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Which Preserve the Webster’s Scalar Curvature
(An Approach to the Local Moduli Theory

for Strongly Pseudo Convex Domains)

Takao Akahori

Introduction

Recently, for compact projective manifolds which satisfy a
certain KkKind of property, as a generalization of the Teichmiuller
space to the higher dimensional case, the global moduli theory has
been developed by several author (Siu,Fujiki and Schumacher (Si),
(Fu-8c))., On the other hand, for open manifolds, nothing has been
known. And last thirty years, several similarities between project
algebraic spaces and strongly pseudo convex spaces have been shown.
Therefore it seems natural to try to construct a global moduli space
for strongly pseudo convex space.

Let X be a strongly pseudo convex space and let 1 be a c”
function on X, which is strictly pluri-subharmonic except a compact

set. Let
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Q = { x : x in X, r(x)<o

and let bQ be its boundary. Then over bR, a CR-structure from X
is induced. Namely, let

0 ”" - (1]
T" = COT(bQ) N T xle .

Then the pair (M.OT") is called a CR-structure. I should explain why
we ,study such an abstract object. Because,our Q might have
singularities. And furthermore Q is open (not compact), so these
cause several troubles in analysis. However very fortunately, the CR-
structure over the boundary b, detrermines Q almostly (for
example, see Rossi's theorem). And furthermore (M,OT") and Q have
the similar property in analysis (if Q has no singularity). And
technically (M,OT") can be handled much easier than Q. Nothihg to
say, the CR-structure itself is interested. But from the our stand
point,we are always considering Q.

As you know, for a strongly pseudo convex space,as for local

theory, for the first time, a versal family in the sense of Kuranishi

is constructed by (A4) under several assumptions from the point of
view of CR-struciures. Later, by (B-K), by a complete different
method without any assumption,the existence of the versal family is
shown, Therefore nowadays, it is not necessary to use CR-structures
in the local theory. However, in the global theory, in the compact
complex manifold case, so called real analysis method is essentially
used and indispensable. Therefore we might hope that the CR-structure

method could revive in the global moduli theory of strongly pseudo
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convex spaces,

The first difficulty for constructing a global moduli space is
that: the parameter space of the local versal family may not be a
local moduli space. Of course this phenomenon appears in the compact

manifold case. But for a compact complex manifold X, if we assume:
Y -
H (X,Bx) =0 ,

where Gx means the holomorphic tangent bundle, then the local
versal family must be the moduli family. Contrast to the complex
manifold case, we cannot expect such a theorem in the CR-case. Namely
our standpoint is that: we are always considering ambient open
complex spaces. In this sense,if we are given a family of

$(t)

CR-structutres (M, T"), t in T, and ¢t t, in T, satisfying:

' "2

) as a germ of singularities At and A, ,

1Y 2 b | 1 ty
where (Vt ,At ) is a normal stein space determined by (M,¢(t)T"),
1 1
and (Vt ,At ) is a normal stein space determined by (M.¢(t2)T"),

we should regard

(M,¢(tl)T") ,¢(t2)T"

and (M )

as the same point in the moduli space. However, this equivalence is

hardly handled. Because even if (V, ,A

t ) as a germ of

) = (V, ,A
1Y ty' by

singularities, we cannot say anything about CR-structures. For
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example, let Ma,b be

s " (x%/7a%) ¢+ (v%3/b%) ) =1 in c".
i=1 i i i i

coub), (M 0

n a,b’ T

Obviously for any a = (al... .,an). b = (b )

1*°° a,b
defines the same stein space (non-singular point). However by

Webster’s computation (see (W)),

(Ma.b'ng,b) x (Ma,a’oT;,a) as a CR-structure
if and only if essentially a = b.

We would like to avoid this difffculty. In the above example, we
note that the Webster’s scalar curvature with respect to the natural
pseudo hermitian structure changes if a # b (see. Sect.4 in this
paper). Hence we would like to propose a deformation theory of pseudo
hermitian CR-structure which preserves the Webster’s scalar curvature.
We must explain the Webster’s scalar curvature. Let (M,OT") be an
abstract strongly pseudo convex CR-structure. Let @ a real l-form
satisfying:

OrwaOFn = ( X : X in COTM , 6(X) = 0 ),

and
d8 is non-degenerate.

We call this triple (M,OT",G) a pseudo hermitian structure. By Chern-
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Moser and Tanaka, we have a connection and curvature form over the

coframe bundle of M with respect to this pseudo hermitian structure.

¢T",6(¢)) be a deformation of pseudo hermitian structures of

(M,OT",G),where 0(¢) is the canonical form with respect to (M,¢T")

Let (M,

(for the definition, see Sect.2 in this paper). Let R(¢) be the

Webster’s scalar curvature defined by (M,¢T",8(¢)). We consider

0

(¢ : ¢ in (M, T"'8( ™) , P(¢)=0 , R(9$)=0 1},

Immediately we have the following question. Namely this family has
enough deformations or not? We study this problem. Namely we see that
this problem can be reduced to a non-linear partial differential
equation, of which principal part of the linear term is sub-elliptic

(Main Theorem). We see this. Let g be a real valued Cqo function on

M. And let Xg be a OT" valued vector field associated with g. For

any deformation (N,n,S) of a neighborhood N of M, ¥(s), we would

like to get a real valued function g(s) satisfying: there is a

X : M - n l(s) where fy = identity, satisfying
g(s) g(0)

e <]
C embedding f

* R(\l/(s)'fX ) = R.

g(s)

Obviously % is a non-linear partial differential equation, of which
unknown function is g(s). And the principal part of the linear term
of this equation is sub-elliptic. This is shown by a direct

computation. '
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Section 1. Strongly Pseudo Convex Domains and CR-structures

Let X be a complex manifold and let r be a C exhausion

function which is strictly pluri-subharmonic except a compact subset.

Let
Q= (x : x in X, r(x)<0 )

and we assume that: the boundary of Q, say bR, is smooth. Then,

naturally we put a CR-structure over bQ . Namely we set
Orn = coT(bQ) n T x|
bR’

Then we have

1) O%v A 9%Fe - o, f-dim, (cOT (b / (°1n+0F)) = 1,

2) [ ToR,%T),rme,%m) 1 ¢ roe, 1.
This notion is generalized as follows. Let M be a Cw orientable
real odd dimensional manifold. Let E be a subbundle of the
complexfied tangent bundle C®TM satisfying:

1> ENE =0, £f-dim . (COTM/( E + E )) = 1,

C

2)' [ TM,E),T(M,E) 1 ¢ T(M,E).



This pair (M,E) is called an abstract CR-structure or simply a CR-
structure. For our ©pair (bQ,OT") ,we set a Cw vector bundle

isomorphism

(1-1) C®T(bQ) = %1v + % 4+ cg,

where {4 is a real vector field, dual to JCTer with respect to a

certain hermitian metric.

Section 2. Deformation Theory of CR-structures

We recall deformation theory of CR-structutres which is
developed in (Al) ~ (A4), (A-M), (Ml) and (M2). As is in Section 1,
we assume that we are given a complex manifold X, a strongly pseudo
convex domain Q, and the boundary bQ, a CR-structure 0T" induced

from X on M, and we set a c” vector bundle decompsotion (1-1).

Definition 2.1. Let E be a subbundle of the complexfied

tangent bundle C®TM satisfying:

(2-1-1) ENE =0, £-dim.(COTM/( E + E )) 1.

C

Then, the pair (M,E) is called an almost CR-structure. As E is a

subbundle of C®TM , we have a projection map from E to T
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according to (1-1). If this projection map is isomorphism, then we
call (M,E) an almost CR-structure which 1is finite distance from

(M,OT") or simply an almost CR-structure.

Then, immediately we have the following proposition.

oposition opositi 6.1 in (A . An almost
CR-structure ¢’T" corresponds to an element ¢ of F(M.T'@(OT")*)
bijectively. The correspondence is that: for ¢ in F(M,T'@(OT")*),

$Tv = (X' : X' = X + 6(X), X in °T" 3,
1, O-"
where T'="T" + C§¢.
And we have
Proposition 2.3 (Proposition 1.6.2 in (A2)). An almost
CR-structure ¢T" is an actual CR-structure if and only if ¢
satisfies the non- linear partial differential equation P(¢) = 0.

For a CR-structure (M,¢T") ,we assume that ¢ is sufficiently

close to 0. Then we can define the canonical C°° vector bundle

decomposition

¢ ¢

(2-1) COTM = '"T" + "T" + Cg,

and so w have the projection w¢ from CO®TM to C¢ with respect to
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this decomposition, For this, we set a 1-form 6(¢) by:

(2-2) e(¢>l¢ 4 0,

T"+ "i:M

0(8)(%) = 1.

By using this 6(¢), we have the canonical Levi form for

as follows. Namely, for X', Y' in ¢T",

Ly(X', Y= de () (X', ¥"),
that is to say,

—m¢([x',?'1).

We see this more precisely. By the dfinition,for VA in

have the unique element X(¢), Y(#) in OT", and a function

satisfying:

Z = X(#) + ¢(X(9))+ Y(#)+8(Y(¥)) + u(e)g.

Comparing the type according to (l1-1), we have

2-1) (Z)0 = X(¢) + $(X(¥)),
T"
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(2-2) (D),_ = Y(¢) + ¢ (X(¢)),

OT"
(2-3) (Z)g = u(#)g.
Here (Z)0 means the 0T" - part of Z , (Z)o_ means the OT"
T" TH

part of Z, and (Z)g means the ¢g-part of Z respectively. By

(2-1) and (2-2), we have

(2-4) (Z) = X(9) + ¢(((2D ) = 6(X($))).
O ”" O-H
T T
Hence
(Z)O_ - ¢(((Z)o_ )) = X(¢) - ((P(X($))).
T" Tn
And
(Z)O - ¢((Z)0 ) = Y(9) - ¢((2(Y(®))),
'T'" T"

Hence X(¢), Y(#) and also u(¢) are solved by the inverse mapping

theorem, written in terms of ¢ and

X(0) = (Z)OT", Y(0) = (Z)OT". u(0) = (Z)g.

— 64 —



Section 3. Webster®s Scalar Curvature R for (M.OT”)

We recall the Webster’s scalar curvature. Let p be a point of

M. Let (Yl,....,Yn_l) be a base of OT" on a neighborhood of p.

Then we have a hermitian matrix (gaE)ISa B<n-1 by
b

Bqf = = V-1 YY1,

where [Ya,?B]g means the &-part of [Ya.§B] according to (1-1). Let
a v -
0 (YB) = 5&8’

a -

e (YB) - O)

6%c¢) = o.

And let O be the dual real lI-form to ¢, namely

0¢g) =1,
6'°Tﬂ+°T" = 0.

Then our OT" integrable, so these are 1-forms, Mot satisfying
d8 = /-1 g5 0%r0® + gAc n, 6" + n 8" >,

and so there are l-forms wBa, ta, mg&, t& by
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a0% = 0%hA0,® + 0ATY,

8

ae% = OBAmza + OATY. |
| And if we assume
|

dg .z - o Yg - g -m—— 0

o8B o °y8 oy B8 ’
8 8 . . o o .
then wa , m& are uniquely determined. And <t , T are uniquely

determined in mod@. See Theorem (1.1) in (W). By using these, we set

o _ o _ Ya. & _ T o — o
QB = daog @ AwY v IGBAt + ltBAG .

o o .
From these QB .+ Wwe have RB P& by:

@ _ o O _ aPaaC o P - W _a®
QB = Ry 05 6" A8 + W pe A6 W Boe AQ.

So we have the Ricci curvature
_ o
Rpa = X R

o ‘o po’

and the Webster’'s scalar curvature
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Section 4. Webster’>s Scalar Curvature R(¢) for (M.¢T”)

For a deformation of (M,OT"). say (M,¢T"). we will write down

Webster’s scalar curvature R(¢) in terms of ¢. Let 6 be as in

Section 3. Then we have the canonical 0(¢) for this deformation

(M,¢T") (see (2-2) in this paper). Let P be a point of M. Let

{Yl,....,Y } Dbe the orthonormal base of OT" at p. Let

n-1

%Y. = ¥, + #(Y.), 1 <i<n-1.
1 1 1

Then we have a hermitian matrix (ga3(¢)) by

1<, B<n-1

_ e /79 @

where [¢Ya,¢? ¢ ¢35

B]§ means the &-part of [ Ya’ YB] according to (2-1).

Let 6%(#) be the dual 1-form to ®Y_, namely

a’

e“<¢>c¢v8>

i
Cn

aB’

0% (s> Py

t
o

g)
6% (8)(¢) = o.

And let 6(¢4) be the dual real 1-form to ¢, namely
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0818 =1,

CRERY _ = 0.
¢T"+¢T"

Then by the same reason as for (M,OT"). there are l-forms, na(¢),

satisfying:

d0(¢) = /flga§(¢)e“<¢)AeB(¢) + 0(®)IAC ny(¢)ey(¢) + ny(¢)07(¢> )

and so there are l-forms wa8(¢), w&8(¢), ta(¢), ta(¢) by

ae% (¢

eB(¢)AmB“<¢) + 0)At% (),

a6%(¢) 9§(¢)Am§a(¢) + 0 A% ().

So under

dg, 5 ($) - ma7(¢)gyg(¢) - ga;(¢)m§“<¢> = 0,

ma8(¢), m&B(¢) are uniquely determined and ta(¢), ta(¢) are

in mod@, uniquely determined. By the same way as in Section 3, we set

_ 24 =C(_Y o aN_ /Y o, T 04
(4-1) 98 () dag (%) wg (¢)Amy -/ 198<¢)Ar +/ lt8(¢)A9 ®),
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o
and we have RB po by

_ o _p O p o o P W& _a0
(4-2) QB ($) RB pa(¢)9 (¢)A0 (¢)+W8 p(¢)9 ($)A0(8)-W 806 ($)XA8(9).

So we have the Ricci curvature

= @ _
(4-3) Rpo(¢) = X o Ra po(¢)’

and the Webster’s scalar curvature

- - po -
(4-4) R(¢) P 0,0 g (¢)qu(¢),

where (gpo(¢)) is the inverse matirx of (ga§(¢))

I‘P.O'SD"I ISQ,BSn-l'

Section 5. The Principal Part of the First Order Term

We compute the principal part of the first order term of R(¢),

¢

the Webster’s scalar curvature for (M, T",08(#)), ¢ in F(M,T'O(OT")*)

with respect to ¢, by using (4-1)~(4-4). By (4-4), the principal

term of the first order term of R(#) with respect to ¢ , is that:

the first order term of gp°(¢)Rp5(¢)



the first order term of g”%(¢)% adwaa(¢)(¢Yp,¢Yo)

the first order term of za,p dma o' Yp

Because gp°(0)=6pa and gp0(¢) includes only the 1-st derivatives

of ¢ but dwaa(¢) includes the 2-nd derivatives of ¢,

and

furthermore from eB(¢)Ar“(¢), r8<¢>A9“(¢). only 2-nd derivatives

appear. So we can ignore these terms(this is shown in

computation). Namely we have:

the principal term of the first order term of R(9)

the first order term of X dmaa(¢)(

o, p Yp, Yp) with respect to

the first order term of

24 NV adrv N YV 247V ~ [v4
Za,p{ (Yp+¢(Yp))wa (¢)(Yp+¢(Yp)) (Yp+¢(Yp))ma (¢)(Yp+¢(Yp))

o -
o, (¢)([Yp+¢(Yp).Yp+¢(Yp)]) }.

our

¢

From the term; maa(¢)([Yp+¢(Yp).Yp+¢(Yp)]). the 2-nd derivative of

¢ doesnot appear. So the above becomes

= the principal term of the first order term of
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(o4 TN sdrv N YV 247V (04
Za,p((Yp+¢(Yp))ma (¢)(Yp+¢(Yp)) (Yp+¢(Yp))wa (¢)(Yp+¢(Yp))).

And so

= the principal term of the first order term of

>4 v v .. &
Za,p( pra (¢)(Yp) pra (¢)(Yp) }.

We compute ma“(¢)(?;), waa(¢)(Yp). By the definition, we have

5-1) d9“(¢)(¢¥i,¢vj) = <98<¢>Am3“<¢)><¢yi,¢yj) . (9Ar“(¢))(¢vi.¢vj)
I > ¢ ¢
= -0, %@y,

B-ii) d9“<¢)<¢¥i,¢vj) = 0,

5-1ii) dea<¢><¢vi,g) = (68(¢)Am8“(¢))<¢vi,g) + <9At“(¢))<¢vi,g)

mi“(¢) - r“(¢)(¢¥i).

Following (W), we set

r“(¢)<¢¥i) = 0.



And

6-iv)

5-v)

d6%(¢) (

6% (¢) (

¢

¢

Furthermore

5-i)"

5-ii)"

5-iii)*

Y.
i?

Yi’

£)

¢

de“(¢)(¢Yi.

de“(¢)(¢vi,

a0%(8) ¢

Y.
i

¢

¢

YD)
J

¢

Y.
J

Y.
J

» §)

)

)

- t%8)¢

B

ob

(0 (¢)Am8“(¢))(

¢

¢

Y.),
i

(¢)Aw8 (#))(

Y., 8) + (8At%(¢)) ¢

o,

(98<¢)Am§“(¢))(

ob

L

- (

e

-“(¢)(¢Yj).

(¢)Am§a(¢))(

Y ),
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(¢)Am§a(¢))(

¢

Y, ¢

¢ ¢

Y.,
i

¢ 4

Y.
i?

Yi)’

Y 8) + (0AT%(8)) ¢

¢

Y ) + (BAT%(8)) ¢

Y., %)

Y (9Ar“<¢))(¢vi,

¢

Y o+ (0AT%(8)) ¢ Y.,

¢

Y., %)

¢

¢

E_” sy

J

).

Y.
J

)

Y.D

J



-

5-iv)' a08%(8)( ¢

4 0f (¢)n0

]

—“(¢))(¢Yi,§) + (OAT®(8)) ¢

Y8 B

Yi,g)

07% ) (&) - %) (®

Y.,
i

5-v)' de%(e)¢ Yi,¢y.

J

) = 0.

On the other hand, we require

= ($) - ga;(¢)m§V(¢) = 0.

A&z (9 - may<¢)g78

And so

the first order term of mi“(¢)(¢vj)

the first order term of w;a(¢)(¢Yj)

¢

the first order term of - mal(¢)( Yj)

the first order term of d61(¢)(¢Yj,¢Y ).

o

Therefore
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the first order term of waa(¢)(¢Yp)

the first order term of d0%(¢)¢

¢ ¢
Ya)

Yp,

. x v 29 <
the first order term of d#@ (¢)(Yp+¢(Yp),Ya+¢(Ya))

: o O ——
the first order term of 0 (¢)([Yp+¢(Yp\,Ya+¢(Ya)J.

So the principal term of the first order term of maa(¢)(¢Yp)

with respect to ¢, is that:

o —_—_—
0 (¢)([Yp+¢(Yp)'Ya+¢(Ya)])

Similarly, the principal term of the first order term of waa(¢)(¢Yp)

with respect to ¢, is that:

Therefore we have

Theorem 5.1. The principal term of the first order term of R(¢)
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- R with respect to ¢ 1is that:

Proof. We have already shown that:the principal term of the

first order term of R(¢) - R
= the principal term of the first order term of

a - -
z { pra (¢)(Yp) Y

(04
o, p @y (¢)(Y D 1},

P p

And as above, we obtain that:the principal term of the first order

¢

o o
t f = ,
erm o @ (#)( Yp) Yp¢p namely

the principal term of the first order term of maa(¢)(?;) = Ya¢pa.

Hence it follows that: the principal term of the first order term of

Y ¢ ©. Q.E.D.

"
<
3
e
+
w1
L-Y

R(¢) - R

Section 6, Induced CR-structure by a Real Valued €~ Function g

Let g be a real valued Cw function on M. From this g, we

introduce a I'(M,°T")-valued C° vector field X, by
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~/71UX,, Y1, = Yg  for Y in roum, ey,

Qhere [Xg,Y]g means the §-part of [Xg,Y] according to (1-1). In the
construction of a new CR-structure,we use this vector xg. Namely,
for any family of deformations of a neighborhood of M, say N, in
X, (¥,n,8), where X is an analytic space and S is also, and =

is a smooth map from N to S satisfying:

> Nx S

projection

and o in S, n Y(o) = N, we would like to set a parametrization of

CQ embeddinngs of M by TI'(M,T'), where
T+ = 9% + cg.

We put a Riemannian metric on N. And we consider the exponential
mapping expp(X) and we restrict this map to M. Namely for a vector
field X in 8 of T(M,TN|,) with respect to the c%norm

(sup-norm), we have

expp(X) : M > N,

where TN means the real tangent bundle and TN| means the

M
restriction of TN to M. So we have
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M x 8 >N

(p,X) > expp(X).

Let T'Ns means the vector bundle consisting of (0,1) vectors with
respect to the complex manifold n_l(s) = Ns. Then the inclusion map

i: T > C8TNS, where C@TNS means the complexfied tangent

bundle of the realr tangent bundle TNs (we note that T' 1is a

subbundle of C8TM, and as M is a submanifold of N, so there is

an inclusion map i: TM —/> TNS), induces the isomorphism map
T > T'NS, where T'Ns means the vector bundle consisting of
(1,0) vectors with respect to the complex manifold n-l(s) = Ns' We

denote ps for this isomorphism map. For n in T', we consider

expp(ps(n) + ps(n)).

That is to say, we have

M x 8' >M X 8 —> N
(p,n) ————>(p,ps(n)+ps(n)) >expp(ps(n)+ps(n)),
where e is an open set of the origin in F(M,T'). We, briefly,
write this combosition map by fn. Let {Vi)isI be an open

coordinate covering of N satisfying:



> Ui X S

A4 projection

where (Ui)isI is an open coordinate covering of N. And let
o . .

{zi (3)}iel.l$a$n be a complex coordinate of X. This means that

zia(s) is a complex valued c” function on Ui satisfying:
o . . " .

(zi (S))iel,ISaSn is a holomorphic local coordinate with

respect to the complex structures,which depends on s complex

analytically. Then by using this coordinate, zia(s), we have

£,% = zi“(s) + ni°‘ + the higher order term of n, 7,

where

n.% = n(zia(s))l

i u.n M’
i

Namely, we have a C°° embedding fn

£
M xS x [(M,T") —0—> X

b8

0w <

-1

Then, via this Coo embedding f from n "(s), we have the induced

n'
CR-structure ¢(s)-fn, where V¥ (s) is the corresponding holomorphic
tangent bundle valued (0,1) form. We already introduced a vector

field Xg in F(M,OT") c 'M,T'), in the beginning of this section.



We must study \Il(s)'fx and also we compute its Webster's scalar
g

X ) by using the result obtained in Section 4 in
g

curvature R(¥(s)-f

this paper.
Now we compute

R(W(s)'fx ) - R.

g

We use the notation L0 for the linear term of R(W(s)-fx ) = R with
g

respect to g. Then our main theorem in this paper is that:

Theorem 6.1, The principal part of LO is sub-elliptic.
Proof. By using a parition of unity, it suffices to show this

theorem on a local coordinate open covering U. Let {Yl,....,Y }

n-1
be a moving frame of OT" on U, which are orthogonal with respect
to the Levi-metric defined in (l1-1) in Section 1 in this paper. We
put the Lz-norm on FO(U,C) where FO(U,C) means the space which

consists of Ccc functions,supported in U. If we prove that:

6-1> B L& 12+ 1 gl?
2 S LY. Yegh? + NY T 202 + 0T Y 02 « 0¥ V202
o, 8 o B o B o B o B '
where ¢ 1is a positive constant independent of g, and | I means

the Lz-norm defined in the above, then our theorem is complete. In

order to prove (6-1), we must prepare somethihg.

*

Let Ya

be the formal adjoint operator with respect to the

above Levi metric. Then



* -
= - +
Ya Ya aa,

. «< .
where aa is a C function on U.

Next we prepare several abbreviations. First, we set

by
w2 2 © w243 2 o5 a2
gl = Za,B{llYaYBgII +IIYaYBg|I *HYaYBgII +IIYaYBgII }.

Second, as in the standard way, we introduce (. For any real

B,

RA

means that there is a constant ¢ satisfying

A £ cB.

Now in order to prove our theorem, we show some lemmas.

norm

and

Lemma 6.2. For a g in FO(U,C), and for any & > 0, there is a

constant K satisfying:

2

2 ce1 g 1%+ (x/8)0 g 12,

] Yag ]

Proof. In integration by parts, we have
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I Yag I (Yag,Yag)

E 3
(YaYag,g)
= (-YaYag,g) + (anag,g).
While by the Schwarz inequality,
< i 2 , 2
I ( YuYag.g)l < e'lY Y &gl + (276 g |

for any €' > 0. Smilarly, there is a constant K satisfying:

12 2

|(aaYag,g)| < el Yag + (K/e")ll g

for any €' > 0 (since M is compact, we can assume that a

bounded). Hence )
1Y, &0% < e gl ?+2/e > hgh®ve 1Y gh?+ (k/e ") lgh?

for any €' > 0. So by choosing K sufficiently large, we have
1Y, &l? < elgl"® + k/e)lg?

for any € > 0. Hence we have our lemma. | Q.E.D.

Next we have

is



Lemma 6.3. For any g in FO(U,C), and for any €& > O,
(L g, g)+elgh" 2+ k/erlgh? = = (IY Y, gh2+1Y_Y 2l%)
0"’ o,B o B o B :
Proof. By Theorem 5.1, in this paper,
the principal part of the linear term = Za,B(YaYBYaYB+Y YgY, Yg)-

o

So

(Log.g) za,B(YaYBYaYBg’g) + Za’B(YaYBYaYBg.g)

= =% - = *

za,B(YBYaYBg’Yag) + za,B(YBYaYBg’Yag)’
While

- -* - -

(YBYaYBg’Yag) = (YBYaYBg’-Yag) + (YBYaYBg'aag)'
We note that (?BYaYBg,adg) can be ignored. Because

= -(YaYBg,aaYBg)+(YaYBg,-(YBaa)g)+(YaYBg,aaaBg)
For the first term, there is a constant Kl satisfying:for any € > 0,

a n2 2
I(YaYsg,aaYBg)l < glgl + (Kl/e)“YBgH .



And for HYBguz, by Lemma 6.2, we have that:for any & > 0,
2 w2 2
HYBgH < dligl + (K2/6)HYBgH .
Hence for any g > 0, d > 0,
- w2 2
I(YaYBg,aaYBg)I < (e+(K /enlegl"” + (K K,/es)lgh”.

The second term, namely (YaYsg,(?BEa)g), and the third term

(YaYBg' EaaBg) are also absorbed in 8"gﬂ"2 + (K/e)"g"z. So for any

€ >0, there is a constant K' satisfying:
Vv V n2 ' 2 Y -
Re (YaYBYaYBg’g) + glgl + (K'/e)iigl > Re(YBYaYBg, Yag).

By the similar way, we have: for any € > 0, there is a constant K

satisfying:
Y V Ny 2
Re (YaYBYaYBg‘g) + glgl + (K/e)ligl = Re(YaYBg’YBYag)
= (YaYBg’YaYBg) + Re(YaYBg.CYa,YB]g).

We can handle Re(YaYBg’[Ya’YB]g)‘ In fact, there is a constant K

satisfying: for any g' > 0,

1,12 < elgl"? + x/e)g1?,
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So
| Re(YaYBg,[Ya,YB])l < 8“gﬂ"2 + (K'/8'){8H3N"2 + (K/e)ﬂg"z)
< (g +(K'/e' N lgh"? + (X'K/g'erlgh?

for any &, €' > 0. So we can ignore Re(YaYBg’[Ya'YB]g)'

Now we prove our theorem. We have obtained that there is a
constant K satisfying: for any g in FO(U.C), for any € > O,

(L g.g) + elgh"? + (R/erlgh? =2 = (0¥ Yogl? + 0¥ ¥,g1%)

0™’ o, B o 8 o B :

2
While from HYaYBgH .

*
(YaYBg.YaYBg) = (YBg’YaYaYBg)

(YBg’-YOtYaYﬂg) + (YBg’aaYdYBg)

(YBg.-Ya?aYBg)+(YBg,[Ya,?a]YBg)+(YBg,YaYBg).
Henceforth we ignore any term which can be estimated by:

elgh? + (k/e)ngh?
for any €& > 0, where K is a constant. So from now on, = means

modulo any term of this type. Then by this abbreviation, the above

becomes



+

= (Ygg,-Y, y «¥p&) (YBg,/-ngBg)

(by [Ya.Y ]

= (Y " PY-8 Y o¥p&) * (YBg,/-l§YBg).

On the other hand,

(YaYBg.YaYBg) = (YBg, Y Y YBg)

(YBg, Y Y YBg) + (YBg [Y YB]YBg)

(YaYBg ,Y YBg) + (Y g, =/-1 ng 2).

Therefore

2
20:,8( IIYaYBgII + IIYBY gll )

Za,B( Iy YBgH + (YBg,/-ngBg) + HYBYagH + (YBg.-/ 1£Y,8) )

v 2
Za’B( "YaYBg" + "YB D:gll }

(because the term: (YBg,J:TgYBg) + (?Bg,-/:Tg?Bg) can be estimated

by Sﬂgﬂ"z + (K/e)llgll2 by the similar method as above). So we have

— 85 —



Hg|n2 < HLogWZ + ugﬂz for any g in I (U,C). Q.E.D.

Henceforth we use the notation Lo for this principal part of

the linear term.

Section 7. On Versality

By using the result in Section 6, we discuss about versality. By
the definition of versality in the sense of Kuranishi, if we prove

that there is a solution g(s) satisfying:

(7-1) R(¢(s)-fx

g(s)
where ¥(s) means the corresponding form for a given family of
deformations of a neighborhood N of M, N,n,S), n-l(o) = N, then
our family

0

(¢ : ¢ inrTmM,T0’T™ |, P

0, R(¢) = 0}

is versal in the sense of Kuranishi. As we have already shown, (7-1)
is a non-linear partial differential equation and the principal term
of the first order term of (7-1) with respect to g(s), is

sub-elliptic.
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(A2)

(A3)

(A4)

(AB)

(A6)

(A7)

(A8)
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