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1. Introduction

In the case of operators on Hilbert spaces, in [30]
F.-H. Vasilescu characterized the (Taylor) joint spectrum for
a commuting pair and in [16] R. Curto did it for a commuting
n-tuple.

For those on Banach spaces, we have not yet such a charac-
terzation. In [24] A. McIntosh, A. Pryde and W. Ricker character-
ized the joint spectrum for a stfongly commuting n-tuple of
operators. In [7] M. Cho proved that the joint spectrum for such
an n—tuple‘is the joint approximate point spectrum of it. And in
[11] he characterized the joint spectrum for a doubly commuting
n-tuple of strongly hyponormal operators on a uniformly smooth
space.

In this paper, we will characterize the joint spectrum of a
doubly commuting n-tuple of strongly *—hyponormal operators on a
uniformly c-convex Banach space.

Let B(X) be the algebra of all bounded linear operators
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on X. Let T = (Tl"”'Tn) be a commuting n-tuple of (bounded

and linear) operators on X.

Let E™ be the complex exterior algebra on n-generators
ey,-..,e , with product A ; E" is graded: E" = @ EE , where
k=—c
n n n . X .
Ep A EL c Ek+{ and { eJ.1 A+ A eJ.k Pl gy < < Jp<n }

is a basis for EE (k 2 1), while Eg ~ C and EE = {0} for

k <0 and k > n. Let EE(X) =X® EE and define

(n) n
D"t EQ(X) — Ep_,;(X) by

D(n)(x<8 €. A **+ A e, ) = Zk(—l)i+lT. X® e, A+-A . A+-A e
k Jq Ik i1 Ji 3 Jy Ik
when k > 0 (here v means deletion), and Dén) = 0 when

k £ 0 and k > n. A straightforward computation shows that

Dén)o Dé?i = 0 for all k, so that ({ EE(X)’ Dﬁn) Ykez is 2

chain complex, called the Koszul complex for T = (Tl""Tn)
and denoted by E(X,T).
) to be non-singular in case its

associated Koszul complex is exact, that is, Ker(Dén)) = R(Dé?i)

We define T = (Tl""’Tn
for ail k. The (Taylor) Jjoint spectrum o(T) of T is the set
of z € Cn such that T - z = (Tl - zl"“’Tn - zn) is singular.
A point 2z e Cn is in the joint approximate point spectrum
an(T) of T = (Tl""’Tn) if there exists a sequence {Xk} of

unit vectors in X such that

II(Ti - Zi)xk" — 0 as k — «© for i =1,...,n.

A point 2z € ¢c® is in the joint point spectrum cp(T) of T
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(Tl’.'.’

that

Tn) if there exists a non-zero vector x 1in X such

For an operator T € B(X), the usual spectrum, the approximate

point spectrum and the point spectrum of T are denoted by

o(T), o
We
m
The nume
V(T) of
V(

and
respecti
T € B(X)

(1)

(2)

(T) and op(T), respectively.
denote by X* the dual space of X. Let us set
*

= {(x,f) € X x X : Ifn = f(x) = lxh =1 }.
rical range V(B(X),T) and the spatial numerical range

T are defined by

*
B(X),T) = {F(T): F € B(X) and IIFIl = F(I) =1}
v(T) = { £(Tx) : (x,f) € m },

vely. Then the following results are well-known for

co o(T) ¢ V{T) and ©<o V(T) = V(B(X),T), where
co E, E and co E are the convex hull, the closure and
the closed convex hull of E, respectively.

V(T) c V(T*) c V(T), where T* is the dual operator of T.
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If V(T) c R, then T 1is called hermitian. Hence, T is
b 3
hermitian iff T is hermitian. An operator T € B(X) is called
hyponormal if there are hermitian operators H and K such

that T = H + iK and the commutator C = i(HK - KH) = O,

meaning that V(C) c R+ = { a€R : a=201}. For an operator

T = H + iK, we denote the operator H - iK by T. An operator
*

T = H +iK 1is called -hyponormal if the inequality

1e?Te™2T) < 1

holds for all complex numbers z.

*
Remark 1. If T is a -hyponormal operator on X, then
T - 21 1is *—hyponormal for every A € C and T* is also a

* *
-hyponormal operator on X

Normal operators are obviously *-hyponormal. By Proposition
1 in [23], *—hyponormal operators are hyponormal. In particular,
subnormal operators on a Hilbert space are *—hyponormal. An
example of a hyponormal operator which is not *—hyponormal is
shown in [23].

A *—hyponormal operator T = H + iK 1is called strongly

2 2

*
-~-hyponormal if H” and K are both hermitian.

Remark 2. There is an hermitian operator H such that H

is not hermitian. However, if H is hermitian then
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V(H2) c {ze€eC: Rez =0 1}.

*
Therefore, if T 1is strongly -hyponormal, then

o (TT) e V(TT) < R'.

) 1is called a doubly commuting

An n-tuple T (Tl""’T

n

n-tuple if T 1is a commuting n-tupule and there exist
hermitians Hj and Kj such that Tj = Hj + in (j=1,...,n)
and Tka = Tij for j # k. For a commuting n-tuple T =
(Tl,...,Tn) with Tj = Hj + 1K‘j (j=1,...,n), it is easy to see
that T 1is a doubly commuting n-tuple iff Hj and Kj commute

with Hk and Kk for j = k, respectively.

A Banach space X will be said to be uniformly c-convex if

for every € > 0 there is a & > 0 such that Illyll < ¢ whenever
Ixl = 1 and Hix + ayll £ 1 + 8 for all complex numbers x with
fxl < 1.

The space Zl(S,Z,u) and the trace class C1 are uniformly

c-convex. All uniformly convex spaces are uniformly c-convex.

See, for example K. Mattila [22], for details.

We now give an example of a doubly commuting pair of

%
strongly -hyponormal operators on a uniformly c-convex space.

Let # be a complex Hilbert space. Let Cp be the Schatten

p-class for 1 < p < «©. Then it is well-known that Cp is
* *
uniformly c-convex. When A and B are —~hyponormal operators

on #, the operator Sp B(T) = AT - TB (T e Cp ) is a
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*
-hyponormal operator on Cp (1 < p < « ) by Theorem 4 in [23].
And by Corollary 1.3 in [26], it holds that V(B(Cp), Sp B) =
W({A) - W(B), where W(T) = {(Tx,x): x € # and llxll = 1 }. Let
LA(T) = AT (Te Cp ).
When A = H + iK is *—hyponormal operator on #, it is clear

b 3
that LA = LH + iLK is a strongly -hyponormal operator on

Cp (1 < p < « ), Hence, if A = (Al,...,An) is a doubly
*
commuting n-tuple of strongly -hyponormal operators on #, then
Lpa = (L, ,...,L, ) 1s a doubly commuting n-tuple of strongly
A Al An
b3
-hyponormal operators on Cp (1 < p < « ).
For a commuting n-tuple T = (Tl”"’Tn) such that Tj =
- . : _ n \
H‘j + 1hj (j=1,...,n), a point =z = (Zl”"’zn) € C is in the

complete star spectrum ocs(T) of T if there is some partition

{jl""’jk} U {tl,...,im} = {1,...,n} such that
k m .
S(T; - z; )(T; -2z, )+ = (T, - 2z, (T, - z, )
u=1 Jp Ju J“ Ju v=1 tv {v tv {v
is not invertible. In particular, the set
n n
{(zl,...,zn) € C .jgl(TJ -z )TTj oz Y 'is not invertible }

is called the right spectrum of T and denoted by or(T). Then

it is clear that on(T) c ocs(T) n o(T).
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We recall from [1] and [2] the construction of a larger
space x° from a given Banach space X. Thgn the mapping T ——
T is an isometric isomorphism of B(X) onto a closed subalgebra
of B(X®). Let Lim be a fixed Banach limit on the space of all
bounded sequences of complex numbers with the norm H{An}" =
sup {la I: ne€ N }. Let X be the space of all bounded
sequences {xn} of X. Let N be the subspace of X consisting
of all bounded sequences {xn} with Lim llxnll2 = 0. The space

X° is defined as the completion of the quotient space X / N

with respect to the norm H{xn} + NIl = (Lim uxnuz)l/z. For an

operator T € B(X), the corresponding operator T® on Xx° is

defined by TO({xn} + N) = {Txn} + N. Then the following results

hold for T € B(X):

o(T) = o(T9), o (T) =0 (T9) = op(TO) and co V(T) = V(T©).

(0]

Hence, H 1is non-negative and hermitian iff H is
non-negative and hermitian, respectively.

See [1] and [2] for details.
2. Characterization

First we will prepare some results.

Theorem A ([29], Theorem 4.8). Let T = (Tl,...,Tn) be a

commuting n-tuple of operators and f an m-tuple of polynomials
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in n-variables. Then

o(f(T)) = £(ao(T)).

Theorem B ([15], Theorem 1 and [27], Theorem 3.4). Let T =
(Tl""’Tn) be a commuting n-tuple of operators and f an

m-tuple of polynomials in n-variables. Then

o (£(T)) = £(a (T)).

Theorem €C ([22], Theorem 2.5). Let X be uniformly

c-convex and let H be a hermitian, non-negative operator on

%
X. If there are sequences {xn} c X and {fn} c X such that

Hxnu = anH = 1 for each n with fn(xn) — 1 and

fn(Hxn) — 0, then Hxn — 0.

Theorem D ([28], Theorem 3.6). Let T = (Tl""’Tn) be a
commuting n-tuple of operators on a Banach space X. Then
*
o(T) = o(T*), where T* = (TT,...,Tn).
Theorem E ([12], Theorem 6.6). Let T = (Tl""’Tn) be a

doubly commuting n-tuple of operators on a complex Banach space

X. Then o(T) ¢ OCS(T).
%
Lemma 1. Let T = H + iK be a -hyponormal operator on a
Banach space X. If {xn} is a bounded sequence in X such

that Txn —— 0, then Hxn — 0 and Kxn — 0.

Proof. Consider the larger space X® and the corresponding
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o) . *

°© Ho iK° Then T is a ~-hyponormal operator on

operator T~ = + 1K

X°. And since TO({xn} + N) = 0, by Theorem 3 in [23] it

follows that Ho({xn} + N) = Ko({xn} + N) = 0. Therefore, it
follows that Lim IIHxnII2 = 0 and Lim HKanZ = 0. If the
sequence {HHan} does not converge to zero, there exist a

number € > 0 and a subsequence {xn } of {xn} such that
k

2 2

HHxnkH 2 g for all k € N. Then Lim HHxnkH 2 €. Hence we
have HO({xnk} + N) = 0. However, since Txnk — 0, it follows
that To({xnk} + N) = 0. Also by Theorem 3 in [23] we have
Ho({xnk} + N) = 0. It is a contradiction. Kxn —— 0 1is proved
analogously.

Theorem 2. Let X be uniformly c-convex. Let T = H + iK

be a *—hyponormal operator on X. Then o(T) = { z : Z € on(T) }.

Proof. Since T - z 1is also *—hyponormal for every 2z € C,
we may only prove that 0 € o(T) iff 0 € on(T). Let O be in
on(T). Then we have 0 € o(TT) = o(T*T*). Since Re o(T*T*) c R+,
there exists a sequence {fn} of unit vectors in X* such that
T*T*fn — 0. Since T" is *—hyponormal, from Lemma 1 we have
that T*an ~—— 0 and also 0 € c(T*) = 0(T). Conversely, Let
0 be in o(T). Since either TT or TT 1is not invertible, by
Theorem C we may assume that TT is not invertible. Since T

*
is -hyponormal, by Lemma 1 we have that there exists a sequence

{xn} of unit vectors in X such that szn —— 0. Hence, by the
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spectral mapping theorem for a approximate point spectrum, we

have 0 € an(T).

Lemma 3. Let X be uniformly c-convex. Let T = (Tl,...,Tn)

E3
be a doubly commuting n-tuple of strongly -hyponormal operators

n
on X. If 2 T.T. + < TJT is not invertible (1 £ k < n),
, j=1 973 jTker JJ

then Z T T is not invertible.
j=1

Proof. Put S = (TlTl’"’Tka’Tk+1Tk+l’"’TnTn)‘ Then S
is a commuting n-tuple. Since by Remark 2
o(TjTJ) v o(TJT ) ¢ RY (j=1,...,n),

by Theorem A it follows that

k n
o(leTjTj + 3 jT ) ¢ RY

j=k+1
k

Hence, 0 1is in the approximate point spectrum of 3 T. Tj +

. Jj=1
n
S T.TJ. By Theorem B, it holds that 0 = (0,...,0) € o_(S).
J=k+1 J 4
Therefore, there exists a sequence {x{} of unit vectors in X
such that TJTJX{ — 0 (j=1,..,k) and Tjzjz — 0 (j=k+1, |

= i = - |
,n). When Tj = Hj + lKj’ we put that Cj i(HjKj . KJHJ) =20 |
for j =1,...,k. Choose a linear functional f& € X such that
Hf{H = f{(xt) = 1 for each ¢. Since ;hen 2f£((H§ + K?)x{) =2 0
f{(Cin) =2 0 and f (T, TJ {) = ft((Hj + Kj)x{) + ft(ijt) — 0
for j =1,...,k, it follows by Theorem C that
(H2 + Kz)x — 0 and C,x, — 0 for j =1,...,k.
J J7 e Joe i ’
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2 [

. _ (u2 _
Therefore, it follows that TJTJX{ = (Hj + Kj Cj)x£ — 0 for

Theorem 4. Let X be uniformly c-convex. Let T =
(Tl"°"Tn) be a doubly commuting n-tuple of strongly
b 3
~hyponormal operators on X. Then
OCS(T) = oI‘(T) = {(Zla--azn) € Cn : (-Z_l""-z—n) € OR(T) }’
where T = (Tl,...,Tn).

Proof. It is clear that

zyoevzy) e € (Z,..,2)) € 0, (T) } c 0 (T) c o (T).
Assume that o = (al,..,an) is in OCS(T). Since T - z =
(Tl - zl,...,Tn - Zn) is a doubly commuting n-tuple of strongly

%
-~hyponormal operators for every 2z € Cn, so we may assume that

n
@ = 0. By Lemma 3, it follows that 3 TJTJ is not invertible and
J=1

there exists a sequence {x,} of unit vectors in X such that

<

TJTJX{ — 0 for §j =1,...,n.
And by Lemma 1 it follows that T? X, — 0 for J =1,...,n.
Consider a function g(z):= (z%,...,zi) for z = (zl,...,zn) e c®

Applying the spectral mapping theorem, Theorem B, for g, we

have g(an(f)) = on(g(T)). Hence, we have 0 € on(f).
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Theorem 6. Let X be uniformly c-convex. Let T =
(Tl"°"Tn) be a doubly commuting n-tuple of strongly
*—hyponormal operators on X. Then

o(T) = 0, (T) = {(2q,...h27) € €" ¢ (Z},...,2) € o (T) },

where T = (T ...,Tn).

l ?
Proof. By Theorems E and 4, we may only prove that if

0 € on(f), then 0 € o(T). So assume that 0 € on(f). Then there

exists a sequence {xk} of unit vectors in X such that

zjk—-* 0 fOI‘ j B l,...,n.

n
Therefore, from 0 € o(.E T.T.), it follows that

jS1 473
n n
* %, %
Also (TT,...,Ti) is a doubly commuting n-tuple of strongly

* , *

-hyponormal operators on X . From the proof of Lemma 3 there
. *

exists a sequence {fk} of norm one functionals in X such

that

TTTj £, — O for j = 1,...,n.

Since Tj is a *—hyponormal operator, by Lemma 1 it follows

that szfk — 0 (J = 1,...,n). Hence, by the proof of

* *
Theorem 4, we have 0 e‘on(T ), where T* (T1’~-~'T§)'
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Therefore, by Theorem D, it follows that 0 € o(T).

Theorem 6. Let T = (Tl""’Tn) be a doubly commuting

*
n-tuple of strongly -hyponormal operators on a Banach space X

such that Tj = H‘j + in (j=1,...,n). If A - iu = (Al - dug, ..
X T iun) € on(T), then 2 = (Al,...,xn) € o(H) and u = (ul,
.,un) € c(K), where H = (Hl""’Hn) and K = (Kl""’Kn)'

Proof. We will prove the theorem by the method of induction.

For n = 1, let T H + iK be a strongly *—hyponormal operator
on X and let x - iy € on(T). Then, from the first part of the
proof of Theorem 2, it follows that a + iy € o(T). Hence we can
choose a real number u” such that i + iux” is in the boundary
of o(T). So there exists a sequence {xk} of unit vectors in

X such that (T - (a + iu’))xk —— 0. By Lemma 1 it holds that
(H - ,\)xk — 0. pu € 0(K) is proved analogously.

Next we assume that the theorem is true for (n-1)-tuples.

Consider the larger space Xx° of X and the mapping T ~— TC.

Since A - iy € op(fo) for TO = (TO,...,Tg), there exists a
non-zero vector x° in Xx° such that
0 o = - i o j = « .0 .
Tj X~ = (xj 1uj)x for j 1, ,n

Let Y = { y° : Tg y° = (An - iun)yo }. Since T is a doubly

commuting n-tuple, Y is invariant for every H? and K? (j=1,.

_ , o) S o
.,n-1). Hence it follows that TJIY HJIY + inlY
(j=1,...,n-1) and T~ = (T?ly,...,Tg_l'Y) is a doubly commuting

X
(n-1)-tuple of strongly -hyponormal operators on Y. Since x°

is in Y, we have (xl - i“l""’*n—l - iun_l) € op(T'). So by
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the assumption of the induction, it follows that

(Al,...,xn_l) € o(H") and (“1"°"“n~1) € o(K7),
- o o - _ o o)
where H™ = (HllY”"’Hn—llY) and K~ = (KllY""’hn—llY)' Hence,
by Theorem 2.1 in [7] and Theorem 6.2 in [12], there exists a
non-zero vector z° € Y such that ngo = Ajzo for j = 1,...,n-1.

Of course, it holds that Tg 20 = (xn - iun)zo. Next let Z =

{ w° H? wo = Ajwo for j=1,...,n-1}. It then also follows

* .
that Tg'z is a strongly -hyponormal operator on Z and
X, ~ i“n € op(Tg,Z). Thus there exists a non-zero vector u® in
Z such that Hg u® = Anuo. Therefore, we have (Al,...,ln) €
o(H). (“l""’“n) € o(K) 1is proved analogously.

By theorems 5 and 6 we have the following

Corollary 7. Let X be uniformly c-convex. Let T = (Tl,.

. *
’Tn) be a doubly commuting n-tuple of -hyponormal operators on

X such that Tj = Hj + in (J=1,...,n). If x + iy = (Al +
iul,...,xn + iun) € 0(T), then 2 € o(H) and u € o(K), where
H = (Hl""’Hn) and K = (Kl,...,Kn).
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