On complex hypersurfaces of spaces of constant holomorphic sectional curvature satisfying a certain condition on the curvature tensor

By
Kouei SEKIGAWA

(Received June 25, 1968)

1. Introduction

If a Riemannian manifold M is locally symmetric, then its curvature tensor R satisfies

$$
\begin{equation*}
R(X, Y) \cdot R=0 \quad \text { for all tangent vectors } X \text { and } Y \tag{*}
\end{equation*}
$$

where the endomorphism $R(X, Y)$ operates on R as a derivation of the tensor algebra at each point of M. Conversely, does this algebraic condition on the curvature tensor field R imply that M is locally symmetric?
We conjecture that the answer is affirmative in the case where M is a complete and irreducible and $\operatorname{dim} M \geqq 3$.

The main purpose of the present paper is to consider the complex hypersurfaces in spaces of constant holomorphic sectional curvature satisfying the condition (*) on the curvature tensor.

2. Complex space forms

A Riemannian manifold M with Riemannian metric g is called an Einstein manifold if its Ricci tensor S satisfies $S=\rho g$, where ρ is a constant. We call ρ the Ricci curvature of the Einstein manifold.

Let M be a complex analytic manifold of complex dimension n. By means of charts we may transfer the complex structure of complex n-dimensional Euclidean space C^{n} to M to obtain an almost complex structure J on M, i. e., a tensor field J on M of type (1.1) such that $J^{2}=-I$, where I is the tensor field which is the identity transformation on each tangent space of M.

A Riemannian metric g on M is a Hermitian metric if $g(J X, J Y)=g(X, Y)$ for any vector fields X and Y on $M ; M$ is called a Hermitian manifold. If in addition
the almost complex J is parallel with respect to the Riemannian connection of g, then J (resp. g) is called a Kähler structure (resp. Kähler metric); M is then called a Kähler manifold.

A plane which is tangent to M and is invariant by J will be called a holomorphic plane. If M is a Kähler manifold we denote by $K(p)$ the sectional curvature of a plane p tangent to M and by $K(X)$ the sectional curvature of the holomorphic plane generated by a unit tangent vector $X . M$ is said to be of constant holomorphic sectional curvature c if the sectional curvature of every holomorphic tangent plane is equal to c. If M is of constant holomorphic sectional curvature c, then M is Einstein and, in the above notaion $\rho=(n+1) c / 2$.

By a complex space form we will mean a complete Kähler manifold of constant holomorphic sectional curvature.

We now introduce some special Kähler manifolds which will occur in the course of our work. Let C^{n+2} dente complex ($n+2$)-dimensional Euclidean space with the natural complex coordinate system $z^{0}, \ldots \ldots, z^{n+1} . P^{n+1}(C)$ will denote complex ($n+1$)-dimensional projective space, $P^{n+1}(C)$ is a complex analytic mainifold which, when endowed with the Fubini-Study metric, is a Kähler manifold of constant holomorphic sectional couvature 1. There is a natural holomorphic mapping $f: C^{n+2}-\{0\} \longrightarrow P^{n+1}(C)$.

The variety in $P^{n+1}(C)$ determined by $z^{n+1}=0$ is merely $P^{n}(C)$, the induced metric being the Fubini-Study metric of $P^{n}(C)$.

The variety Q^{n} in $P^{n+1}(C)$ determined by $\left(z^{0}\right)^{2}+\ldots+\left(z^{n+1}\right)^{2}=0$ is called the n-dimensional quadric; Q^{n} is a compact Kähler manifold with the metric and complex structure induced from $P^{n+1}(C)$.

The group $S O(n+2)$, as a subgroup of the group $U(n+2)$ of all holomorphic isometries of C^{n+2}, act on Q^{n} as a transitive group of holomorphic isometries. The isotropy group of this action at $(1, i, 0, \ldots, 0) \in Q^{n}$ is $S O(2) \times S O(n)$. It is easily checked that $S O(n+2) / S O(2) \times S O(n)$ is a symmetric space. Thus, if, $n>2, Q^{n}$ is irreducible and hence it is an Einstein manifold. However, Q^{2} is holomorphically isometric to $P^{1}(C) \times P^{1}(C)$, where $P^{1}(C)$ is endowed with the Fubini-Study metric. Hence $Q^{\boldsymbol{n}}$ is a compact Einstein manifold if $n \geqq 2$.
D^{n+1} will denote the open unit ball in C^{n+1} endowed with the natural complex structure and the Bergman metric. This is then a Kähler manifold of constant holomorphic sectional curvature -1 . The submanifold of D^{n+1} determined by $z^{n}=0$ is merely D^{n}, the induced metric being the Bergman metric of D^{n}.

3. Complex hypersurfaces

Hence forth \tilde{M} will be a connected Kähler manifold of complex dimension $n+1$,
the Kähler structure and the Kähler metric of M being denoted by J and g respectively; moreover, M will be a connected complex manifold of complex dimension n which is a complex hypersurface of \tilde{M}, i. e., there exists a complex analytic mapping $\varphi: M \longrightarrow \tilde{M}$ whose differential φ_{*} is $1-1$ at each point of M.

All metric properties on M will refer to the Hermitian metric g_{0} induced on M by the immersion φ.

Then g_{0} becomes to be a Kähler metric on M. Moreover it is well known that this is ture for arbitrary complex submanifolds of \tilde{M}.

In order to simplify the presentation, we identify, for each $x \in M$, tangent space $T_{x}(M)$ with $\varphi_{*}\left(T_{x}(M)\right) \subset T_{\varphi(x)}(\tilde{M})$ by means of φ_{*}. A vector in $T_{\varphi(x)}(\tilde{M})$ which is orthogonal, with respect to g, to the subspace $\varphi_{*}\left(T_{x}(M)\right)$ is said to be normal to M at x. Since $\varphi^{*} g=g_{0}$ and $J \varphi_{*}=\varphi_{*} J_{0}$, where J_{0} is the almost complex structure of M, the structures g_{0} and J_{0} on $T(M)$ are respectively identified with the restrictions of the structures g and J to the subspace $\varphi_{*}\left(T_{x}(M)\right)$. With this identification in mind we drop the symbols g_{0} and J_{0}, using instead the symbols g and J.

The following is a purely local argument. Let $U(x)$ be a neighborhood of a point $x \in M$ on which we choose a unit vector field ξ normal to M. $\tilde{\nabla}$ denotes the Riemannian covariant differentiation on the Kähler manifold \tilde{M}. Throughout, X, Y, Z and W will be either vector fields on one of the special neighborhoods $U(x)$ of x, or vectors tangent to M at a point of $U(x)$, unless otherwise specified.

If X and Y are vector fields on $U(x)$ we may write

$$
\begin{equation*}
\tilde{\nabla} x Y=\nabla x Y+h(X, Y) \xi+k(X, Y) J \xi, \tag{3.1}
\end{equation*}
$$

where $\nabla_{x} Y$ denotes the component of $\tilde{\nabla} x Y$ tangent to M.
Then we have
Lemma 3.1. (i) ∇ is the covariant differentiation of the Hermitian manifold M; furthermore M is a Kähler manifold, that is $\nabla J=0$.
(ii) h and k are symmetric covariant tensor fields of degree 2 on $U(x)$ satisfying

$$
\begin{aligned}
& h(X, J Y)=-k(X, Y), \\
& k(X, J Y)=h(X, Y) .
\end{aligned}
$$

The identity $g(\xi, \xi)=1$ implies $g(\tilde{\nabla} x \xi, \xi)=0$ on $U(x)$ for any vector field X on $U(x)$. We may therefore write

$$
\begin{equation*}
\tilde{\nabla} x \xi=-A(X)+s(X) J \xi \tag{3.2}
\end{equation*}
$$

where $A(X)$ is tangent to M.
Lemma 3.2. A and s are tensor fields on $U(x)$ of type (1.1) and (0.1) respectively. Furthermore A and $J A$ are symmetric with respect to $g, A J=-J A$ and A satisfies

$$
\begin{aligned}
& h(X, Y)=g(A X, Y), \\
& k(X, Y)=g(J A X, Y),
\end{aligned}
$$

for any pair of vectors X and Y tangent to M at a point of $U(x)$.
The following lemma will be used frequently in our work.
Lemma 3.3.1) Let V be a $2 n$-dimensional real vector space with a complex structure J and a positive definite inner product g which is Hermitian, i.e., $g(J X, J Y)=g(X, Y)$ for all $X, Y \in V$. If A is symmetric (with respect to g) and $A J=-J A$, there exists an orthonormal basis $\left\{e_{1}, \ldots, e_{n}, J e_{1}, \ldots, J e_{n}\right\}$ of V with respect to which the matrix of A is diagonal of the form

$$
\left(\begin{array}{lllll}
\lambda_{1} & & & & \\
& \cdot & & & \\
& & \lambda_{n} & & \\
\\
& & & -\lambda_{1} & \\
& & & & \\
0 & & & & \\
& & & -\lambda_{n}
\end{array}\right)
$$

In particular Trace $A=$ Trace $A J=0$.
And morever we have
Lemma 3.4. If \tilde{M} is of constant holomor phic sectional curvature \tilde{c}, then for any pair of vectors X and Y tangent to M at a point of $U(x)$, we have the equations

$$
\begin{align*}
& \left(\nabla_{x} A\right) Y-\left(\nabla_{Y} A\right) X-s(X) J A Y+s(Y) J A X=0 \quad \text { (Codazzi's equation), } \tag{3.3}\\
& S(X, Y)=-2 g\left(A^{2} X, Y\right)+(n+1) \tilde{c} / 2 g(X, Y) \tag{3.4}
\end{align*}
$$

where S is the Ricci tensor of M.

4. Reduction of condition (*) and some results

In the section, we shall assume that \tilde{M} is a space of constant holomorphic sectional curvature \tilde{c} and M is a complex hypersurface of \tilde{M} of complex dimension n. Then the equation of Gauss expresses the curvature tensor R of M in the form

$$
\begin{equation*}
R(X, Y)=A X \wedge A Y+J A X \wedge J A Y+\tilde{c} / 4\{X \wedge Y+J A \wedge J Y+2 g(X, J Y)\} \tag{4.1}
\end{equation*}
$$

where, in general, $X \wedge Y$ denotes the endomorphism which maps Z upon $g(Z, Y) X$ $-g(Z, X) Y$.
The type number $k(x)$ at x is, by definition, the rank of A at x.
Let $\left\{e_{1}, \ldots . ., e_{n}, J e_{1}, \ldots . ., J e_{n}\right\}$ be the orthonormal basis which is constructed in Lemma 3.3., then we have

1) See for example [4].

$$
\begin{align*}
& R\left(e_{i}, e_{j}\right)=\left(\lambda_{i} \lambda_{j}+\tilde{c} / 4\right)\left(e_{i} \wedge \bar{e}_{j}+\bar{e}_{i} \wedge e_{j}\right) \tag{4.2}\\
& R\left(e_{i}, \bar{e}_{j}\right)=\left(\lambda_{i} \lambda_{j}-\tilde{c} / 4\right)\left(\bar{e}_{i} \wedge e_{j}-e_{i} \wedge \bar{e}_{j}\right)-\tilde{c} / 2 \delta_{i j} J \tag{4.3}
\end{align*}
$$

where we put $\bar{e}_{i}=J e_{i}$.
$i, j=1, \ldots \ldots, n$.
As the endomorphism $R(X, Y)$ operates on R as a derivation of the tensor algebra at each point of M, we get

$$
\begin{align*}
& (R(X, Y) \cdot R)(Z, W)=[R(X, Y), R(Z, W)]-R(R(X, Y) Z, W) \tag{4.4}\\
& \quad-R(Z, R(X, Y) W) .
\end{align*}
$$

For reduction of the condition (*), we have only to consider the following cases.
I.

$$
X=e_{i}, Y=e_{j}, Z=e_{k}, W=e_{l}
$$

II.

$$
X=e_{i}, Y=\bar{e}_{j}, Z=e_{k}, W=\bar{e}_{l}
$$

III. $X=e_{i}, Y=e_{j}, Z=e_{k}, W=\bar{e}_{l}$
IV.

$$
X=e_{i}, Y=\bar{e}_{j}, Z=e_{k}, W=e l .
$$

Case I., then by making use of (4.2), from (4.4) we find that it is zero except possibly in the case where $k=i$ and $l \neq i, j(i \neq j)$.
Then we have

$$
\begin{equation*}
\left(R\left(e_{i}, e_{j}\right) \cdot R\right)\left(e_{i}, e_{l}\right)=\left(\lambda_{i} \lambda_{j}+\tilde{c} / 4\right) \lambda_{l}\left(\lambda_{j}-\lambda_{i}\right)\left(e_{j} \wedge e_{l}+\bar{e}_{j} \wedge \bar{e}_{l}\right) \tag{4.5}
\end{equation*}
$$

Case II., then, similarly by making use of (4.3), from (4.4) we find that it is zero except possibly in the case where $k=i$ and $l \neq i, j(i \neq j)$.
Then we have

$$
\begin{equation*}
\left(R\left(e_{i}, \bar{e}_{j}\right) \cdot R\right)\left(e_{i}, \bar{e}_{l}\right)=-\left(\lambda_{i} \lambda_{j}-\tilde{c} / 4\right) \lambda_{l}\left(\lambda_{j}+\lambda_{i}\right)\left(e_{j} \wedge e_{l}+\bar{e}_{j} \wedge \bar{e}_{l}\right) . \tag{4.6}
\end{equation*}
$$

Case III., then by making use of (4.2) and (4.3), from (4.4) we find that it is zero except possibly in the following two cases, that is, for $k=i$ and $l \neq i, j(i \neq j)$, we get

$$
\begin{equation*}
\left(R\left(e_{i}, e_{j}\right) \cdot R\right)\left(e_{i}, \bar{e}_{l}\right)=\left(\lambda_{i} \lambda_{j}+\tilde{c} / 4\right) \lambda_{1}\left(\lambda_{j}-\lambda_{i}\right)\left(\bar{e}_{j} \wedge e_{l}-e_{j} \wedge \bar{e}_{l}\right) . \tag{4.7}
\end{equation*}
$$

and for $k=i$ and $l=j(i \neq j)$, we get

$$
\begin{gather*}
\left(R\left(e_{i}, e_{j}\right) \cdot R\right)\left(e_{i}, \bar{e}_{j}\right)=2\left(\lambda_{i} \lambda_{j}+\tilde{c} / 4\right) \lambda_{i}\left(\lambda_{j}-\lambda_{i}\right) \bar{e}_{i} \wedge e_{i} \tag{4.8}\\
+2\left(\lambda_{i} \lambda_{j}+\tilde{c} / 4\right) \lambda_{j}\left(\lambda_{j}-\lambda_{i}\right) \bar{e}_{j} \wedge e_{j} .
\end{gather*}
$$

Case IV., then, similarly, we find that it is zero except possibly in the following cases, that is, for $k=i$ and $l \neq i, j(i \neq j)$, we get

$$
\begin{equation*}
\left(R\left(e_{i}, \bar{e}_{j}\right) \cdot R\right)\left(e_{i}, e_{l}\right)=\left(\lambda_{i} \lambda_{j}-\tilde{c} / 4\right) \lambda_{l}\left(\lambda_{j}+\lambda_{i}\right)\left(\bar{e}_{j} \wedge e_{l}-e_{j} \wedge \bar{e}_{l}\right) . \tag{4.9}
\end{equation*}
$$

and for $k=i$ and $l=j(i \neq j)$, we get

$$
\begin{gather*}
\left(R\left(e_{i}, \bar{e}_{j}\right) \cdot R\right)\left(e_{i}, e_{j}\right)=2\left(\lambda_{i} \lambda_{j}-\tilde{c} / 4\right) \lambda_{j}\left(\lambda_{j}+\lambda_{i}\right) \bar{e}_{j} \wedge e_{i} \tag{4.10}\\
-2\left(\lambda_{i} \lambda_{j}-\tilde{c} / 4\right) \lambda_{i}\left(\lambda_{j}+\lambda_{i}\right) e_{j} \wedge \bar{e}_{i} .
\end{gather*}
$$

Therefore, from (4.5), (4.6), (4.7), (4.8), (4.9) and (4.10), we see that the condition (*) is equivalent to

$$
\begin{cases}\left(\lambda_{i} \lambda_{j}+\tilde{c} / 4\right) \lambda_{l}\left(\lambda_{j}-\lambda_{i}\right)=0 & \text { for } l \neq i, j(i \neq j) \tag{4.11}\\ \left(\lambda_{i} \lambda_{j}-\tilde{c} / 4\right) \lambda_{l}\left(\lambda_{j}+\lambda_{i}\right)=0 & \text { for } l \neq i, j(i \neq j) \\ \left(\lambda_{i} \lambda_{j}+\tilde{c} / 4\right) \lambda_{j}\left(\lambda_{j}-\lambda_{i}\right)=0 & \text { for } i \neq j \\ \left(\lambda_{i} \lambda_{j}-\tilde{c} / 4\right) \lambda_{i}\left(\lambda_{j}+\lambda_{i}\right)=0 & \text { for } i \neq j \\ \left(\lambda_{i} \lambda_{j}+\tilde{c} / 4\right) \lambda_{i}\left(\lambda_{j}-\lambda_{i}\right)=0 & \text { for } i \neq j \\ \left(\lambda_{i} \lambda_{j}-\tilde{c} / 4\right) \lambda_{j}\left(\lambda_{j}+\lambda_{i}\right)=0 & \text { for } i \neq j . \quad i, j, l=1, \ldots \ldots, n\end{cases}
$$

However, if M is of complex 2-dimensional, then the condition (*) is equivalent to $(4.11)_{3},(4.11)_{4},(4.11)_{5}$ and $(4.11)_{6}$.
Thus, from (4.11) ${ }_{3}$ and (4.11) 6 , we have

$$
\begin{equation*}
\lambda_{j}{ }^{2}\left(\lambda_{i}{ }^{2}-\bar{c} / 4\right)=0 \quad \text { for } i \neq j \tag{4.12}
\end{equation*}
$$

and moreover, from (4.11) 4 and (4.11) $)_{6}$, we have

$$
\begin{equation*}
\lambda_{i}{ }^{2}\left(\lambda_{j}^{2}-\tilde{c} / 4\right)=0 \quad \text { for } i \neq j \tag{4.13}
\end{equation*}
$$

Thus, we have the following
Theorem 4.1. Let M be a complex hypersurface satisfying the condition (*) in a space \bar{M} of constant holomor phic sectional curvature \tilde{c} of complex dimension $n+1$.

Then, the following statesments are valid. Where $n \geqq 2$.
(i) If $\tilde{c}>0$, then $k(x)=0$, or $2 n$ at each point $x \in M$, that is, M is totally geodesic in \tilde{M}, or an Einstein space of Ricci curvature $\rho=n \bar{c} / 2$.
Hence, M is a locally symmetric space.
(ii) If $\tilde{c}<0$, then $k(x)=0$ at each point $x \in M$, that is, M is totally geodesic in \bar{M}, hence also is a locally symmetric space.
(iii) If $\tilde{c}=0$, then $k(x)=0$, or 2 at each point $x \in M$.

Proof. (i) From (4.12), we see that $k(x)$ is constant on M. If $k(x) \neq 0$, 2 n , then, there exist zero characteristic root and nonzero characteristic root of A . Now, let λ_{j} be a zero characteristic root and λ_{i} be a nonzero one.

Then, from (4.12), we get $\lambda_{i}{ }^{2}=\tilde{c} / 4$.
However, then from (4.13), we have

$$
\lambda_{i}{ }^{2}\left(\lambda_{j}{ }^{2}-\tilde{c} / 4\right)=-(\tilde{c} / 4)^{2} \neq 0
$$

This is a contradiction.

Thus, we see that $k(x)=0$, or $2 n$ at each point $x \in M$. If $k(x)=2 n$, then, from (3.4.), we have

$$
S(X, Y)=-\tilde{c} / 2 g(X, Y)+(n+1) \tilde{c} / 2 g(X, Y)=n \tilde{c} / 2 g(X, Y) .
$$

That is, $S(X, Y)=n \tilde{c} / 2 g(X, Y)$, for all tangent vectors X and Y to M. Therefore, M is an Einstein space of Ricci curvature $\rho=n \bar{c} / 2$.
(ii) and (iii) are evident.

On the other hand, B. Smyth [4]., has proved the following theorem.
Theorem 4.2. If $n \geqq 2$, then
(i) $P^{n}(C)$ and the complex quadric Q^{n} are the only complex hypersurfaces of $P^{n+1}(C)$ which are complete and Einstein,
(ii) $D^{n}\left(r e s p . C^{n}\right)$ is the only simply-connected complex hypersurface of D^{n+1} (resp. C^{n+1}) which is complete and Einstein.

Thus, from Theorem 4.1. and Theorem 4.2., we have the following
Theorem 4.3. If $n \geqq 2$, then
(i) let M be a complete complex hypersurface of $P^{n+1}(C)$ which satisfies the condition (${ }^{*}$), then M is $P^{n}(C)$, or Q^{n}.
(ii) let M be a simply-connected complete complex hypersurface of D^{n+1} which satisfies the condition (*), then M is D^{n}.

Remark. If $c \neq 0$ and $n \geqq 2$, then we can show that the condition (*) is equivalent to the condition, $R(X, Y) \cdot S=0$.

Nigata University

References

1. A. Fialkow : Hypersurfaces of a space of constant curvature, Ann. of Math. 39 (1938), 762785.
2. S. KOBAYASHI and K. NOMIZU : Foundations of Differential Geometry, Vol. I, Interscience Publishers, New York, 1963.
3. K. NOMIZU : On hypersurfaces satisfying a condition on the curvature tensor, Tôhoku Math. J., 20 (1968), 46-59.
4. B, SMYTH: Differential geometry of complex hypersurfaces, Ann. of Math. 85 (1967), 246-266.
