0}, T_{1}\right\}$, since $\mathcal{F}^{\boldsymbol{r}}$ is of codimension 2. The following lemma was proved in [1].

Lemma 4 For any $(z, w) \in S^{3} \backslash\left\{T_{0}, T_{1}\right\}$, it holds

$$
K_{r}(z, w)=1+\frac{3 r^{2}}{\left(r^{2}|z|^{2}+|w|^{2}\right)^{2}}
$$

We regard the unit circle S^{1} as the quotient set $R / 2 \pi Z$. A parametrization of S^{3} is then given by the mapping

$$
\mathbf{x}:(0,1) \times S^{1} \times S^{1} \longrightarrow S^{3} \subset \mathbf{C}^{2}
$$

where $\mathbf{x}\left(u, \theta_{1}, \theta_{2}\right)$ is defined by

$$
\begin{equation*}
\mathbf{x}\left(u, \theta_{1}, \theta_{2}\right)=\left(u e^{i \theta_{1}}, \sqrt{1-u^{2}} e^{i \theta_{2}}\right) . \tag{1}
\end{equation*}
$$

We set $\mathbf{x}\left(0, \theta_{1}, \theta_{2}\right)=\left(0, e^{i \theta_{2}}\right)$ and $\mathbf{x}\left(1, \theta_{1}, \theta_{2}\right)=\left(e^{i \theta_{1}}, 0\right)$. Then we have a mapping \mathbf{x} : $[0,1] \times S^{1} \times S^{1} \longrightarrow S^{3}$. We notice that

$$
\begin{aligned}
& \mathbf{x}\left(\{0\} \times S^{1} \times S^{1}\right)=T_{0}, \\
& \mathbf{x}\left(\{1\} \times S^{1} \times S^{1}\right)=T_{1},
\end{aligned}
$$

and the mapping $\times\left.\right|_{(0,1) \times S^{1} \times S^{1}}$ restricted on $(0,1) \times S^{1} \times S^{1}$ is a diffeomorphism from $(0,1) \times S^{1} \times S^{1}$ to $S^{3} \backslash\left\{T_{0}, T_{1}\right\}$. The foliation \mathcal{F}^{r} on S^{3} induces a foliation F^{r} on $(0,1) \times$ $S^{1} \times S^{1}$ via the mapping $\times\left.\right|_{(0,1) \times S^{1} \times S^{1}}$. The metric $d s_{S^{3}}^{2}$ is given by

$$
\begin{equation*}
d s_{S^{3}}^{2}=\left(1-u^{2}\right)^{-1}(d u)^{2}+u^{2}\left(d \theta_{1}\right)^{2}+\left(1-u^{2}\right)\left(d \theta_{2}\right)^{2} \tag{2}
\end{equation*}
$$

on $\mathbf{x}\left((0,1) \times S^{1} \times S^{1}\right)=S^{3} \backslash\left\{T_{0}, T_{1}\right\}$.
In terms of the parametrization (1) of S^{3}, we have the following expression of the vector fields X, Y and Z^{r} :

$$
\begin{aligned}
& X_{\mathbf{x}\left(u, \theta_{1}, \theta_{2}\right)}=u\left(1-u^{2}\right) \mathbf{x}_{*}\left(\frac{\partial}{\partial u}\right) \\
& Y_{\mathbf{x}\left(u, \theta_{1}, \theta_{2}\right)}=\left(1-u^{2}\right) \mathbf{x}_{*}\left(\frac{\partial}{\partial \theta_{1}}\right)-r u^{2} \mathbf{x}_{*}\left(\frac{\partial}{\partial \theta_{2}}\right), \\
& Z_{\mathbf{x}\left(u, \theta_{1}, \theta_{2}\right)}^{r}=r \mathbf{x}_{*}\left(\frac{\partial}{\partial \theta_{1}}\right)+\mathbf{x}_{*}\left(\frac{\partial}{\partial \theta_{2}}\right)
\end{aligned}
$$

on $\mathbf{x}\left((0,1) \times S^{1} \times S^{1}\right)=S^{3} \backslash\left\{T_{0}, T_{1}\right\}$, where \mathbf{x}_{*} denotes the differential of the mapping \mathbf{x}.
Let L^{r} denote the tangent bundle and Q^{r} the normal bundle of \mathcal{F}^{r}. Let $V\left(\mathcal{F}^{r}\right)$ denote the set of all infinitesimal automorphisms of \mathcal{F}^{r}. By the fact (F.3), the normal bundle Q^{r} of \mathcal{F}^{r} is identified with the orthogonal complement $\left(L^{r}\right)^{\perp}$ of the tangent bundle L^{r} of \mathcal{F}^{r}, and the Riemannian metric induces the holonomy invariant metric $g_{Q^{r}}$ on the normal bundle Q^{r}. Thus we can define the following notion. Let $\Pi: \Gamma\left(T S^{3}\right) \longrightarrow \Gamma\left(Q^{r}\right)$ be a projection, where $\Gamma\left(T S^{3}\right)$ denotes the set of all sections of the tangent bundle of S^{3}, and $\Gamma\left(Q^{r}\right)$ the set of all sections of the normal bundle of \mathcal{F}^{r}. Then the set

$$
\bar{V}\left(\mathcal{F}^{r}\right)=\left\{\Pi(W) \in \Gamma\left(Q^{r}\right) \mid W \in V\left(\mathcal{F}^{r}\right) \subset \Gamma\left(T S^{3}\right)\right\}
$$

gives rise to the set of all transversal infinitesimal automorphisms of \mathcal{F}^{r}. Among $\bar{V}\left(\mathcal{F}^{r}\right)$ we have the set of transversal Killing field of $\mathcal{F}^{\boldsymbol{r}}$, that is, $\Pi(W) \in \bar{V}\left(\mathcal{F}^{r}\right)$ is a transversal Killing field of \mathcal{F}^{r} if $\Pi(W)$ satisfies $\Theta(W) g_{Q^{r}}=0$. Here $\Theta(W)$ denotes the transversal Lie derivative operator with respect to $\Pi(W)$ (See $[2,3,5]$ for details). The following theorem was proved in [6].

Theorem 5 For the vector field Y on S^{3}, a transversal infinitesimal automorphism

$$
\Pi\left(\frac{1}{r^{2} u^{2}+\left(1-u^{2}\right)} Y_{(z, w)}\right)
$$

of $\mathcal{F}^{\boldsymbol{r}}$ is a transversal Killing field of \mathcal{F}.
This is proved by direct calculation of $\Theta\left(\frac{1}{r^{2} u^{2}+\left(1-u^{2}\right)} Y_{(z, w)}\right) g_{Q^{r}}$.

3 A surface of revolution

Roughly speaking, the basic Riemannian sectional curvature of \mathcal{F}^{r} corresponds with the "Gaussian curvature" of the leaf space $S^{3} / \mathcal{F}^{\text {(}}$ (This leaf space is a Riemannian V-manifold. See (F.4) in section 2). Thus, if we can construct a surface with corresponding Gaussian curvature to the curvature in Lemm 4, we may describe the leaf space S^{3} / \mathcal{F}^{r} as the surface. We construct the surface as a surface of revolution.

Let r be a fixed real number and suppose $r \geq 1$. We define a function f on $[0,1]$ by

$$
\begin{equation*}
f(u)=u\left(1-u^{2}\right)^{1 / 2}\left(r^{2} u^{2}+\left(1-u^{2}\right)\right)^{-1 / 2} \tag{3}
\end{equation*}
$$

Then f is of class C^{∞} on $(0,1)$, and the first derivative f^{\prime} of f on $(0,1)$ is given by

$$
f^{\prime}(u)=\left(1-2 u^{2}-\left(r^{2}-1\right) u^{4}\right)\left(r^{2} u^{2}+\left(1-u^{2}\right)\right)^{-3 / 2}\left(1-u^{2}\right)^{-1 / 2} .
$$

We notice that $f(0)=f(1)=0, f$ has the maximum value $(r+1)^{-1}$ at $u=(r+1)^{-1 / 2}$, and

$$
\lim _{h \rightarrow+0} \frac{f(h)-f(0)}{h}=1
$$

$$
\lim _{k \rightarrow-0} \frac{f(1+k)-f(1)}{k}=-\infty
$$

Then we have

$$
0<\left(1-u^{2}\right)^{-1}-\left(f^{\prime}(u)\right)^{2}<\left(1-u^{2}\right)^{-1}, \quad u \in(0,1)
$$

and

$$
\begin{gathered}
\lim _{u \rightarrow+0}\left(\left(1-u^{2}\right)^{-1}-\left(f^{\prime}(u)\right)^{2}\right)=0 \\
\lim _{u \rightarrow 1-0}\left(\left(1-u^{2}\right)^{-1}-\left(f^{\prime}(u)\right)^{2}\right)=+\infty
\end{gathered}
$$

Since the improper integral

$$
\int_{0}^{1} \sqrt{\frac{1}{1-u^{2}}} d u
$$

converges, so does the improper integral

$$
\int_{0}^{1} \sqrt{\frac{1}{1-u^{2}}-\left(f^{\prime}(u)\right)^{2}} d u
$$

Thus we can define a function g on $[0,1]$ by

$$
\begin{equation*}
g(u)=\int_{0}^{u} \sqrt{\frac{1}{1-s^{2}}-\left(f^{\prime}(s)\right)^{2}} d s \tag{4}
\end{equation*}
$$

Then we have

$$
0=g(0)<g(u)<g(1), \quad u \in(0,1)
$$

We set $g_{*}=g(1)$, the maximum value of g. The function g is of class C^{∞} on $(0,1)$ and the first derivative g^{\prime} of g on $(0,1)$ is given by

$$
g^{\prime}(u)=\left(\left(1-u^{2}\right)^{-1}-\left(f^{\prime}(u)\right)^{2}\right)^{1 / 2}
$$

Now, we construct a surface of revolution \mathbf{S}_{r} in the Euclidean (x_{1}, x_{2}, x_{3})-space R^{3}. The profile curve C of S_{r} in (x_{1}, x_{3})-plane is defined by

$$
\left\{\begin{array}{l}
x_{1}=f(u) \\
x_{3}=g(u)
\end{array}\right.
$$

for $u \in[0,1]$, where f and g are functions defined by (3) and (4), respectively. Since we have

$$
\lim _{u \rightarrow+0} \frac{g^{\prime}(u)}{f^{\prime}(u)}=\lim _{u \rightarrow+0}\left(\frac{1}{\left(1-u^{2}\right)\left(f^{\prime}(u)\right)^{2}}-1\right)^{1 / 2}=0
$$

the profile curve C is perpendicular to the x_{3}-axis at the origin in $\left(x_{1}, x_{3}\right)$-plane. We also have

$$
\lim _{u \rightarrow 1-0}\left(1-u^{2}\right)\left(f^{\prime}(u)\right)^{2}=\lim _{u \rightarrow 1-0} \frac{\left(1-2 u^{2}-\left(r^{2}-1\right) u^{4}\right)^{2}}{\left(r^{2} u^{2}+\left(1-u^{2}\right)\right)^{3}}=r^{-2}
$$

By the above facts and

$$
\lim _{u \rightarrow 1-0} f^{\prime}(u)=-\infty
$$

we have

$$
\lim _{u \rightarrow 1-0} \frac{g^{\prime}(u)}{f^{\prime}(u)}=\lim _{u \rightarrow 1-0}(-1)\left(\frac{1}{\left(1-u^{2}\right)\left(f^{\prime}(u)\right)^{2}}-1\right)^{1 / 2}=-\left(r^{2}-1\right)^{1 / 2}
$$

Thus the angle θ between the curve C and the x_{3}-axis at the point $\left(0, g_{*}\right)$ is given by

$$
\tan \theta=\left(r^{2}-1\right)^{-1 / 2}
$$

Remark. If $r=1$, then we have

$$
\left\{\begin{array}{l}
x_{1}=f(u)=u\left(1-u^{2}\right)^{1 / 2} \\
x_{3}=g(u)=u^{2}
\end{array}\right.
$$

for $u \in[0,1]$. Thus the profile curve C is a half circle $\left(\left(x_{1}\right)^{2}+\left(x_{3}-1 / 2\right)^{2}=1 / 4\right.$ and $\left.x_{1} \geq 0\right)$ so that S_{1} is a sphere of radius $1 / 2$.

A parametrization of S_{r} is given by the mapping

$$
y:(0,1) \times S^{1} \longrightarrow S_{r} \subset R^{3}
$$

where $y(u, \tau)$ is defined by

$$
\begin{equation*}
\mathbf{y}(u, \tau)=(f(u) \cos \tau, f(u) \sin \tau, g(u)) \tag{5}
\end{equation*}
$$

Setting $\mathbf{y}(0, \tau)=(0,0,0)$ and $\mathbf{y}(1, \tau)=\left(0,0, g_{*}\right)$, we have a mapping $\mathbf{y}:[0,1] \times S^{\mathbf{1}} \longrightarrow \mathbf{S}_{r}$. The mapping $\left.y\right|_{(0,1) \times S^{1}}$ restricted on $(0,1) \times S^{1}$ is a diffeomorphism from $(0,1) \times S^{1}$ to $S_{r} \backslash\left\{(0,0,0),\left(0,0, g_{*}\right)\right\}$. We notice that $\mathbf{y}\left(\{0\} \times S^{1}\right)=(0,0,0)$ and $\mathbf{y}\left(\{1\} \times S^{1}\right)=\left(0,0, g_{*}\right)$. It follows from the above facts that S_{r} is a surface of class C^{0} and $S_{r} \backslash\left\{\left(0,0, g_{*}\right)\right\}$ is of class C^{∞}. The metric $d s_{\mathbf{S}_{r}}^{2}$ on \mathbf{S}_{r} induced from the canonical metric $d s_{R^{3}}^{2}$ on R^{3} is given by

$$
\begin{equation*}
d s_{\mathbf{S}_{r}}^{2}=\left(1-u^{2}\right)^{-1}(d u)^{2}+u^{2}\left(1-u^{2}\right)\left\{r^{2} u^{2}+\left(1-u^{2}\right)\right\}^{-1}(d \tau)^{2} \tag{6}
\end{equation*}
$$

on $\mathbf{y}\left((0,1) \times S^{1}\right)=S_{r} \backslash\left\{(0,0,0),\left(0,0, g_{*}\right)\right\}$.
Lemma 6 The Gaussian curvature K of S_{r} is given by

$$
K(u, \tau)=1+\frac{3 r^{2}}{\left(r^{2} u^{2}+\left(1-u^{2}\right)\right)^{2}}
$$

on $\mathbf{y}\left((0,1) \times S^{1}\right)=S_{r} \backslash\left\{(0,0,0),\left(0,0, g_{*}\right)\right\}$.

Proof. Since the surface of revolution \mathbf{S}_{r} defined by

$$
\mathbf{y}(u, \tau)=(f(u) \cos \tau, f(u) \sin \tau, g(u)),
$$

the Gaussian curvature K of $\mathbf{S}_{\boldsymbol{r}}$ has the following expression:

$$
K(u, \tau)=\frac{\left(f^{\prime}(u) g^{\prime \prime}(u)-f^{\prime \prime}(u) g^{\prime}(u)\right) g^{\prime}(u)}{f(u)\left(\left(f^{\prime}(u)\right)^{2}+\left(g^{\prime}(u)\right)^{2}\right)^{2}} .
$$

From the equality $g^{\prime}(u)=\left(\left(1-u^{2}\right)^{-1}-\left(f^{\prime}(u)\right)^{2}\right)^{1 / 2}$, we have

$$
\left(f^{\prime}(u) g^{\prime \prime}(u)-f^{\prime \prime}(u) g^{\prime}(u)\right) g^{\prime}(u)=u\left(1-u^{2}\right)^{-2} f^{\prime}(u)-\left(1-u^{2}\right)^{-1} f^{\prime \prime}(u)
$$

Thus we see that $K(u, \tau)=u(f(u))^{-1} f^{\prime}(u)-\left(1-u^{2}\right)(f(u))^{-1} f^{\prime \prime}(u)$. Now, by the definition of f, we have

$$
\begin{aligned}
& u(f(u))^{-1} f^{\prime}(u)-\left(1-u^{2}\right)(f(u))^{-1} f^{\prime \prime}(u) \\
&=\left(r^{2} u^{2}+\left(1-u^{2}\right)\right)^{-2}\left(1-u^{2}\right)^{-1} \\
& \times\left\{\left(r^{2} u^{2}+\left(1-u^{2}\right)\right)\left(1-2 u^{2}-\left(r^{2}-1\right) u^{4}\right)-r^{2}\left(-3+2 u^{2}-\left(r^{2}-1\right) u^{4}\right)\right\} \\
&=\left(r^{2} u^{2}+\left(1-u^{2}\right)\right)^{-2}\left(1-u^{2}\right)^{-1}\left\{\left(r^{2} u^{2}+\left(1-u^{2}\right)\right)^{2}\left(1-u^{2}\right)+3 r^{2}\left(1-u^{2}\right)\right\} .
\end{aligned}
$$

Hence we have $K(u, \tau)=1+\frac{3 r^{2}}{\left(r^{2} u^{2}+\left(1-u^{2}\right)\right)^{2}}$.

4 Leaf space

In this section, we assume that r is an integer and is greater than 1. We fix r and the Hopf r-foliation \mathcal{F} on S^{3}. By identifying each leaf of \mathcal{F} to a point, we then obtain the quotient space S^{3} / \mathcal{F}^{r} formed from S^{3}, which is called the leaf space of the foliation \mathcal{F}^{r} on S^{3}. Let $p: S^{3} \longrightarrow S^{3} / \mathcal{F}^{r}$ be the identification mapping. Since all leaves of \mathcal{F}^{r} are closed and $d s_{S^{2}}^{2}$ is a bundle-like metric with respect to \mathcal{F}, the holonomy group $H(L)$ of any leaf L of $\mathcal{F}^{\text {r }}$ is a finite group and S^{3} / \mathcal{F}^{r} is a connected metric space $([7,8])$. Then S^{3} / \mathcal{F}^{r} is a C^{∞} Riemannian V-manifold and the mapping $p: S^{3} \longrightarrow S^{3} / \mathcal{F}^{r}$ is a C^{∞} Riemannian V-submersion. The notion of Riemannian V-submersion is a version of Riemannian submersion in the theory of V-manifold ($[4,7,8]$, see [9$]$ for the V-manifold category).

The holonomy group $H\left(T_{1}\right)$ of the leaf T_{1} is a cyclic group of order r, and $H\left(T_{0}\right)$ is trivial.

The action of $H\left(T_{1}\right)$ on a flat neighborhood $([7,8])$ of $(1,0) \in T_{1} \subset S^{3}$ induces the action of a finite group of rotations

$$
G=\left\{\left.\left(\begin{array}{rr}
\cos 2 \pi / r & -\sin 2 \pi / r \\
\sin 2 \pi / r & \cos 2 \pi / r
\end{array}\right)^{m} \right\rvert\, m=0,1,2, \ldots, r-1\right\}
$$

on

$$
U_{\epsilon}=\left\{\left(x_{3}, x_{4}\right) \in R^{2} \mid\left(x_{3}\right)^{2}+\left(x_{4}\right)^{2}<\varepsilon^{2}\right\}
$$

Thus an open neighborhood U of $p\left(T_{1}\right)$ in S^{3} / \mathcal{F}^{r} is homeomorphic to the quotient space U_{ε} / G of the open disk in R^{2} by G. The space U_{ε} / G is a cone with the angle θ between the axis and the generating line. Here θ satisfies the equation: $\sin \theta=r^{-1}$, that is, $\tan \theta=\left(r^{2}-1\right)^{-1 / 2}$. Since the action of $H\left(T_{0}\right)$ on a neighborhood of $(0,1) \in T_{0} \subset S^{3}$ is trivial, an open neighborhood V of $p\left(T_{0}\right)$ in S^{3} / \mathcal{F}^{r} is homeomorphic to an open disk

$$
V_{e}=\left\{\left(x_{1}, x_{2}\right) \in R^{2} \mid\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}<\varepsilon^{2}\right\}
$$

Now we consider a mapping

$$
\mathrm{j}:(0,1) \times S^{1} \times S^{1} \longrightarrow(0,1) \times S^{1}
$$

where $\mathbf{j}\left(u, \theta_{1}, \theta_{2}\right)$ is defined by

$$
\begin{equation*}
\mathbf{j}\left(u, \theta_{1}, \theta_{2}\right)=\left(u, \theta_{1}-r \theta_{2}\right) \tag{7}
\end{equation*}
$$

Lemma 7 The mapping j is surjective.
Proof. Take an element θ_{1} of S^{1}. For any $(u, \tau) \in(0,1) \times S^{1}$, we have a real number $\left(\theta_{1}-\tau\right) / r$. Then there exists an element θ_{2} of S^{1} satisfying

$$
\theta_{2} \equiv\left(\theta_{1}-\tau\right) / r \quad(\bmod 2 \pi)
$$

Thus, there exists an element $\left(u, \theta_{1}, \theta_{2}\right)$ of $(0,1) \times S^{1} \times S^{1}$ satisfying $j\left(u, \theta_{1}, \theta_{2}\right)=(u, \tau)$.
Next, if we take another element $\theta_{1}^{\prime} \in S^{1}$, then we have an element $\theta_{2}^{\prime} \in S^{1}$ satisfying

$$
\theta_{2}^{\prime} \equiv\left(\theta_{1}^{\prime}-\tau\right) / r \quad(\bmod 2 \pi)
$$

that is, for an integer ℓ

$$
\theta_{2}^{\prime}-\left(\theta_{1}^{\prime}-\tau\right) / r=2 \ell \pi
$$

Put $t_{0}=\theta_{1}^{\prime}-\theta_{1}$. Then we have

$$
\theta_{1}^{\prime}-r \theta_{2}^{\prime}=\left(\theta_{1}+t_{0}\right)-r\left\{\frac{1}{r}\left(\theta_{1}+t_{0}-\tau\right)+2 \ell \pi\right\}=\tau-2 r \ell \pi
$$

Thus we have that $j\left(u, \theta_{1}^{\prime}, \theta_{2}^{\prime}\right)=(u, \tau)$.

Lemma 8 If two elements $\left(u, \theta_{1}, \theta_{2}\right)$ and $\left(u, \hat{\theta}_{1}, \hat{\theta}_{2}\right)$ of $(0,1) \times S^{1} \times S^{1}$ satisfy

$$
\begin{array}{ll}
\hat{\theta}_{1} \equiv \theta_{1}+r t & (\bmod 2 \pi) \\
\hat{\theta}_{2} \equiv \theta_{2}+t & (\bmod 2 \pi)
\end{array}
$$

for $t \in R$, then it holds that

$$
\mathbf{j}\left(u, \hat{\theta}_{1}, \hat{\theta}_{2}\right)=\mathbf{j}\left(u, \theta_{1}, \theta_{2}\right)
$$

Proof. By the assumption, there exist two integers ℓ, k such that

$$
\hat{\theta}_{1}-\left(\theta_{1}+r t\right)=2 \ell \pi, \quad \hat{\theta}_{2}-\left(\theta_{2}+t\right)=2 k \pi .
$$

Since r is an integer, we have

$$
\hat{\theta}_{1}-r \hat{\theta}_{2} \equiv \theta_{1}-r \theta_{2} \quad(\bmod 2 \pi)
$$

which implies that $\mathbf{j}\left(u, \hat{\theta}_{1}, \hat{\theta}_{2}\right)=\mathbf{j}\left(u, \theta_{1}, \theta_{2}\right)$.
By Lemma 8, we have
Lemma 9 The mapping \mathbf{j} maps each leaf of the foliation F^{r} on $(0,1) \times S^{1} \times S^{1}$ to a point of $(0,1) \times S^{1}$.

Lemma 10 The mapping j is a submersion.
Proof. It is obvious that the mapping \mathbf{j} is of class C^{∞}. The Jacobi matrix of \mathbf{j} at any point $\left(u, \theta_{1}, \theta_{2}\right) \in(0,1) \times S^{1} \times S^{1}$ is given by

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -r
\end{array}\right]
$$

Thus the mapping \mathbf{j} is a submersion.
We set $\mathbf{j}\left(0, \theta_{1}, \theta_{2}\right)=\left(0, \theta_{1}-r \theta_{2}\right)$ and $\mathbf{j}\left(1, \theta_{1}, \theta_{2}\right)=\left(1, \theta_{1}-r \theta_{2}\right)$.
Let $[(z, w)]$ denote the image of $(z, w) \in S^{3}$ by the mapping $p: S^{3} \longrightarrow S^{3} / \mathcal{F}^{r}$, that is, $p((z, w))=[(z, w)]$. For any $[(z, w)] \in\left(S^{3} / \mathcal{F}^{r}\right) \backslash\left\{p\left(T_{0}\right), p\left(T_{1}\right)\right\}$, we have the following expression of (z, w) :

$$
(z, w)=\left(u e^{i \theta_{1}}, \sqrt{1-u^{2}} e^{i \theta_{2}}\right) \quad(u \neq 0,1)
$$

Thus, by (1),(5) and (7), we have

$$
\begin{aligned}
& \mathbf{x}^{-1}(z, w)=\left(u, \theta_{1}, \theta_{2}\right) \in(0,1) \times S^{1} \times S^{1} \\
& \mathbf{j}\left(\mathbf{x}^{-1}(z, w)\right)=\left(u, \theta_{1}-r \theta_{2}\right) \in(0,1) \times S^{1}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbf{y}\left(\mathbf{j}\left(\mathbf{x}^{-1}(z, w)\right)\right) \\
& \quad=\left(f(u) \cos \left(\theta_{1}-r \theta_{2}\right), f(u) \sin \left(\theta_{1}-r \theta_{2}\right), g(u)\right) \in \mathbf{S}_{r} \backslash\left\{(0,0,0),\left(0,0, g_{*}\right)\right\}
\end{aligned}
$$

If we take another element $(\hat{z}, \hat{w}) \in S^{3} \backslash\left\{T_{0}, T_{1}\right\}$ satisfying $p((\hat{z}, \hat{w}))=[(z, w)]$, then there exists a real number t such that

$$
\gamma_{t}^{r}(z, w)=(\hat{z}, \hat{w})
$$

that is,

$$
\begin{array}{ll}
\hat{\theta}_{1} \equiv \theta_{1}+r t & (\bmod 2 \pi) \\
\hat{\theta}_{2} \equiv \theta_{2}+t & (\bmod 2 \pi) \\
\hat{u}=u
\end{array}
$$

where $\hat{z}=\hat{u} e^{i \hat{\theta}_{1}}$ and $\hat{w}=\sqrt{1-u^{2}} e^{i \hat{\theta}_{2}}$. Thus we have

$$
\begin{aligned}
& f(\hat{u})=f(u), \\
& g(\hat{u})=g(u), \\
& e^{i\left(\hat{\theta}_{1}-r \hat{\theta}_{2}\right)}=e^{i\left(\theta_{1}-r \theta_{2}\right)} .
\end{aligned}
$$

Therefore, $\mathbf{y}\left(\mathbf{j}\left(\mathbf{x}^{-1}\left(p^{-1}([(z, w)])\right)\right)\right)$ is independent of the choice of an element (z, w) in $p^{-1}([(z, w)])$.

We set that

$$
\begin{aligned}
& \mathbf{y}\left(\mathbf{j}\left(\mathbf{x}^{-1}\left(p^{-1}([(0, w)])\right)\right)\right)=(0,0,0) \\
& \mathbf{y}\left(\mathbf{j}\left(\mathbf{x}^{-1}\left(p^{-1}([(z, 0)])\right)\right)\right)=\left(0,0, g_{*}\right)
\end{aligned}
$$

for any $(0, w) \in T_{0}$ and $(z, 0) \in T_{1}$.
Lemma 11 There exists a homeomorphism $\varphi: S^{\mathbf{3}} / \mathcal{F}^{\boldsymbol{r}} \longrightarrow \mathrm{S}_{\mathrm{r}}$.
Proof. We remark that $p\left(T_{0}\right)=[(0,1)]$ and $\left.p\left(T_{1}\right)=[(1,0)]\right)$.
For any $[(z, w)] \in\left(S^{3} / \mathcal{F}^{r}\right) \backslash\{[(0,1)],[(1,0)]\}$, we define $\varphi([(z, w)])$ by

$$
\varphi([(z, w)])=\mathbf{y}\left(\mathbf{j}\left(\mathbf{x}^{-1}\left(p^{-1}([(z, w)])\right)\right)\right)
$$

Also we define $\varphi([(0,1)])$ and $\varphi([(1,0)])$ by

$$
\varphi([(0,1)])=(0,0,0), \varphi([(1,0)])=\left(0,0, g_{*}\right)
$$

Thus we have a mapping $\varphi: S^{\mathbf{3}} / \mathcal{F}^{r} \longrightarrow \mathrm{~S}_{\mathbf{r}}$. By the above lemmas, it is obvious that φ is a homeomorphism.

Since S^{3} / \mathcal{F}^{r} and S_{r} are C^{∞} V-manifolds, we have the V-manifold version of the above lemma. In fact, by the notion of V-manifold mapping ([9]), we have the following

Lemma 12 The mapping $\varphi: S^{3} / \mathcal{F} \longrightarrow \mathrm{S}_{\boldsymbol{r}}$ is a bijective V-manifold mapping.
We consider a mapping

$$
\tilde{p}: S^{3} \longrightarrow S_{r}
$$

where $\tilde{p}(z, w)$ is defined by

$$
\tilde{p}(z, w)=\mathbf{y}\left(\mathbf{j}\left(\mathbf{x}^{-1}(z, w)\right)\right)
$$

The mapping $p: S^{3} \longrightarrow S^{3} / \mathcal{F}^{r}$ is a C^{∞} V-submersion, and so is the mapping \tilde{p}. Namely, we have

Lemma 13 The mapping $\tilde{p}: S^{3} \longrightarrow \mathrm{~S}_{r}$ is a $C^{\infty} V$-submersion.
Now, by the parametrization (5) of $\mathbf{S}_{\boldsymbol{r}}$, we have, on $\mathbf{y}\left((0,1) \times S^{1}\right)=\mathbf{S}_{r} \backslash\left\{(0,0,0),\left(0,0, g_{*}\right)\right\}$,

$$
\begin{aligned}
& \mathbf{y}_{u}=\mathbf{y}_{*}\left(\frac{\partial}{\partial u}\right)=\left(f^{\prime}(u) \cos \tau, f^{\prime}(u) \sin \tau, g^{\prime}(u)\right), \\
& \mathbf{y}_{\tau}=\mathbf{y}_{*}\left(\frac{\partial}{\partial \tau}\right)=(-f(u) \sin \tau, f(u) \cos \tau, 0)
\end{aligned}
$$

By the proof of Lemma 10, we have

$$
\mathbf{j}_{*}\left(\frac{\partial}{\partial u}\right)=\frac{\partial}{\partial u}, \quad \mathbf{j}_{*}\left(\frac{\partial}{\partial \theta_{1}}\right)=\frac{\partial}{\partial \tau}, \quad \mathbf{j}_{*}\left(\frac{\partial}{\partial \theta_{2}}\right)=-r \frac{\partial}{\partial \tau} .
$$

Thus we have

$$
\begin{aligned}
& \tilde{p}_{*}\left(X_{(z, w)}\right)=u\left(1-u^{2}\right) \cdot \mathbf{y}_{u}, \\
& \tilde{p}_{*}\left(Y_{(z, w)}\right)=\left\{r^{2} u^{2}+\left(1-u^{2}\right)\right\} \cdot \mathbf{y}_{\tau}, \\
& \tilde{p}_{*}\left(Z_{(z, w)}^{r}\right)=\mathbf{0}
\end{aligned}
$$

for $(z, w)=\left(u e^{i \theta_{1}}, \sqrt{1-u^{2}} e^{i \theta_{2}}\right) \in S^{3} \quad(u \neq 0,1)$, where o denotes the zero vector.
Let $\|\bullet\|_{S^{s}}\left(\right.$ resp. $\|\bullet\|_{\mathbf{S}_{r}}$) be the norm with respect to the metric $d s_{S^{3}}^{2}$ (resp. $d s_{\mathbf{S}_{r}}^{2}$) on S^{3} (resp. S_{r}). We have

Lemma 14 For infinitesimal automorphisms X and Y of \mathcal{F}^{r} on $S^{\mathbf{3}} \backslash\left\{T_{1}\right\}$, it holds that

$$
\begin{aligned}
& \left\|\tilde{p}_{*}(X)\right\|_{\mathbf{s}_{r}}=\|X\|_{s^{\mathbf{3}}} \\
& \left\|\tilde{p}_{*}(Y)\right\|_{\mathbf{S}_{r}}=\|Y\|_{S^{\mathbf{3}}}
\end{aligned}
$$

Remark. For a transversal Killing field $\Pi\left(\frac{1}{r^{2} u^{2}+\left(1-u^{2}\right)} Y_{(z, w)}\right)$ of \mathcal{F}^{r}, the vector field $\tilde{p}_{*}\left(\frac{1}{r^{2} u^{2}+\left(1-u^{2}\right)} Y_{(z, w)}\right)$ on $\mathbf{S}_{r} \backslash\left\{\left(0,0, g_{*}\right)\right\}$ is a Killing vector field with respect to $d s_{\mathbf{S}_{r}}^{2}$.

By Lemmas 13 and 14, we have
Lemma 15 The mapping $\tilde{p}: S^{3} \longrightarrow \mathrm{~S}_{\boldsymbol{r}}$ is a C^{∞} Riemannian V-submersion.
Therefore, we have
Theorem 16 Let r be an integer and greater than 1. Let \mathcal{F}^{r} be the Hopf r-foliation on S^{3}. Then the leaf space S^{3} / \mathcal{F}^{r} is homeomorphic to the surface of revolution \mathbf{S}_{r} in R^{3} given in the previous section, and the mapping $\tilde{p}:\left(S^{3}, d s_{S^{3}}^{2}\right) \longrightarrow\left(\mathbf{S}_{r}, d s_{\mathbf{S}_{r}}^{2}\right)$ is a C^{∞} Riemannian V-submersion.

Remark. We suppose that r is a positive rational number q / p, where two positive integers p and q are relatively prime and $p \neq 1$. Then the action of $H\left(T_{0}\right)$ induces the action of group of rotations of order p on an open disk V_{e}, and the action of $H\left(T_{1}\right)$ induces the action of group of rotations of order q on an open disk U_{ϵ}. We construct a surface of revolution $\hat{\mathbf{S}}_{r}$ with profile curve \hat{C}

$$
\left\{\begin{array}{l}
x_{1}=f(u) \\
x_{3}=\hat{g}(u)
\end{array}\right.
$$

where \hat{g} is given by

$$
\hat{g}(u)=\int_{0}^{u} \sqrt{\frac{p^{2}}{1-s^{2}}-\left(f^{\prime}(s)\right)^{2}} d s
$$

for any $u \in[0,1]$. Then the angle θ_{0} between the curve \hat{C} and the x_{3}-axis at the point $(0,0)$ is given by

$$
\tan \theta_{0}=\left(p^{2}-1\right)^{-1 / 2}
$$

and the angle θ_{1} between the curve \hat{C} and the x_{3}-axis at the point $(0, \hat{g}(1))$ is given by

$$
\tan \theta_{1}=\left(q^{2}-1\right)^{-1 / 2} .
$$

For r is a positive rational number q / p (two positive integers p and q are relatively prime and $p \neq 1$), we consider a mapping

$$
\hat{\mathrm{j}}:(0,1) \times S^{1} \times S^{1} \longrightarrow(0,1) \times S^{1}
$$

where $\hat{\mathbf{j}}\left(u, \theta_{1}, \theta_{2}\right)$ is defined by

$$
\hat{\mathbf{j}}\left(u, \theta_{1}, \theta_{2}\right)=\left(u, p \theta_{1}-q \theta_{2}\right) .
$$

And we set $\hat{\mathbf{j}}\left(0, \theta_{1}, \theta_{2}\right)=\left(0, p \theta_{1}-q \theta_{2}\right)$ and $\hat{\mathbf{j}}\left(1, \theta_{1}, \theta_{2}\right)=\left(1, p \theta_{1}-q \theta_{2}\right)$. Then $\hat{\mathbf{j}}$ maps each leaf of the foliation F^{r} on $(0,1) \times S^{1} \times S^{1}$ to a point of (0,1) $\times S^{1}$ (See Lemmas $7,8,9$). The Jacobi matrix of $\hat{\mathbf{j}}$ at any point $\left(u, \theta_{1}, \theta_{2}\right) \in(0,1) \times S^{1} \times S^{1}$ is given by

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & p & -q
\end{array}\right]
$$

Thus the mapping $\hat{\mathbf{j}}$ is a submersion, and we have

$$
\hat{\mathbf{j}}_{*}\left(\frac{\partial}{\partial u}\right)=\frac{\partial}{\partial u}, \quad \hat{\mathbf{j}}\left(\frac{\partial}{\partial \theta_{1}}\right)=p \frac{\partial}{\partial \tau}, \quad \hat{\mathbf{j}}_{*}\left(\frac{\partial}{\partial \theta_{2}}\right)=-q \frac{\partial}{\partial \tau} .
$$

A parametrization of $\hat{\mathbf{S}}_{\boldsymbol{r}}$ is given by the mapping

$$
\hat{\mathbf{y}}:(0,1) \times S^{1} \longrightarrow \hat{\mathbf{S}}_{r} \subset R^{3},
$$

where $\hat{\mathbf{y}}(u, \tau)$ is defined by

$$
\hat{\mathbf{y}}(u, \tau)=(f(u) \cos \tau, f(u) \sin \tau, \hat{g}(u))
$$

And we set $\hat{\mathbf{y}}(0, \tau)=(0,0,0)$ and $\hat{\mathbf{y}}(1, \tau)=(0,0, \hat{g}(1))$.
Then we consider a mapping $\hat{p}: S^{3} \longrightarrow \hat{\mathbf{S}}_{\boldsymbol{r}}$ defined by

$$
\hat{p}=\hat{\mathbf{y}} \circ \hat{\mathbf{j}} \circ \mathbf{x}^{-1},
$$

where \mathbf{x} is a parametrization of S^{3} defined in section 2. For infinitesimal automorphisms X and Y of \mathcal{F}^{r} on $S^{\mathbf{3}} \backslash\left\{T_{0}, T_{1}\right\}$, we have

$$
\begin{aligned}
& \hat{p}_{*}\left(X_{(z, w)}\right)=u\left(1-u^{2}\right) \cdot \hat{\mathbf{y}}_{*}\left(\frac{\partial}{\partial u}\right) \\
& \hat{p}_{*}\left(Y_{(z, w)}\right)=\left\{p\left(1-u^{2}\right)+r q u^{2}\right\} \cdot \hat{\mathbf{y}}_{*}\left(\frac{\partial}{\partial \tau}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|\hat{p}_{\boldsymbol{*}}(X)\right\|_{\hat{\mathbf{s}}_{r}}=\|X\|_{s^{s}} \\
& \left\|\hat{p}_{\boldsymbol{*}}(Y)\right\|_{\dot{\mathbf{S}}_{r}}=p\|Y\|_{S^{3}},
\end{aligned}
$$

for $(z, w)=\left(u e^{i \theta_{1}}, \sqrt{1-u^{2}} e^{i \theta_{2}}\right) \in S^{3} \quad(u \neq 0,1)$.
Therefore, we have a C^{∞} V-submersion $\hat{p}: S^{3} \longrightarrow \hat{\mathbf{S}}_{r}$. But, $\hat{p}:\left(S^{3}, d s_{S^{3}}^{2}\right) \longrightarrow\left(\hat{\mathbf{S}}_{r}, d s_{\mathbf{S}_{r}}^{2}\right)$ is not a C^{∞} Riemannian V-submersion.

References

[1] J.J. Hebda, An example relevant to curvature pinching theorems for Riemannian foliations, Proc. Amer. Math. Soc. 114 (1992), 195-199.
[2] F.W. Kamber and Ph. Tondeur, Infinitesimal automorphisms and second variation of the energy for harmonic foliations, Tohoku Math. J. 34 (1982), 525-538.
[3] F.W. Kamber and Ph. Tondeur, Foliations and metrics, Birkhäuser. Progress in Math. 32 (1983), 103-152.
[4] H. Kitahara, On a parametrix form in a certain V-submersion, Springer Lecture Notes in Math. 792(1980), 264-298.
[5] P. Molino, Feuilletages riemanniens sur les variétés compactes: champs de Killing transverses, C. R. Acad. Sc. Paris 289(1979), 421-423.
[6] S. Nishikawa and S. Yorozu, Transversal infinitesimal automorphisms for compact Riemannian foliations, Preprint 1992.
[7] B.L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. 69(1959), 119-132.
[8] B.L. Reinhart, Closed metric foliations, Michgan Math. J. 8(1961), 7-9.
[9] I. Satake, On a generarization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42(1956), 359-363.
[10] P.D. Scofield, Symplectic and complex foliations, Thesis, Univ. of Illinois, 1990.

> Department of Mathematics,
> Miyagi University of Education Aoba-ku, Sendai
> $980-0845$ Japan

