Note on positive linear maps of Banach algebras with an involution

By

Seiji WATANABE

(Received October 9, 1969)

1. Introduction

Positive linear maps of function algebras are studied by many authors. In this note, we consider positive linear maps between Banach*-algebras. We first investigate the boundedness of positive linear maps. In §2, we consider the following problem: Extreme points of the convex set of all positive linear maps which carry the identity element into the identity element are multiplicative? And the converse problem is true?

Let A be a complex Banach^{*}-algebra. Denoting by A^+ the subset of H_A consisting of all finite sums of elements of the form $x^*x(x \in A)$ where H_A is the set of all self-adjoint elements of A, we shall those elements positive elements of A.

Let B also be complex Banach*-algebra. Then the linear map $T: A \rightarrow B$ is called positive if $T(A^+) \subset B^+$. We can show the following hermitian property for the positive linear maps, by using the similar argument in functional case.

(H) $T(x^*y) = (T(y^*x))^* \text{ for } x, y \in A.$

Therefore positive linear maps are *-preserving when A has an identity element. We remark that *-homomorphism of A into B is positive. In the following, the norm of the identity is assumed to be one.

The author wishes to express his thanks to Prof. E. Homma for his usefull discussions.

2. Boundedness of positive linear maps

The boundedness for the special case is obtained by **Yood** [5]. We have the following theorem.

THEOREM 2.1 Let A, B be two complex Banach*-algebras. Suppose that A has an identity element and the involution of A is continous. Suppose that B is *-semisimple ([2], p. 210), and that $T: A \rightarrow B$ is a positive linear map. Then T is bounded.

PROOF. Let B_1 be the complex Banach*-algebra obtained by adjunction of an identity element to B. Since B^+ is contained in B_1^+ , we may assume that B has an identity, say e_B . We define for $x \in B |x|_0$ in the following manner:

 $|x|_0 = \sup\{|f(x)|; f \text{ is positive linear functional on } B \text{ such that } f(e_B) \leq 1\}$

Then $|x|_0$ is a pseud-norm on B and $\{x \in B; |x|_0 = 0\}$ is *-radical. Since B is *-semi-simple, $|x|_0$ is a normed space norm on B.

For any positive linear functional f on $B, f \circ T$ is a positive functional on A. Hence, for every $a \in A$,

$$|f(T(a))| \leq (f \circ T)(e_A)(\nu(a^* a))^{\frac{1}{2}}$$
$$\leq C \|T(e_A)\| \|a\|,$$

where $\nu(a^*a)$ is the spectral radius of element a^*a in A and e_A is an identity element of A.

Therefore,

 $|T(a)|_{0} = \sup\{|f(T(a))|; f \text{ is positive linear functional on } B \text{ such that } f(e_{B}) \leq 1\}$ $\leq C ||T(e_{A})| ||a|| \qquad (*)$

Now, let $a_n \to x$ in A. Suppose that $T(a_n) \to y$ in B with respect to the norm || ||. From the definition of the norm $||_0$, it is clear that $|T(a_n)-y|_0 \leq ||T(a_n)-y||$. It follows that $T(a_n)$ converge to y with respect to the norm $||_0$. On the other hand, from the above inequality (*) it follows that $|T(a_n) - T(x)|_0 \leq C ||T(e_A)|| ||a_n - x||$. Therefore, $T(a_n)$ converge to T(x) with respect to $||_0$. Consequently, we have T(x)=y. By the closed graph theorem T is bounded. We complete the proof.

The above theorem is also true in the slight general situation. Indeed we have the following corollary.

COROLLARY 2.2 Let A, B be complex Banach^{*}-algebras. Suppose that A has a left (or right) approximate identity and B is *-semi-simple. Suppose that the involution of A is continuous. Then any positive linear map T from A to B is bounded.

PROOF. Denote by A_1 the complex Banach*-algebra obtained by adjunction of an identity element to A. We define for $a, b \in A, T_{a,b}(x) = T(axb), (x \in A_1)$. Then $T_{a,b}$ is a linear map from A_1 to B. Moreover, since $aA_1 + a^*$ is contained in A^+ , $T_{a,a}^*$ is a positive linear map from A_1 to B. Hence by Theorem 2. 1, $T_{a,a}^*$ is bounded.

Now,
$$axb = \frac{1}{4} \{(a+b^*)x(a+b^*)^* - (a-b^*)x(a-b^*)^* + i(a+ib^*)x(a+ib^*)^* - i(a-ib^*)x(a-ib^*)^*\}.$$

Therefore, $T_{a,b}$ is linear combination of maps of the form $T_{a,a}^*$. Consequently, $T_{a,b}$ is bounded.

Let $a_n \rightarrow 0$ in A. Since A has an approximate identity, there exist b, c and d_n in A such that $a_n = bd_nc$, $d_n \rightarrow 0$ (See [4]). Thus $T(a_n) = T(bd_nc) = T_{b,c}(d_n) \rightarrow 0$. It follows that

18

T is bounded.

REMARK 1. The continuity of the involution of A in Theorem 2.1 is dropped.

Indeed, even if the involution of A is discontinous, we can show that $|T(a)|_0 \leq C ||T(e_A)|| ||(a)||$ for $a \in H_A$. Let R be the radical of A. Since R is *-ideal, T vanishes on the radical R, *i. e.* $R \subset KerT$. Since the Banach algebra A/R is semi-simple, it has the unique complete norm topology (See [1]). Therefore the involution is continous and A/R has an identity.

Let π is the canonical map: $A \rightarrow A/R$. For each $x \in A$, we define $T(\pi(x)) = T(x)$. Then T is a positive linear map from A/R to B and thus bounded map. Consequently, T is bounded.

REMARK 2. If A and B are C*-algebras and A has an identity element e_A , then $||T(e_A)|| = ||T||$.

3. Extreme positive linear map

In the following, for the sake of simplicity we assume that involutions are continous. Moreover, we assumed that A and B have identity elements (norm one) e_A , e_B respectively. We define the convex sets of positive linear maps P(A, B), $P_1(A, B)$ and $P_2(A, B)$ as follows:

$$P(A, B) = \{T: A \rightarrow B; \text{ positive linear map}\}$$

$$P_1(A, B) = \{T \in P(A, B); T(e_A) = e_B\}$$

$$P_2(A, B) = \{T \in P(A, B); \|T(e_A)\| \leq 1\}$$

Then, we consider the following problem; Is every extreme point (if exist) of $P_j(A, B)$ (j=1, 2) multiplicative, that is, *-homomorphism? Conversely, is every multiplicative element of $P_j(A, B)$ extreme?

Many authors have treated the above problem when A, B are algebras of functions. For $h \in H_A$, we write $h \ge 0$ when $h \in A^+$. Moreover, we write $h \ge k$ provided that $h-k \ge 0$ for h, $k \in H_A$. Similary, we write $T \ge S$ when $T-S \in P(A, B)$ for T, $S \in P(A, B)$.

THEOREM 3.1 For $T \in P_1(A, B)$, followings are equivalent.

- (1) T is an extreme point of $P_1(A, B)$.
- (2) Suppose S be an element of P(A, B) such that $S(e_A)$ is in the center of B and $T \ge S$. Then S is the form $S(e_A) \cdot T$.

PROOF $(1) \rightarrow (2)$. Multiplying T by a scalar, we can assume $||S(e_A)|| < 1$. Then $e_B - S(e_A)$ has an inverse and $(e_B - S(e_A))^{-1} \in B^+$. Moreover, $(e_B - S(e_A))^{-1}$ is in the center of B. On the other hand, there exists a positive constant k such that $k < min(1, 1/||e_B - S(e_A))^{-1}||$) and $k(e_B - S(e_A))^{-1} \le e_B$. Now, we define two positive linear maps S_1 , S_2 as follows;

$$S_{1} = (e_{B} - S(e_{A}))^{-1}(T - S)$$

$$S_{2} = (1 - k)^{-1}(T - k(e_{B} - S(e_{A}))^{-1}(T - S))$$

then $S_1, S_2 \in P_1(A, B)$ and $T=kS_1+(1-k)S_2$. Since T is extreme, $T=S_1=S_2$. Therefore, $S=S(e_A) \cdot T$.

 $(2) \rightarrow (1)$. It is clear.

COROLLARY 3.2 Let T be an extreme point in $P_1(A, B)$. Suppose that a and T(a) are in the center of A, B respectively. Then T(ax) = T(a)T(x) for every $x \in A$.

PROOF. We have only to prove this corollary in the case when $a \in A$ is a hermitian element. There exists positive constant k such that 0 < k < 1/||a||. Moreover there exists h > 0 such that $0 < h < min(1, 1/||e_A - ka||)$. Then $||e_A - h(e_A - ka)|| < 1$ is valid and $h(e_A - ka)$ is in the center of A. We define $S(x) = T(h(e_A - ka)x)$ for $x \in A$. Then $S(e_A)$ is in the center of B and $S \in P(A, B)$. Moreover $T \ge S$. Since T is extreme point, $S = S(e_A) \cdot T$. Consequently, T(ax) = T(a) T(x) for $x \in A$. (q. e. d)

REMARK. If A, B be commutative, every extreme point in $P_1(A, B)$ is *-homomorphism.

We next consider the converse problem. We need the following lemma.

LEMMA 3.3. Suppose that B is symmetric Banach^{*}-algebra. Let T be in $P_2(A, B)$ and a be in H_B . Then if $T(a^2)$ and T(a) are commutative, $T(a^2) - (T(a))^2 \in \overline{B^+}$ (norm closure of B^+).

PROOF. Since B is symmetric Banach*-algebra, $H_B^+ = \overline{B^+}$, where $H_B^+ = \{h \in H_B; SP_B(h) \ge 0\}$. Because of the hermitian property of T, T(a) is hermitian element and thus $T(a^2) - (T(a))^2$ is hermitian in B. We shall show $SP_B(T(a^2) - T(a))^2) \ge 0$. Consider a maximal commutative *-subalgebra D of B which contains e_B , T(a) and $T(a^2)$. Then D is a commutative symmetric Banach*-algebra.

$$SP_B(T(a^2) - (T(a))^2) = SP_D(T(a^2) - (T(a))^2)$$
$$= \{\varphi(T(a)^2 - (T(a))^2); \varphi \in \Phi_D\}$$

where Φ_D is the carrier space of *D*. Since *D* is symmetric, Φ_D consists of all *-homomorphism of *D* to complex numbers. For $\varphi \in \Phi_D$, $\varphi(T(a^2) - (T(a))^2) = (\varphi \circ T)(a^2) - ((\varphi \circ T)(a))^2 \ge 0$. Therefore, $T(a^2) - (T(a))^2$ has non-negative real spectrum. Thus $T(a^2) - (T(a))^2 \in H_B^+ = \overline{B^+}$. (q. e. d)

Using the well known argument, we obtain the following.

THEROEM 3.4. Suppose B be commutative semi-simple symmetric Banach*-algebra. Then any multiplicative element T of $P_1(A, B)$ is extreme point of $P_1(A, B)$.

PROOF. Suppose that there exist T_1 , $T_2 \in P_1(A, B)$ such that $T = \frac{1}{2}(T_1 + T_2)$. For any $a \in H_A$ and positive real ε ,

20

$$0 = \frac{1}{2} (T_1(a^2) + T_2(a^2)) - \frac{1}{4} ((T_1(a))^2 + (T_2(a))^2 + T_1(a)T_2(a) + T_2(a)T_1(a)))$$

$$\geq \frac{1}{2} ((T_1(a))^2 + (T_2(a))^2 - 2\varepsilon e_B) - \frac{1}{4} ((T_1(a))^2 + 2T_1(a)T_2(a) + (T_2(a)^2)))$$

$$= \frac{1}{4} (T_1(a) - T_2(a))^2 - \varepsilon e_B.$$

Thus $\varepsilon e_B \ge \frac{1}{4} (T_1(a) - T_2(a))^2 \ge 0$. Since ε is arbitrary and B is semi-simple, we have $T_1(a) = T_2(a)$. Moreover a is arbitrary, hence $T = T_1 = T_2$. Consequently it follows that T is extreme point of $P_1(A, B)$.

REMARK 1. Theorem 3. 4 holds even if is an element of $P_1(A, B)$ such that $T(a^2) = (T(a))^2$ for every $a \in H_A$.

REMARK 2. The semi-simplicity of B in the above theorem is necessary, that is, if B is non-semi-simple, we can find a non-extreme, multiplicative element of $P_1(A, B)$.

REMARK 3. We can discuss a similar argument for $P_2(A, B)$ and P(A, B). In the latter case we need consider the characterization (2) in Theorem 3. 1.

NIIGATA UNIVERSITY

References

- 1. B. E. JOHNSON: The uniqueness of the (complete) norm topology, Bull. Amer. Math. Soc. 73 (1967), 537-539.
- 2. C. E. RICKART: General theory of Banach algebras, Van Nostrand, New York, 1960.
- 3. E. STØRMER: Positive linear maps of operator algebras, Acta. Math. 110(1963). 233-278.
- 4. N. T. VAROPOULOS: Sur les forms positives d'une algebre de Banach, C. R. Acad. Sci., t. 258 (1964), 2465-2467.
- 5. B. YOOD: Continuity for linear maps on Banach algebras, Studia Math. Tom. XXXI Fasc. 3. (1968), 263-266.
- 6. J. W. M. FORD: A square root lemma for Banach *-algebras, J. London Math. Soc. 42 (1967), pp. 521-522.