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1. Introduction

R. L. Bishop and B. O’Neill [1] constructed a wide class of Riemannian manifolds of
negative curvature by warped product using convex functions. For two Riemannian
manifolds B and F, a warped product is denoted by Bx sF where f is a positive C* fun-
ction on B. The purpose of this paper is to prove

THEOREM. Let (F, g) be a Riemannian manifold of constant curvature K<0. Let E"
be an n-dimensional Euclidean space and let f be a positive C* function on E”. If either
E"x fF is homogeneous (Riemannian) or the Ricci tensor of E" X sF is parallel, then E" X ¢F
is locally symmetric.

The proof of the last theorem is motivated by [2], in which S. Tanno deals with
some related problems.

2. The curvature tensor of E™ X ¢F

Let (F, g) be a Riemannian manifold and let E” be a Euclidean n-space. We con-
sider the product manifold E”x F. For vector fields A, B, C, etc. on E”, we denote
vector fields (4, 0), (B, 0), (C, 0), etc. on E”x F by also A, B, C, etc. Likewise, for
vector fields X, Y, etc. on F, we denote vector fields (0, X), (0, Y, etc. on E"XF
by X, Y, etc.

We denote the inner product of A and B on E” by <A, B>. Let f be a positive
C*-function on E”. Then the (Riemannian) inner product <, > for A+X and B+Y
on the warped product E» X ¢F at (a, x) is given by (cf. [1].)

<A+X, B+Y> (a,0=<A, B>+ @eg(X, Y).

We extend the function fon E” to that on E”X sF by f(a,x)=f(a). The Riemannian
connections defined by <, > on E” and E" X rE are denoted by V? and V, respectively.
The Riemannian connection defined by g on 'F is denoted by D. Then we have the
identities (cf. Lemma 7.3, [1].)
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@ 1 VaB=V°4B,
VaX=VxA=C(Af[f)X,
2. 2) VxY=DxY— (<X, Y>/f) grad f.

By (2. 1) we identify Ve with Vv in the sequel. In (2. 2) grad f on E” is identified with
grad f on E” X sF and we have

<grad f, A>=df (A)=Af.

The Riemannian curvature tensors defined by V and D are denoted by R and S respec-
tively. We use both notations R(X, Y) and Ryxy, etc.

R(X,Y)=Rxy=Vrx, v1—[Vx, Vr], etc.
Then, noticing that E” is flat, we have (cf. Lemma 4.4, [1])
R45C=0,
RaxB=+1/H<Vagrad f, B>X,
RapX=RxyA=0,
RaxY=Q/NH<X, Y>Vagrad f,
2. 3) RxyZ=SxyZ-(<grad f, grad f >[fD(LX, Z>Y—-<Y, Z>X).
From now on we assume that (F, g) is of constant curvature K<0. Then we have
SxyZ=K(&(X, 2)Y—¢(Y, 2)X)=(K/fH (X, Z>Y-<Y, Z>X).
In this case, (2. 3) is writte_n as
RxyZ=P(<X, Z>Y—-<Y, Z>X)
where we have put
@ 0 P=(K—<grad f, grad £>)] <0,
Then we have the following

Lemma 2.1. (¢f. Lemma 4.1, [2]) On E"X s F, VR=0 if and only if

2. 5) SP grad f+Vgraa r grad f=0,
2. 6) £ Va Vs grad f—fVrarad f—Af Vs grad f=0, T=V 4B
and

@. D Bf Vagrad f—<NVa grad f, B> grad f=0.

Let Ae(a=1, 2, ---, #) be unit vector fields on some open set on E”"X ¢F such that
they are mutually orthogonal and are tangent to E” at each point of the open set. We
denote by R; the Ricci curvature tensor. Then we have (cf. §5, [2])
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Ri(Y, 2)=[(r—1DP—-1/N2<Vaa grad f, A >1<Y, Z>
2. 8 Ri(B, Y)=0
Ri(B, O)=—(r/f)<Vp grad f, C>, r=dim. F.

3. Lemmas

LemMA 3. 1. Let Ry be the Ricci tensor field of a Riemennian manifold (M, g). Let R!
be a field of symmetric endomorphism which corresponds to Ry, that is, g(R' X, Y)=Ry(X,
Y) for all vector fields X and Y on M. If either

@) M is homogeneous (Riemannian)
or
b) the Ricci tensor of M is parallel,

then the characteristic roots of R! are constant in value and multiplicity on M.

Proor. a) Since Ri(¢:X, 0. Y)=Ri(X, Y) for every isometry ¢ of M, it follows
that ¢,~1 Rl 9p,=Rlon M. Since M is homogeneous, this proves the first of the lemma.

b) In this case R! is also parallel and the result is immediate. g.e. d.
Returning to an argument of E” X sF, we have
Lemma 3. 2. (¢f. Lemma6. 1, [2]) On E"X sF, (2. 5) is equivalent to P=constant.
Proor. By (2. 4) and (2. 5) we have

A/fF)(K—<grad f, grad f>) grad f+Vgrad 5 grad f =0.

Since this equation is an equation on E”, we introduce the natural coordinate system
(xa; a=1, ---,n) on E”. 'Then the last equation is nothing but

G 3 - e Dassiic Fap B}

oxx  Oxx 7 9xB x20xB  0x=

The last equation multiplied by 2f is

(K= D 2o — g (K= 2 (5D =0,

which implies that each partial derivative of

6.1 P=(K—3(-ZL >2)/r2

ox«

vanishes. Thus, P is constant. The converse is clear. q. e. d.
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4. Proof of theorem

a:ara , where x2(a=1, ---, n) are natural coordinates of

E”. Then the characteristic roots of R! at a point (a, X)EE"X sF consist of

In (2. 8), we may put A.=

0X%0x*

(r—DP@—/f(@DS—=2L (&)  (n-multiplicity)

and the roots 1;(a), 2:(a), -+, ---A-(@) of |
a2f

det (—(r/f(@))— 55 (@)—06)=0.

Since E"X sF is homogeneous, we have
32 :

(r—-1HP-AJf )ZW= constant

and
f

2
At A= —(r/f)z—ajaaT:constant

by lemma 3. 1 and by the continuity of the characteristic roots of Rl. Therefore P is
constant and (2. 5) is satisfied by lemma 3. 2.

Now, we solve (3. 1) with P=constant and show that f satisfies (2. 6) and (2. 7).
Then E” X ¢F is locally symmetric. (3.1)is :

K—3( 9 o pp—o.

ox
S. Tanno [2] solved the last partial differential equation by Lagrange-Charpit method
to get a solution
_ 1 - —
I =G (K [b) exp(epa?)—b exp (—csat))
where b and ¢, -+, c» are some constant. Consequently, we see that f satisfies (2. 6) and
(2. 7) which are written as

PR, S S A
0x*0xBoxT oxx  0xBox’

of 0%f 0%f af —0
0xB  Oxeox’ ox=0x8 ox' ~
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