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1. Introduction

Let M be a 2n-dimensional Kihlerian manifold and R its Riemannian curvaturn
tensor. At each point p of M, R is a quadrilinear mapping T»(M) X Tp(M) X Tp(M) X
Tp(M)— R! with well known properties.

Let ¢ be a plane in Tp(M), i.e, a 2-dimensional subspace of Tp(M). Choosing an
orthonormal basis {X, Y} for ¢, we define the sectional curvature K(o) by

K@)=RX, Y, X, Y).

We shall occasionally write K(X, Y) for K(¢). The right hand side depends only
on g, not on the choice of an orthonormal basis {X, Y}. The sectional curvature K is a
defined function on the Grassmann bundle of planes in the tangent space of M. A plane
o is said to be holomorphic if it is invariant by the (almost) complex structure tensor J.
The set of J-invariant planes ¢ is a holomorphic bundle over M with fibre P»_;(M) (com-
plex projective space of complex dimension #—1). The restriction of the sectional
curvature K to this complex projective bundle is called the holomorphic sectional curva-
ture and will denote by H. In other words, H(¢) is defined only when ¢ is invariant by
Jand H(e)=K(s). If Xisa vecor in g, we shall also write H(X) for H(o).

Let (M, g), (M, g) be two Riemannian manifolds. Denoting the corresponding
sectional curvature by K respectively K, we say that M, M are isocurved if there exists a
sectional curvature preserving diffeomorphism f; M—>M, i.e, for every p&M and for
every o, a plane section of tangent space T»(M), we have

K(o)= K—(f % 0)
where f, is the differential at pc M of f.
R. S. Kulkarni [ 4] showed the following
THEOREM. Suppose that (M, g), (M, g) are isocurved, dim M= 4, g analytic and

K% constant. Then (M, g), (M, g) are isometric.
 Let (M, g 1), (M, g ] be two Kéhlerian manifolds. If there exists a holomorphic
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mapping f ; M——>M, then Jo f,=f,°J. Therefore we say that M, M are h-isocurved if
there exists a holomorphic sectional curvature preserving holomorphic isomorphism 1 ; M
——M, i.e, for every p&M and for every o, a holomorphic plane section of the tangent
space Tp(M), we have

H(X)=H(f+ X)

where H, H are the corresponding holomorphic sectional curvatures.

In this paper, we write 4. s. c. p. A. i for a holomorphic sectional curvature preserving
holomorphic isomorphism.

The main purpose of the present paper is to prove a Kihlerian analogue of the above
theorem in the case of dimension 4.

The author would like to express his deep appreciation to Prof. H. Mizusawa, who
has been a constant source of encouragement and help during the preparation of this

paper.

2. Holomorphic sectional curvature and the conformal class of a metric

Let M be an even dimensional Riemannian manifold and J an almost complex struc-
ture on M, that is, a tensor field of type (1, 1) on M satisfying J2=—1 where I denotes
the field of identity endomorphisms. A Riemannian metric g on M is called a Hermitian
metric if the almost complex structure J on M is an isometry with respect to g. A triplet
(M, g, J) is said to be Kihlerian if it is satisfies

vJ=0
where V denotes the covariant differentiation with respect to the Riemannian connection
determined by g.

It is well known that a Riemannian curvature tensor R of a Kihlerian manifold
satisfies the four conditions,

(a) RX Y, Z W)=—R(Y,X,Z, W)=—RX, Y, W, Z),

(b) R(X,Y,Z W)=R(Z, W, X, Y),

(c) R(X,Y,Z W)+R(X, Z, W, YD+R(X, W, Y, Z)=0
and

(ad RUX,JY,Z, W)=R(X, Y, JZ, JW)=R(X, Y, Z, W)
where X, Y, Z and W are any vector fields.

Let M be a 2n-dimensional Kihlerian manifold and let {Xi, ...... , Xn, T Xq,...... , JXn}
be an orthonormal basis for T»(M) at each point p of M. We also write Xi,...... » Xng
for JXi,......, JXn. Set f.X.=X, and g(Xa, Xg)=Aas. We use the convention that the
indices @, B8, 7, 9,...... run through 1,...... n, 1%,...... , n*, while indices i, j, &,...... run from 1
ton. We set Ragro=R(Xa, Xp, Xy, X5) and Rausrs=R(Xu, X5, X7, Xo)-



The auther has ever proved the following ([51)

Lemma 2. 1. Let M be a 2n-dimensional Kdhlerian manifold. H(X) is constant

for any vector X& Tp(M) if and only if there exists an orthonormal basis {Xj,...... s Xn,
D, SR » Xy} for the tangent space Tp»(M ) with the following properties;

2.1 Riigiie=Rjjsjjx=4Rijij=4Rijxijx for each i==j

and

2.2) all the other Ruprs=0 except Rii*j;*.

On the other hand, to prove Proposition 2. 3, we need the following

LemmA 2. 2 .(M. Berger [1]). Let M be a 4-dimensional Kahlerian manifold. Then
there exists an orthonormal basis {X1, X1y, Xo, Xoy} for tangent space Tpy(M) at each point
DPEM with the following properties

2.3) Ri1x12=Ri1512= R12124 =0.

Now we shall prove

ProposITION 2. 3. Let f: M—> M be an h.s. c. p. h. i of two Kihlerian manifolds
and the set of points of M such that H(X )iconstcmt for X&Tp(M) densein M. If dimen-
sion M is 4, then f is conformal.

Proor. Let {Xj, X, Xi4, X324} be an orthonormal basis for Tp(M) at p=Mand x, y
real numbers, not both zero. By the algebraic relations ((a), (b), (c) and (d)) of the
curvature tensor of the Kihlerian manifold, we obtain the following:

H(xX1+9X5) = {Ri15114%4+ 4 R114124%3Y + 2(R11 4204 T+ 2R124124 0422
+4R124224%Y3+ Ropsonsy®} | (22+52)2

and -

H(X1+9X2) = (Rupea1a¥t+4AR114124%% + 2(E1*22* + 2R 24124) 52
+ 4Ry 94205 %Y3+ Ronsons ¥ | (#2A11+2%9A12+ 324 05)2.

Cross multipling, we get an identity in x, y under the assumption H(X)=H( T XD.
Set a=Rits1140 0=4R114124, ¢=2(Ru1s224+2R12412¢) d=4R124224> €¢=Roos224r @ =R114114, V'
:EI.*IZ*: etc.
Comparing coefficient we get

(A) Coefficient of x8:

o’ =aAn2
(B) Coefficient of x7y:

b =2aA11A2+bA 142
(C) Coefficient of x6y2:
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(E)

(F)

(G)

(HD
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2a’ +c¢' =2a(2A 152+ A11492) +8bA 114 20+ cA1e2.
Coefficient of x5y3:

d’ +2b' =2aA11A2+2b(2A152+A11420) + 2cA11A 20+ dA 112
Coefficient of x4y4:

€' +2¢"+a' =aAz?+8bA11A s+ 2c(2A12+A11A 92) +8day1A s+ eAps2.
Coefficient of x3y5:

b +2d" =bAx?+2cA11A20+2d(2A152+ A11A 2) +2€A11A .
Coefficient of x2y6:

¢’ +2¢ =cAz?+8dA11A 20+ 2e(2A12+A11A22).
Coefficient of xy7:

d' =dAz%+2eA11A .
Coefficient of y8:

e = eAgzz.

Put X=A;;, Y=Aj and Z=A,,. Then by the equations from (A) to (I), we get the
following a

(J)
(KD
(L
(MD
(ND
o))

b =2aXY+bX2
b =bY?+2cXY+2d(2Z2+XY)—2eXY—2dY?.

20 =2aXY+2b(2Z24+ XY )+ 2cXY+dX2—dY2—2eXY.

¢ =2a(222+XY )+ cX2—2aX>2

2¢' =aY2+8dXY+2c(2Z2+ XY ) +8bXY+eX2—aX2—eY?2.
¢ =cY2+8dXY+2e(2Z2+XY)—2eY2.

By (J) and (K) we obtain

2.4

bX2+2(a—c—d+e)X+(2d—b)Y2—-4dZ=0.

By (J) and (L) we obtain

(2.5)

(d—2b)X242(—a+b—c—e)XY—dY2+44bZ2=0.

By (M) and (N) we obtain

(2.6)

(2¢—3a—e)X2+4-2(2a+4b—c—4d)XY+4(2a—c)Z2%4(e—a) Y 2=0.

By (N) and (O) we obtain

2.7

REMARK.

(c—2a)X2+4+2(a+4b—4d—ed) XY+ (2e—c)Z2+4(a—e) Y 2=0.

With various combinations of the equations from (A) to (I), we can

certainly get many equations, but in fact the above four equations should be essential.
Similary we obtain the following from H(yX;-+yJX,)=H(xX;+yJX>)

2.4Y

(2.5
(2.6

BX242(a —c—d+ XY+ (2d—b)Y2—4dZ2=0,
(d—2b)X2+2(—a+b+c— XY —dY2+4b22=0,
(2c—3a—e)X2+4+2(2a+4b—c—4dD)XY+4(2a—¢c)Z2+(e—a) Y2=0



and
Q.7 (?—— 20)X2%24+2(a+4b— c —4d—e) XY+ (Ze—a Y2+4(a— e)72:O

where b=4R 11124, ¢=2(Ru14224+2R1212), d=4R12242 and Z=Ayy,.
(2. 6) minus (2. 7) gives

(2.8)  (c—a—e){(X—Y)2—422) =0,
(2. &) plus (2. 5) gives
(2.9 (d—b){(X—Y)2—472 =0.

Especially we choose an orthonormal basis {Xj, X, X4, Xo4} in Lemma 2. 2. Then we
have from b=0 ‘

(2.9Y d{(X—Y)2—4Z) =0

For (2. 8) and (2. 9)’, we have to consider only the following four cases:

Case I (X—=Y)2=4z2 if d&=0 and c=a-e.
Case II. (X—Y)2=4272 if d=0 and c3=a+-e.
Case III. (X—-Y)2=422 if d==0 and c4=a+te.
Case IV. d=0and c=a+e if(X—Y)2=42Z2

Case I. Substituting (X—Y)2=4Z2 and c=a-+e¢ into (2. 4), or (2. 5), we get d(X—
Y)(X+Y)=0. Since d=+=0 and X+ Y==0, we have X=Y and Z=0, ie, A;;=A, and
A1p=0.

Case II. Similarly we have A;;=A5 and A;,=0.

Case III. Substituting (X— Y )2=422 into (2. 5), we have

2.10) dX—-Y)X+Y)=2(at+e—c)XY.
Similarly we get from (2. 7)
.1D (c—a—e)(X+Y)(X—Y)=8dXY.

By (2. 10) and (2. 11), we have
X—Y)X+Y){4d2+(c—a—e)?} =0.

Hence we obtain Ay1=A4 and A;,=0.
Case IV. Suppose that c=a-+e¢, d=0 and (X—Y)244Z2. Substituting c=ae+e and
b=d=0 into (2. 6), or (2. 7), we have

2.12) a=-ce.
On the other hand, suppose that H(X)z#constant for X& Tp(M) at a point pEM.
Then by Lemma 2.1, we cannot take any orthonormal basis with the properties (2. 1)

and (2. 2). So if our basis for T»(M) have the condition e¢==¢, then from (2. 12) we can
see that Case IV is impossible to occur. If d==0, we have either Case I, or Case II. Put
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u=a=e. If u=4R,412+ and u=4R;5,, We can see that c—a—e==0 and have either Case I
or Case IIIl. In the case #=4R;s412« and u==4R;,, we also have either Case II or Case
III.  Moreover, in any other case, we have either Case II or Case III if H(X)<-constant
on Tp(M). Thus we have

(2.13) A=Az, A1p=0.
In the same way, from (2. 4), (2. 5), (2. 6)’ and (2. 7), we get
(2.14) Apn=Asz, A12+=0.

Since g is a Hermitian metric, from (2. 13) and (2. 14) we can see that together with
T ofe=Ffxo J,{ X1, X5, Xis» Xzu} is orthogonal basis for Typ(M) at (), whose vectors
are of the same length. In other words, f, is a homothety. Q. E. D.

3. Proof of main theorem

The following beautiful conformal invariant
CX, Y)Z=R(X, Y)Z
+— L (RieCY, Z)X—Ric(X, Z)Y+£(¥, Z)RicoX—&(X, ZRicoY)

ey €Y DX —e(X, 2)Y)

was first written down by Weyl, and is sometimes called the Weyl’s conformal curvature
tensor where Ric(X, Z)=Trace (Y—>R(X, Y)Z), g(Ricy X, Y)=Ric(X, Y) and Sc=
Trace Ricy for X, Y, Z& Tp(M).

We note the following theorem which was also proved by Weyl.

ProposiTiON 3.1 (L. P. Eisenhalt [2]). Let (M, g) be a Riemannian manifold.

Suppose dimension of M=4. Then M is conformally flat if and only if C=0.
Next we denote the well known fact in Kihlerian manifolds.

ProrosiTioN 3. 2 (K. Yano[61). A conformally flat Kahlerian space is flat.
Now to prove Proposition 3. 4, we need the following

Lemma 3.3 (S. Kobayashi and K. Nomizu [31). Let V be a 2n-dimensional real
vector space with a Hermitian inner product g and a complex structure J. Let R and T be
two quadrilinear mappings satisfying the conditions (a), (b), (¢) and (d). 1f

RXJX X, JX)=TX, JX, X, ]X) Sfor all X&V,

then R=T.
The following proposition summarizes the basic relations among second order tensors

(related to metric g, g respectively) under the “holomorphic sectional curvature preserv-
ing” hypothesis.
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ProOPOSITION 3. 4. Let V be a 2n dimensional real vector space equipped with two

Hermitian inner products g, g, two curvature tensors R, R respectively and a Kihlerian
structure J such that

Ced g=ig for some 2= R>0,
() H=H (equality of corresponding holomorphic sectional curvature).
Then (1) R=iR, (2) Ric=aRic, (3) Rico=Rico, (4) Sc=Sc, (5) ‘C=1C.

Proor. The condition (f) means for any vector X,

2(RX, JXOX, JX) __g(R(X, JX)X, JX)
X, XD g(JX, JX) &%, X) eUX, JXD

From (e), we have g(R(X, JX)X, JX)=1g(R(X, JX)X, JX). Here put T=2R, then it is

trivial that T satisfies the conditions (a), (b), (¢) and (d). Therefore by Lemma 3. 3, we

have R=T. The rest follows immediately. Q E. D.
We shall prove the following

ProposiTION 3.5. Let (M, g J), (M, g, ]) be h-isocurved Kihlerian manifolds.
Suppose dimension of M=4 and M non flat. Then an h. s. c. p. h. i which is conformal is an
isometry. :

Proor. Let f: M——>Mbe an k.s.c. p.i. We identify M with M via f and so reduce
to the following situation. ‘M has two metric g, f*g (which for convenience we write
simply as g) such that the identity mapping of

M .
M, g, J)—> (M, g, )

is a holomorphic sectional curvature preserving. Since M is assumed to be non flat and

dimension of M= 4, we obtain C#0 from Proposition 3. 1 and Proposition 3. 2. Moreover

since fis assumed to be conformal, we can see that there exists a positive real valued

function ¢ on M such that g=¢g. By Proposition 3. 4, we have C=¢C. But since Cis

conformal invariant, we also have C=C. Since C=0, ¢=1. Q. E.D.
Thus from Proposition 2. 3 and Proposition 3. 5, we have the following

THEOREM 3. 6. Let (M, g, J), (M, g, ]) be h-isocurved Kihlerian manifold. Suppose
dimension of M= 4 and M non flat. If the set of points p&M such that H(X)=#constant for
X&Tp(M) is dense in M, then (M, g, J), (M, g, ) are isometric.
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