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1. Introduction

Positive linear maps of function algebras are studied by many authors. In this note,
we consider positive linear maps between Banach*-algebras. We first investigate the
boundedness of positive linear maps. In \S 2, we consider the following problem: Extreme
points of the convex set of all positive $1\dot{i}$ear maps which carry the identity element into
the identity element are multiplicative ? And the converse problem is true ?

Let $A$ be a complex Banach*-algebra. Denoting by $A^{+}$ the subset of HA consisting of
all finite sums of elements of the form $x^{*}x(x\in A)$ where HA is the set of all $self\cdot adjoint$

elements of $A$ , we shall those elements positive elements of $A$ .
Let $B$ also be complex Banach*-algebra. Then the linear map $T:A\rightarrow B$ is called posi-

tive if $T(A^{+})\subset B^{+}$ . We can show the following hermitian property for the positive linear
maps, by using the similar argument in functional case.
(H) $T(x^{*}y)=(T(y^{*}x))^{*}$ for $x,$ $y\in A$ .

Therefore positive linear maps are $*$-preserving when $A$ has an identity element.
We remark that $*$ -homomorphism of $A$ into $B$ is positive. In the following, the norm of
the identity is assumed to be one.

The author wishes to express his thanks to Prof. E. Homma for his usefull discussions.

2. Boundedness of positive linear maps

The boundedness for the special case is obtained by Yood [5].

We have the following theorem.

THEOREM 2. 1 Let $A,$ $B$ be two complex Banach*-algebras. Suppose that $A$ has an
identity element and the involution $ofA$ is continous. Suppose that $B$ is $*$-semisimple ([2],
p. 210), and that $T:A\rightarrow B$ is a positive linear map. Then $T$ is bounded.
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PROOF. Let $B_{1}$ be the complex Banach*-algebra obtained by adjunction of an identity

element to $B$. Since $B^{+}$ is contained in $B_{1}^{+},we$ may assume that $B$ has an identity, say
1

$eB$ . We define for $x\in B|x|_{0}$ in the following manner:
$|x|_{0}=\sup$ { $|f(x)|;f$ is positive linear functional on $B$ such that $f(eB)\leq 1$}

Then $|x|_{0}$ is a pseud-norm on $B$ and $\{x\in B;|x|_{0}=0\}$ is-radical. Since $B$ is-semi-simple,
$|x|_{0}$ is a normed space norm on $B$.

For any positive linear functional $f$ on $B,f\circ T$ is a positive functional on $A$ . Hence, for
every $a\in A$ ,

$|f(T(a))|\leqq(f\circ T)(eA)(\nu(a^{*}a))^{b}$

$\leqq C\Vert T(eA)\Vert\Vert a\Vert$ ,

where $\nu(a^{*}a)$ is the spectral radius of element $a^{*}a$ in $A$ and $eA$ is an identity element of
$A$ .
Therefore,

$|T(a)|_{0}=\sup$ { $|f(T(a))|;f$ is positive linear functional on $B$ such that $f(eB)\leqq 1$ }
$\leqq C\Vert T(e_{A})\Vert\Vert a\Vert$ $(^{*})$

Now, let $a_{n}\rightarrow x$ in $A$ . Suppose that $T(a_{n})\rightarrow y$ in $B$ with respect to the norm $\Vert$ $\Vert$ .
From the definition of the norm $||_{0}$, it is clear that $|T(a_{n})-y|0\leqq\Vert T(a_{n})-y\Vert$ . It follows
that $T(a_{n})$ converge to $y$ with respect to the norm $||_{0}$ . On the other hand, from the
above inequality $(^{*})$ it follows that $|T(a_{n})-T(x)|0\leqq C\Vert T(eA)\Vert\Vert a_{n}-x\Vert$ . Therefore, $T(a_{n})$

converge to $T(x)$ with respect to $||_{0}$ . Consequently, we have $T(x)=y$ . By the closed
graph theorem $T$ is bounded. We complete the proof.

The above theorem is also true in the slight general situation. Indeed we have the
fogowin$g$ corolary.

COROLLARY 2. 2 Let $A,$ $B$ be complex Banach*-algebras. Suppose that $A$ has a left
(or right) approximate identity and $B$ is $*,semi$-simple. Suppose that the involution of $A$

is continous. Then any positive linear map $T$ from $A$ to $B$ is bounded.

PROOF. Denote by $A_{1}$ the complex Banach*-algebra obtained by adjunction of an
identity element to $A$ . We define for $a,$ $b\in A,$ $T_{a.b}(x)=T(axb),$ $(x\in A_{1})$ . Then $T_{a.b}$ is
a linear map from $A_{1}$ to $B$. Moreover, since $aA_{1^{+}}a^{*}$ is contained in $A^{+},$ $T_{a.a^{*}}$ is a $\Re sitive$

linear map from $A_{1}$ to $B$. Hence by Theorem 2. 1, $T_{a.a^{*}}$ is bounded.
Now, $axb=+\{(a+b^{*})x(a+b^{*})^{*}-(a-b^{*})x(a-b^{*})^{*}+i(a+ib^{*})x(a+ib^{*})^{*}$

$-i(a-ib^{*})x(a-ib^{*})^{*}\}$ .
Therefore, $T_{ab}$ is linear combination of maps of the form $T_{a.a^{*}}$ . Consequently, $T_{a.b}$

is bounded.
Let $a_{n}\rightarrow 0$ in A. Since A has an approximate identity, there exist $b,$ $c$ and $d_{n}$ in $A$

such that $a_{n}=bd_{n}c,$ $d_{n}\rightarrow 0$ (See [4]). Thus $T(a_{n})=T(bd_{n}c)=Tb.c(d_{n})\rightarrow 0$ . It follows that
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$T$ is bounded.

REMARK 1. The continuity of the involution of $A$ in Theorem 2. 1 is dropped.
Indeed, even if the involution of $A$ is discontinous, we can show that $|T(a)|_{0}\leqq$

$ C\Vert T(eA)\Vert\Vert(a)\Vert$ for $a\in H_{A}$ . Let $R$ be the radical of $A$ . Since $R$ is $*.ideal,$ $T$ vanishes on
the radical $R,$ $i$ . $e$. $R\subset KerT$. Since the Banach algebra $A/R$ is semi-simple, it has the
unique complete norm topology (See [1]). Therefore the involution is continous and $A/R$

has an identity.
Let $\pi$ is the canonical map: $A\rightarrow A/R$ . For each $x\in A$ , we define $\overline{T}(\pi(x))=T(x)$ . Then

$T$ is a positive linear map from $A/R$ to $B$ and thus bounded map. Consequently, $T$ is
bounded.

REMARK 2. If $A$ and $B$ are $C^{*}$ -algebras and $A$ has an identity element $eA$, then $\Vert T(eA)\Vert$

$=\Vert T\Vert$ .

3. Extreme positive linear map

In the following, for the sake of simplicity we assume that involutions are continous.
Moreover, we assumed that $A$ and $B$ have identity elements (norm one) $eA,$ $eB$ respec-
tively. We define the convex sets of positive linear maps $P(A, B),$ $P_{1}(A, B)$ and $P_{2}(A, B)$

as follows:

$P(A, B)=$ { $T:A\rightarrow B$ ; positive linear map}

$P_{1}(A, B)=\{T\in P(A, B) ; T(eA)=eB\}$

$P_{2}(A, B)=\{T\in P(A, B) ;\Vert T(e_{A})\Vert\leqq 1\}$

Then, we consider the following problem; Is every extreme point (if exist) of $Pj(A$ ,

$B)(j=1,2)$ multiplicative, that is, $*$ -homomorphism ? Conversely, is every multiplicative
element of $Pj(A, B)$ extreme ?

Many authors have treated the above problem when $A,$ $B$ are algebras of functions.
For $h\in HA$, we write $h\geqq 0$ when $h\in A^{+}$ . Moreover, we write $h\geqq h$ provided that $h-k\geqq 0$

for $h,$ $kEHA$ . Similary, we write $T\geqq S$ when $T-S\in P(A, B)$ for $T,$ $SEP(A, B)$ .
THEOREM 3. 1 For $T\in P_{1}(A, B)$ , followings are equivalent.

(1) $T$ is an extreme point of $P_{1}(A, B)$ .
(2) Suppose $S$ be an element of $P(A, B)$ such that $S(eA)$ is in the center of $B$ and $T\geqq S$.

Then $S$ is the form $S(eA)\cdot T$.
PROOF (1) $\rightarrow(2)$ . Multiplying $T$ by a scalar, we can assume $\Vert S(eA)\Vert<1$ . Then $eB$

$-S(eA)$ has an inverse and $(eB-S(eA))^{-1}\in B^{+}$ . Moreover, $(eB-S(eA))^{-1}$ is in the cen-
ter of $B$. On the other hand, there exists a positive constant $k$ such that $k<\min(1,1/$

$\Vert eB-S(eA))^{-1}\Vert)$ and $k(eB-S(eA))^{-1}\leq eB$ . Now, we define two positive linear maps $S_{1},$ $S_{2}$

as follows;
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$S_{1}=(eB-S(eA))^{-1}(T-S)$

$S_{2}=(1-k)^{-1}(T-k(eB-S(eA))^{-1}(T-S))$

then $S_{1},$ $S_{2}\in P_{1}(A, B)$ and $T=kS_{1}+(1-k)S_{2}$ . Since $T$ is extreme, $T=S_{1}=S_{2}$ .
Therefore, $S=S(eA)\cdot T$.
(2) $\rightarrow(1)$ . It is clear.

COROLLARY 3. 2 Let $T$ be an extreme point in $P_{1}(A, B)$ . Suppose that $a$ and $T(a)$ are
in the center of $A,$ $B$ respectively. Then $T(ax)=T(a)T(x)$ for every $x\in A$ .

PROOF. We have only to prove this corolary in the case when $a\in A$ is a hermitian
element. There exists positive constant $k$ such that $ 0<k<1/\Vert a\Vert$ . Moreover there exists
$h>0$ such that $0<h<\min(1,1/\Vert eA-ka\Vert)$ . Then $\Vert eA-h(eA-ka)\Vert<1$ is valid and $h(eA-ka)$

is in the center of $A$ . We define $S(x)=T(h(eA-ha)x)$ for $x\in A$ . Then $S(eA)$ is in the
center of $B$ and $S\in P(A, B)$ . Moreover $T\geqq S$. Since $T$ is extreme point, $S=S(eA)\cdot T$.
Consequently, $T(ax)=T(a)T(x)$ for $x\in A$ . $(q. e. d)$

REMARK. If $A,$ $B$ be commutative, every extreme point in $P_{1}(A, B)$ is $*.homomor-$

phism.
We next consider the converse problem. We need the following lemma.

LEMMA 3. 3. Suppose that $B$ is symmetric Banach*-algebra. Let $T$ be in $P_{2}(A, B)$ and
$a$ be in $H_{B}$ . Then if $T(a^{2})$ and $T(a)$ are commutative, $T(a^{2})-(T(a))^{2}\in\overline{B^{+}}$ (norm closure
of $B^{+}$).

PROOF. Since $B$ is symmetric Banach*-algebra, $HB^{+}=\overline{B^{+},}$ where $HB^{+}=\{h\in HB$ ;

$SPB(h)\geqq 0\}$ . Because of the hermitian property of $T,$ $T(a)$ is hermitian element and thus
$T(a^{2})-(T(a))^{2}$ is hermitian in $B$. We shall show $SPB(T(a^{2})-T(a))^{2})\geqq 0$ . Consider a
maximal commutative $*$-subalgebra $D$ of $B$ which contains $eB,$ $T(a)$ and $T(a^{2})$ . Then $D$

is a commutative symmetric $Banach^{*}- algebra$ .
$SPB(T(a^{2})-(T(a))^{2})=SP_{D}(T(a^{2})-(T(a))^{2})$

$=\{\varphi(T(a)^{2}-(T(a))^{2});\varphi\in\Phi_{D}\}$

where $\Phi_{D}$ is the carrier space of $D$. Since $D$ is symmetric, $\Phi_{D}$ consists of all $\cdot homomor\cdot$

phism of $D$ to complex numbers. For $\varphi\in\Phi_{D},$ $\varphi(T(a^{2})-(T(a))^{2})=(\varphi\circ T)(a^{2})-((\varphi\circ T)$

$(a))^{2}\geqq 0$ . Therefore, $T(a^{2})-(T(a))^{2}$ has non-negative real spectrum. Thus $T(a^{2})-(T$

$(a))^{2}\in H_{B^{+}}=\overline{B^{+}}$ . $(q. e. d)$

Using the well known argument, we obtain the following.

THEROEM 3. 4. Suppose $B$ be commutative semi-simple symmetric $Banach^{*}- algebra$ .
Then any multiplicative element $T$ of $P_{1}(A, B)$ is extreme point of $P_{1}(A, B)$ .

PROOF. Suppose that there exist $T_{1},$ $T_{2}\in P_{1}(A, B)$ such that $T=\frac{1}{2}(T_{1}+T_{2})$ .
For any $a\in HA$ and positive real $\epsilon$ ,
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$0=\frac{1}{2}(T_{1}(a^{2})+T_{2}(a^{2}))-+((T_{1}(a))^{2}+(T_{2}(a))^{2}+T_{1}(a)T_{2}(a)+T_{2}(a)T_{1}(a))$

$\geqq\frac{1}{2}((T_{1}(a))^{2}+(T_{2}(a))^{2}-2\epsilon eB)-\frac{1}{4}((T_{1}(a))^{2}+2T_{1}(a)T_{2}(a)+(T_{2}(a)^{2})$

$=\frac{1}{4}(T_{1}(a)-T_{2}(a))^{2}-\epsilon eB$ .

Thus $\vee\Leftrightarrow eB\geqq\frac{1}{4}(T_{1}(a)-T_{2}(a))^{2}\geqq 0$ . Since $\epsilon$ is arbitrary and $B$ is $semi\cdot simple$, we have
$T_{1}(a)=T_{2}(a)$ . Moreover $a$ is arbitrary, henoe $T=T_{1}=T_{2}$ . Consequently it follows that $T$

is extreme point of $P_{1}(A, B)$ .
REMARK 1. Theorem 3. 4 holds even if is an element of $P_{1}(A, B)$ such that $T(a^{2})=$

$(T(a))^{2}$ for every $a\in HA$

REMARK 2. The semi-simplicity of $B$ in the above theorem is necessary, that is, if $B$ is
non-semi-simple, we can find a non-extreme, multiplicative element of $P_{1}(A, B)$ .

REMARK 3. We can discuss a similar argument for $P_{2}(A, B)$ and $P(A, B)$ . In the
latter case we need consider the characterization (2) in Theorem 3. 1.
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