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1. Introduction

If a Riemannian manifold $M$ is locally symmetric, then its curvature tensor $R$

satisfies

$(^{*})$ $R(X, Y)\cdot R=0$ for all tangent vectors $X$ and $Y$

where the endomorphism $R(X, Y)$ operates on $R$ as a derivation of the tensor
algebra at each point of $M$. Conversely, does this algebraic condition on the $cur$.
vature tensor field $R$ imply that $M$ is locally symmetric ?
We conjecture that the answer is affirmative in the case where $M$ is a complete
and irreducible and $\dim M\geqq 3$ .

The main purpose of the present paper is to consider the complex hypersur-
faces in spaces of constant holomorphic sectional curvature satisfying the condition
$(^{*})$ on the curvature tensor.

2. Complex space forms

A Riemannian manifold $M$ with Riemannian metric $g$ is called an Einstein
manifold if its Ricci tensor $S$ satisfies $S=\rho g$. where $\rho$ is a constant. We call $\rho$ the
Ricci curvature of the Einstein manifold.

Let $M$ be a complex analytic manifold of complex dimension $n$. By means of
charts we may transfer the complex structure of complex n-dimensional Euclidean
space $C^{n}$ to $M$ to obtain an almost complex structure $J$ on M. $i.e.$, a tensor field $J$

on $M$ of type (1. 1) such that $J^{2}=-I$ , where $I$ is the tensor field which is the
identity transformation on each tangent space of $M$ .

A Riemannian metric $g$ on $M$ is a Hermitian metric if $g(JX. JY)=g(X, Y)$ for
any vector fields $X$ and $Y$ on $M;M$ is called a Hermitian manifold. If in addition
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the almost complex $J$ is parallel with respect to the Riemannian connection of $g$,

then $J$ (resp. g) is called a K\"ahler structure (resp. K\"ahler metric); $M$ is then
called a K\"ahler manifold.

A plane which is tangent to $M$ and is invariant by $J$ will be called a holomor-
phic plane. If $M$ is a K\"ahler manifold we denote by $K(p)$ the sectional curvature
of a plane $p$ tangent to $M$ and by $K(X)$ the sectional curvature of the holomorphic
plane generated by a unit tangent vector X. $M$ is said to be of constant holomor-
phic sectional curvature $c$ if the sectional curvature of every holomorphic tangent
plane is equal to $c$ . If $M$ is of constant holomorphic $sect\dot{i}onal$ curvature $c$, then $M$

is Einstein and, in the above notaion $\rho=(n+1)c/2$ .
By a complex space form we will mean a complete K\"ahler manifold of constant

holomorphic sectional curvature.
We now introduce some special K\"ahler manifolds which will occur in the

course of our work. Let $C^{n+2}$ dente complex $(n+2)$-dimensional Euclidean space
with the natural complex coordinate system $\theta,\ldots\ldots,$ $z^{n+1}$ . $P^{n+1}(C)$ win denote
complex $(n+1)$-dimensional projective space, $P^{n+1}(C)$ is a complex analytic maini-
fold which, when endowed with the Fubini-Study metric, is a Kahler manifold of
constant holomorphic sectional couvature 1. There is a natural holomorphic
mapping $f:C^{n+2}$ $\{0\}\rightarrow P^{n+1}(C)$ .

The variety in $P^{n+1}(C)$ determined by $z^{n+1}=0$ is merely $P^{\prime}(C)$ , the induced
metric being the Fubini-Study metric of $P^{n}(C)$ .

The variety $Q^{n}$ in $P^{n+1}(C)$ determined by $(z^{0})^{2}+\ldots+(z^{n+1})^{2}=0$ is called the
n-dimensional quadric; $ Q\#$ is a compact K\"ahler manifold with the metric and
complex structure induced from $P^{n+1}(C)$ .

The group $SO(n+2)$. as a subgroup of the group $U(n+2)$ of all holomorphic
isometries of $C^{n+2}$, act on $ Q\sim$ as a transitive group of holomorphic isometries. The
isotropy group of this action at $(1, i, 0\ldots..0)\in Q\#$ is $SO(2)\times SO(n)$ . It is easily
checked that $SO(n+2)/SO(2)\times SO(n)$ is a symmetric space. Thus, if, $ n>2_{1}Q\#$ is
irreducible and hence it is an Einstein manifold. However, $Q^{2}$ is holomorphically
isometric to $P^{1}(C)\times P^{1}(C)$ , where $P^{1}(C)$ is endowed with the Fubini-Study metric.
Hence $Q^{n}$ is a compact Einstein manifold if $n\geqq 2$ .

$D^{n+1}$ will denote the open unit ball in $C^{n+1}$ endowed with the natural complex
structure and the Bergman metric. This is then a K\"ahler manifold of constant
holomorphic sectional curvature-l. The submanifold of $D^{n+1}$ determined by $z^{n}=0$

is merely $D^{n}$, the induced metric being the Bergman metric of $D^{n}$ .

3. Complex hypersurfsees

Hence forth $\overline{M}$ will be a connected K\"ahler manifold of complex dimension $n+1$,
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the K\"ahler structure and the K\"ahler metric of $M$ being denoted by $J$ and $g$ respec-
tively; moreover, $M$ will be a connected complex manifold of complex dimension $n$

which is a complex hypersurface of $\overline{M},$ $i.e.$ , there exists a complex analytic mapp-
ing $\varphi:M\rightarrow\overline{M}$ whose differential $\varphi_{*}$ is 1-1 at each point of $M$ .

All metric properties on $M$ will refer to the Hermitian metric $g_{0}$ induced on $M$

by the immersion $\varphi$ .
Then $g_{0}$ becomes to be a K\"ahler metric on $M$ . Moreover it is well known

that this is ture for arbitrary complex submanifolds of $\overline{M}$ .
In order to simplify the presentation, we identify, for each $x\in M$, tangent space

$T_{x}(M)$ with $\varphi_{*}(T_{X}(M))\subset T_{\varphi(x)}(\overline{M})$ by means of $\varphi_{*}$ . A vector in $T_{\varphi(x)}(\overline{M})$ which
is orthogonal, with respect to $g$, to the subspace $\varphi_{*}(T_{x}(M))$ is said to be normal to
$M$ at $x$ . Since $\varphi^{*}g=g_{0}$ and $J\varphi_{*}=\varphi_{*}J_{0}$, where $J_{0}$ is the almost complex structure of
$M$, the structures $g_{0}$ and $J_{0}$ on $T(M)$ are respectively identified with the restrictions
of the structures $g$ and $J$ to the subspace $\varphi_{*}(T_{x}(M))$ . With this identification in
mind we drop the symbols $g_{0}$ and $J_{0}$, using instead the symbols $g$ and $J$ .

The following is a purely local argument. Let $U(x)$ be a neighborhood of a
point $x\in M$ on which we choose a unit vector field $\xi$ normal to M. $\overline{\nabla}$ denotes the
Riemannian covariant differentiation on the K\"ahler manifold $\overline{M}$ . Throughout $X$ ,
$Y,$ $Z$ and $W$ will be either vector fields on one of the special neighborhoods $U(x)$

of $x$, or vectors tangent to $M$ at a point of $U(x)$ , unless otherwise specified.
If $X$ and $Y$ are vector fields on $U(x)$ we may write

(3.1) $\tilde{\nabla}xY=\nabla xY+h(X. Y)\xi+k(X, Y)J\xi$ ,

where $\nabla xY$ denotes the component of $\overline{\nabla}xY$ tangent to $M$ .
Then we have

LEMMA 3.1. (i) $\nabla$ is the covariant differentiation of the Hermitian manifold $M$ ;

furthermore $M$ is a Kahler manifold, that is $\nabla J=0$ .
(ii) $h$ and $k$ are synmetric covariant tensor fields of degree 2 on $U(x)$ satisfying

$h(X, JY)=-k(X, Y)$ ,

$k(X_{1}JY)=h(X, Y)$ .

The identity $g(\xi, \xi)=1$ implies $g(\overline{\nabla}x\xi, \xi)=0$ on $U(x)$ for any vector field $X$ on
$U(x)$ . We may therefore write

(3. 2) $\overline{\nabla}x\xi=-A(X)+s(X)J\xi$ ,

where $A(X)$ is tangent to $M$ .

LEMMA 3.2. $A$ and $s$ are tensor fields on $U(x)$ of type (1. 1) and $(0.1)$ respec-
tively. Furthermore $A$ and $JA$ are symmetric with respect to $g,$ $AJ=-JA$ and $A$ satisfies
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$h(X, Y)=g(AX, Y)$ ,

$k(X, Y)=g(JAX_{1}Y)$ ,

for any pair of vectors $X$ and $Y$ tangent to $M$ at a point of $U(x)$ .
The following lemma will be used frequently in our work.

LEMMA 3.3 Let $V$ be a $2n$-dimensional real vector space wit$h$ a complex structure
$J$ and a positive definit$e$ in$ner$ product $g$ which is Hermitian, $i.e.,$ $g(JX, JY)=g(X, Y)$

for all $X,$ $Y\in V$. If $A$ is symmetric ($wth$ respect to g) and $AJ=-JA$, there exists an
orthonormal basis $\{e_{1},\ldots, e_{n}. Je_{1},\ldots, Je_{l}\}$ of $V$ with respect to which the matrix of $A$ is
diagonal of the form

$(_{0}^{\lambda_{1}}$

. . .
$\lambda_{n}-\lambda_{1}$

. .
$-\lambda_{\hslash}0]$

In particular Trace $A=TraceAJ=0$ .
And morever we have

LEMMA 3.4. If $\overline{M}$ is of constant holomorphic sectional curvature $c^{\sim}$. then for any
pair of vectors $X$ and $Y$ tangent to $M$ at a point of $U(x)$ . we have the equations

(3.3) $(\nabla xA)Y-(\nabla_{Y}A)X-s(X)JAY+s(Y)JAX=0$ (Codazzi’s equation),

(3.4) $S(X, Y)=-2g(A^{2}X, Y)+(n+1)\overline{c}/2g(X. Y)$,

where $S$ is the Ricct tensor of $M$.

4. Reduction of condition $(^{*})$ snd some results

In the section, we shall assume that $\overline{M}$ is a space of constant holomorphic
sectional curvature $\overline{c}$ and $M$ is a complex hypersurface of $\overline{M}$ of $\infty mplex$ dimension
$n$. Then the equation of Gauss expresses the curvature tensor $R$ of $M$ in the form

(4.1) $R(X. Y)=AX\wedge AY+JAX\wedge JAY+\overline{c}/4\{X\wedge Y+\Gamma A\wedge JY+2g(X. JY)\}$ ,

where, in general, $X\wedge Y$ denotes the endomorphism which maps $Z$ upon $g(Z, Y)X$

$-g(Z. X)Y$.
The type number $k(x)$ at $x$ is by definition, the rank of $A$ at $x$.

Let $\{e_{1}\ldots\ldots., e_{l}. Je_{1},\ldots\ldots, Je_{t}\}$ be the orthonormal basis which is constructed in
Lemma 3.3., then we have

1) See for example [V.
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(4. 2) $R(e;, ej)=(\lambda i\lambda j+\overline{c}/4)(e;\wedge\overline{e}j+\overline{e}i\wedge eJ)$

(4.3) $R(e\iota,\overline{e}_{j})=(\lambda_{i}\lambda_{J}-c^{-}/4)(\overline{e}_{i}\wedge e;-ei\wedge\overline{e}_{j})^{\sim}-c/2\delta_{ij}J$ .

where we put $\overline{e}i=Jei$ . $i,$ $j=1,\ldots\ldots,n$ .
As the endomorphism $R(X, Y)$ operates on $R$ as a derivation of the tensor

algebra at each point of $M$ , we get

(4.4) $(R(X, Y)\cdot R)(Z, W)=(R(X, Y),$ $R(Z, W)$ ] $-R(R(X, Y)Z,$ $W$)

$-R(Z, R(X, Y)W)$ .
For reduction of the condition $(^{*})$ , we have only to consider the folowing cases.

I. $X=ei,$ $Y=ej,$ $Z=ek$ . $W=el$

II. $X=e;,$ $Y=\overline{e}j,$ $Z=ek,$ $ W=\overline{e}\iota$

M. $X=e;,$ $Y=ej,$ $Z=ek,$ $ W=\overline{e}\iota$

IV. $X=e;,$ $Y=\overline{e}_{j},$ $Z=ek,$ $W=el$

Case I., then by making use of (4.2), from (4.4) we find that it is zero except
possibly in the case where $k=i$ and $l\neq i,$ $j(i\neq j)$ .
Then we have

(4. 5) $(R(e;, ej)\cdot R)(ei, e\iota)=(\lambda i\lambda j+\overline{c}/4)\lambda l(\lambda j-\lambda i)(ej\wedge el+\overline{e}j\wedge\overline{e}l)$ .
Case II., then, similarly by making use of (4. 3), from (4. 4) we find that it is

zero except possibly in the case where $k=i$ and $l\neq i,$ $j(i\neq j)$ .
Then we have
(4.6) $(R(ej,\overline{e}_{j})\cdot R)(e\oint,\overline{e}_{l})=-(\lambda_{i}\lambda_{J}-c^{\sim}/4)\lambda\iota(\lambda;+\lambda_{i})(ej\wedge e\iota+\overline{e}_{j}\wedge\overline{e}\iota)$ .

Case III.. then by making use of (4. 2) and (4.3), from (4.4) we find that it is
zero except possibly in the folowing two cases, that is, for $k=i$ and $l\neq i,$ $j(i\neq j)$ ,

we get

(4.7) $(R(e;, ej)\cdot R)(e\iota.\overline{e}l)=(\lambda i\lambda j+c^{-}/4)\lambda_{1}(\lambda j-\lambda t)$($\overline{e}j$A $e\iota-ej\wedge\overline{e}l$).

and for $k=i$ and $l=j(i\neq;)$ , we get

(4.8) $(R(ei, eJ)\cdot R)(e;.\overline{e}j)=2(JJ$

$+2(\lambda;\lambda_{j}+c/4)\lambda_{j}(\lambda_{j}-\lambda_{j})\overline{e}_{j}\wedge eJ\sim$ .
Case IV., then, similarly, we find that it is zero except possibly in the following

cases, that is, for $k=i$ and $l\neq i,$ $j(i\neq j)$ , we get

(4.9) $(R(e;,\overline{e}j)\cdot R)(e:, el)=(jl(\lambda J+\lambda;)(\overline{e}j\wedge el-ej\wedge\overline{e}l)$ .
and for $k=i$ and $l=j(i\neq j)$ , we get
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(4. 10) $(R(e;,\overline{e}j)\cdot R)(e\iota, eJ)=2(jJ(\lambda j+\lambda i)\overline{e}j\wedge ei$

$-2(\lambda_{i}\lambda_{j}-\tilde{c}/4)\lambda_{i}(\lambda_{j}+\lambda_{i})eJ\wedge\overline{e}_{i}$ .
Therefore, from (4. 5), (4. 6). (4.7), (4.8), (4.9) and (4.10), we see that the condi-
tion $(^{*})$ is equivalent to

(4.11) $((\lambda_{i}\lambda_{j}+\tilde{c}/4)\lambda\iota_{i}(\lambda_{j}-\lambda_{i})=0(\lambda_{i}\lambda_{j}^{\sim}-c/4)\lambda\iota_{i}(\lambda_{j}+\lambda_{i})=0(\lambda_{i}\lambda_{j}+\overline{c}/4)\lambda_{j}(\lambda_{j}-\lambda_{i})=0(4\lambda_{j}(\lambda_{i}\lambda_{j}+\overline{c}/4)\lambda(\lambda_{j}-\lambda_{i})=0(\lambda_{i}\lambda_{j}-\overline{c}/4)\lambda_{j}(\lambda_{j}+\lambda_{i})=0$

for $l\neq i,$ $j(i\neq j)$

for $l\neq i,$ $j(i\neq;)$

for $i\neq j$

for $i\neq i$

for $i\neq i$

for $i\neq j$. $i,$ $i$. $l=1,\ldots\ldots,$ $n$ .

However, if $M$ is of complex 2-dimensional, then the condition $(^{*})$ is equivalent to
(4.11). $(4.11)_{4},$ $(4.11)_{5}$ and $(4.11)_{6}$ .
Thus, from $(4.11)_{3}$ and $(4.11)_{6}$ , we have

(4.12) $\lambda_{j^{2}}(\lambda_{i^{2}}-\overline{c}/4)=0$ for $i\neq j$ .
and moreover, from $(4. 11)_{4}$ and $(4. 11)_{6}$ . we have

(4.13) $\lambda_{i^{2}}(\lambda_{j^{2}}-c^{\sim}/4)=0$ for $i\neq;$ .
Thus, we have the folowing

THEOREM 4. 1. Let $M$ be a complex hypersurface satisfying the condition $(^{*})$ in a
space $\overline{M}$ of constant holomorphic sectional curvature $\overline{c}$ of complex dimension $n+1$ .

Then, the following statesments are valid. Where $n\geqq 2$.
(i) If $\overline{c}>0$, then $k(x)=0$, or $2n$ at each point $x\in M$ , that is, $M$ is totally geodesic

in $\tilde{M}$, or an Einstein space of Ricci curvature $\rho=nc^{\sim}/2$ .
Hence, $M$ is a locally symmetric space.
(ii) $If\sim c<0$, then $k(x)=0$ at each point $x\in M$, that is, $M$ is totally geodesic in $\overline{M}$,
hence also is a locally symmetric space.
(iii) $If\sim c=0$, then $k(x)=0$, or 2 at each point $x\in M$ .

PROOF. (i) From (4. 12), we see that $k(x)$ is constant on $M$ . If $k(x)\neq 0$,
$2n$. then, there exist zero characteristic root and nonzero characteristic root of A.
Now, let $\lambda j$ be a zero characteristic root and $\lambda$; be a nonzero one.

Then, from (4.12), we get $\lambda i^{2}=c/4\sim$ .
However, then from (4.13), we have

$\lambda_{i^{2}}(\lambda_{j^{2}}-\overline{c}/4)=-(\overline{c}/4)^{2}\neq 0$,

This is a contradiction.
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Thus, we see that $k(x)=0$, or $2n$ at each point $x\in M$ . If $k(x)=2n$, then, from
(3.4.), we have

$S(X, Y)=-\overline{c}/2g(X, Y)+(n+1)c^{\sim}/2g(X, Y)=n\overline{c}/2g(X, Y)$ .

That is, $S(X, Y)=nc/2g(X, Y)$ , for all tangent vectors $X$ and $Y$ to $M$ .
Therefore, $M$ is an Einstein space of Ricci curvature $\rho=nc^{-}/2$ .
(ii) and (iii) are evident.
On the other hand, B. Smyth [4]., has proved the following theorem.

THEOREM 4. 2. If $n\geqq 2$, then
(i) $P^{n}(C)$ and the complex quadric $Q^{n}$ are the only complex hypersurfaces of $P^{n+1}(C)$

which are complete and Einstein,
(ii) $D^{n}(resp. C^{n})$ is the only $simply\cdot connected$ complex hypersurface of $D^{n+1}$ (resp.
$C^{n+1})$ which is complete and Einstein.

Thus, from Theorem 4. 1. and Theorem 4. 2., we have the following

THEOREM 4.3. If $n\geqq 2$, then
(i) let $M$ be a complete complex hypersurface of $P^{n+1}(C)$ which satisfies the condi-
tiorg $(^{*})$, then $M$ is $P^{n}(C)$ , or $Q^{n}$ .
(ii) let $M$ be a simply-connected conplete complex hypersurface of $D^{n+1}$ which satisfies
the condition $(^{*})$ , then $M$ is $D^{n}$ .

Remark. If $c\neq 0$ and $n\geqq 2$, then we can show that the condition $(^{*})$ is equivalent
to the condition, $R(X, Y)\cdot S=0$ .
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