On complex hypersurfaces of spaces of constant holomorphic sectional curvature satisfying a certain condition on the curvature tensor

By

Kouei SEKIGAWA

(Received June 25, 1968)

1. Introduction

If a Riemannian manifold M is locally symmetric, then its curvature tensor R satisfies

(*) $R(X, Y) \cdot R = 0$ for all tangent vectors X and Y

where the endomorphism R(X, Y) operates on R as a derivation of the tensor algebra at each point of M. Conversely, does this algebraic condition on the curvature tensor field R imply that M is locally symmetric?

We conjecture that the answer is affirmative in the case where M is a complete and irreducible and dim $M \ge 3$.

The main purpose of the present paper is to consider the complex hypersurfaces in spaces of constant holomorphic sectional curvature satisfying the condition (*) on the curvature tensor.

2. Complex space forms

A Riemannian manifold M with Riemannian metric g is called an Einstein manifold if its Ricci tensor S satisfies $S=\rho g$, where ρ is a constant. We call ρ the Ricci curvature of the Einstein manifold.

Let M be a complex analytic manifold of complex dimension n. By means of charts we may transfer the complex structure of complex n-dimensional Euclidean space C^n to M to obtain an almost complex structure J on M, i.e., a tensor field J on M of type (1.1) such that $J^2 = -I$, where I is the tensor field which is the identity transformation on each tangent space of M.

A Riemannian metric g on M is a Hermitian metric if g(JX, JY) = g(X, Y) for any vector fields X and Y on M; M is called a Hermitian manifold. If in addition the almost complex J is parallel with respect to the Riemannian connection of g, then J (resp. g) is called a Kähler structure (resp. Kähler metric); M is then called a Kähler manifold.

A plane which is tangent to M and is invariant by J will be called a holomorphic plane. If M is a Kähler manifold we denote by K(p) the sectional curvature of a plane p tangent to M and by K(X) the sectional curvature of the holomorphic plane generated by a unit tangent vector X. M is said to be of constant holomorphic sectional curvature c if the sectional curvature of every holomorphic tangent plane is equal to c. If M is of constant holomorphic sectional curvature c, then M is Einstein and, in the above notaion $\rho = (n+1)c/2$.

By a complex space form we will mean a complete Kähler manifold of constant holomorphic sectional curvature.

We now introduce some special Kähler manifolds which will occur in the course of our work. Let C^{n+2} dente complex (n+2)-dimensional Euclidean space with the natural complex coordinate system z^0, \ldots, z^{n+1} . $P^{n+1}(C)$ will denote complex (n+1)-dimensional projective space, $P^{n+1}(C)$ is a complex analytic mainifold which, when endowed with the Fubini-Study metric, is a Kähler manifold of constant holomorphic sectional couvature 1. There is a natural holomorphic mapping $f: C^{n+2} - \{0\} \longrightarrow P^{n+1}(C)$.

The variety in $P^{n+1}(C)$ determined by $z^{n+1}=0$ is merely $P^n(C)$, the induced metric being the Fubini-Study metric of $P^n(C)$.

The variety Q^n in $P^{n+1}(C)$ determined by $(z^0)^2 + ... + (z^{n+1})^2 = 0$ is called the n-dimensional quadric; Q^n is a compact Kähler manifold with the metric and complex structure induced from $P^{n+1}(C)$.

The group SO(n+2), as a subgroup of the group U(n+2) of all holomorphic isometries of C^{n+2} , act on Q^n as a transitive group of holomorphic isometries. The isotropy group of this action at $(1, i, 0, ..., 0) \in Q^n$ is $SO(2) \times SO(n)$. It is easily checked that $SO(n+2)/SO(2) \times SO(n)$ is a symmetric space. Thus, if, n>2, Q^n is irreducible and hence it is an Einstein manifold. However, Q^2 is holomorphically isometric to $P^1(C) \times P^1(C)$, where $P^1(C)$ is endowed with the Fubini-Study metric. Hence Q^n is a compact Einstein manifold if $n \ge 2$.

 D^{n+1} will denote the open unit ball in C^{n+1} endowed with the natural complex structure and the Bergman metric. This is then a Kähler manifold of constant holomorphic sectional curvature -1. The submanifold of D^{n+1} determined by $z^n=0$ is merely D^n , the induced metric being the Bergman metric of D^n .

3. Complex hypersurfaces

Hence forth \tilde{M} will be a connected Kähler manifold of complex dimension n+1,

the Kähler structure and the Kähler metric of M being denoted by J and g respectively; moreover, M will be a connected complex manifold of complex dimension n which is a complex hypersurface of \tilde{M} , i.e., there exists a complex analytic mapping $\varphi: M \longrightarrow \tilde{M}$ whose differential φ_* is 1-1 at each point of M.

All metric properties on M will refer to the Hermitian metric g_0 induced on M by the immersion φ .

Then g_0 becomes to be a Kähler metric on M. Moreover it is well known that this is ture for arbitrary complex submanifolds of \tilde{M} .

In order to simplify the presentation, we identify, for each $x \in M$, tangent space $T_x(M)$ with $\varphi_*(T_x(M)) \subset T_{\varphi(x)}(\tilde{M})$ by means of φ_* . A vector in $T_{\varphi(x)}(\tilde{M})$ which is orthogonal, with respect to g, to the subspace $\varphi_*(T_x(M))$ is said to be normal to M at x. Since $\varphi^*g = g_0$ and $J\varphi_* = \varphi_*J_0$, where J_0 is the almost complex structure of M, the structures g_0 and J_0 on T(M) are respectively identified with the restrictions of the structures g and J to the subspace $\varphi_*(T_x(M))$. With this identification in mind we drop the symbols g_0 and J_0 , using instead the symbols g and J.

The following is a purely local argument. Let U(x) be a neighborhood of a point $x \in M$ on which we choose a unit vector field ξ normal to M. ∇ denotes the Riemannian covariant differentiation on the Kähler manifold \tilde{M} . Throughout, X, Y, Z and W will be either vector fields on one of the special neighborhoods U(x) of x, or vectors tangent to M at a point of U(x), unless otherwise specified.

If X and Y are vector fields on U(x) we may write

(3.1)
$$\overline{\nabla} xY = \nabla xY + h(X, Y)\xi + k(X, Y)J\xi,$$

where $\nabla_X Y$ denotes the component of $\tilde{\nabla}_X Y$ tangent to M.

Then we have

LEMMA 3.1. (i) ∇ is the covariant differentiation of the Hermitian manifold M; furthermore M is a Kähler manifold, that is $\nabla J = 0$.

(ii) h and k are symmetric covariant tensor fields of degree 2 on U(x) satisfying

h(X, JY) = -k(X, Y),k(X, JY) = h(X, Y).

The identity $g(\xi, \xi)=1$ implies $g(\bar{\nabla}_X \xi, \xi)=0$ on U(x) for any vector field X on U(x). We may therefore write

(3.2)
$$\tilde{\nabla}_X \boldsymbol{\xi} = -A(X) + s(X)J\boldsymbol{\xi},$$

where A(X) is tangent to M.

LEMMA 3.2. A and s are tensor fields on U(x) of type (1.1) and (0.1) respectively. Furthermore A and JA are symmetric with respect to g, AJ = -JA and A satisfies K. Sekigawa

$$h(X, Y) = g(AX, Y),$$

$$k(X, Y) = g(JAX, Y),$$

for any pair of vectors X and Y tangent to M at a point of U(x).

The following lemma will be used frequently in our work.

LEMMA 3.3.¹⁾ Let V be a 2n-dimensional real vector space with a complex structure J and a positive definite inner product g which is Hermitian, i.e., g(JX, JY)=g(X, Y) for all X, $Y \in V$. If A is symmetric (with respect to g) and AJ=-JA, there exists an orthonormal basis $\{e_1,..., e_n, Je_1,..., Je_n\}$ of V with respect to which the matrix of A is diagonal of the form

In particular Trace A=Trace AJ=0.

And morever we have

LEMMA 3.4. If M is of constant holomorphic sectional curvature c, then for any pair of vectors X and Y tangent to M at a point of U(x), we have the equations

(3.3) $(\nabla_X A)Y - (\nabla_Y A)X - s(X)JAY + s(Y)JAX = 0$ (Codazzi's equation),

(3.4)
$$S(X, Y) = -2g(A^2X, Y) + (n+1)c/2 g(X, Y),$$

where S is the Ricci tensor of M.

4. Reduction of condition (*) and some results

In the section, we shall assume that \overline{M} is a space of constant holomorphic sectional curvature \overline{c} and M is a complex hypersurface of \overline{M} of complex dimension n. Then the equation of Gauss expresses the curvature tensor R of M in the form

$$(4.1) \qquad R(X, Y) = AX \wedge AY + JAX \wedge JAY + c/4 \{X \wedge Y + JA \wedge JY + 2g(X, JY)\},$$

where, in general, $X \wedge Y$ denotes the endomorphism which maps Z upon g(Z, Y)X - g(Z, X)Y.

The type number k(x) at x is, by definition, the rank of A at x.

Let $\{e_1,\ldots,e_n, Je_1,\ldots,Je_n\}$ be the orthonormal basis which is constructed in Lemma 3.3., then we have

¹⁾ See for example [4].

(4.2) $R(e_i, e_j) = (\lambda_i \lambda_j + \tilde{c}/4)(e_i \wedge \bar{e}_j + \bar{e}_i \wedge e_j)$

(4.3)
$$R(e_i, \bar{e}_j) = (\lambda_i \lambda_j - \bar{c}/4)(\bar{e}_i \wedge e_j - e_i \wedge \bar{e}_j) - \bar{c}/2\delta_{ij} J.$$

where we put $\bar{e}_i = Je_i$. $i, j = 1, \dots, n$.

As the endomorphism R(X, Y) operates on R as a derivation of the tensor algebra at each point of M, we get

(4.4)
$$(R(X, Y) \cdot R)(Z, W) = (R(X, Y), R(Z, W)) - R(R(X, Y)Z, W) - R(Z, R(X, Y)W).$$

For reduction of the condition (*), we have only to consider the following cases.

I.

$$X=e_i, Y=e_j, Z=e_k, W=e_l$$

 $X=e_i, Y=\bar{e}_j, Z=e_k, W=\bar{e}_l$

II.

III.

$$X=e_i, Y=e_j, Z=e_k, W=\bar{e}_l$$

IV. $X=e_i, Y=\bar{e}_j, Z=e_k, W=e_l$.

Case I., then by making use of (4.2), from (4.4) we find that it is zero except possibly in the case where k=i and $l \neq i$, $j(i \neq j)$. Then we have

(4.5)
$$(R(e_i, e_j) \cdot R)(e_i, e_l) = (\lambda_i \lambda_j + \tilde{c}/4) \lambda_l (\lambda_j - \lambda_i)(e_j \wedge e_l + \tilde{e}_j \wedge \tilde{e}_l).$$

Case II., then, similarly by making use of (4.3), from (4.4) we find that it is zero except possibly in the case where k=i and $l \neq i$, $j(i \neq j)$. Then we have

(4.6)
$$(R(e_i, \bar{e}_j) \cdot R)(e_i, \bar{e}_l) = -(\lambda_i \lambda_j - \bar{c}/4)\lambda_l(\lambda_j + \lambda_i)(e_j \wedge e_l + \bar{e}_j \wedge \bar{e}_l).$$

Case III., then by making use of (4.2) and (4.3), from (4.4) we find that it is zero except possibly in the following two cases, that is, for k=i and $l \neq i$, $j(i \neq j)$, we get

(4.7)
$$(R(e_i, e_j) \cdot R)(e_i, \bar{e}_l) = (\lambda_i \lambda_j + \bar{c/4})\lambda_1(\lambda_j - \lambda_i)(\bar{e}_j \wedge e_l - e_j \wedge \bar{e}_l).$$

and for k=i and $l=j(i \neq j)$, we get

(4.8)
$$(R(e_i, e_j) \cdot R)(e_i, \bar{e}_j) = 2(\lambda_i \lambda_j + \bar{c}/4)\lambda_i(\lambda_j - \lambda_i)\bar{e}_i \wedge e_i + 2(\lambda_i \lambda_j + \bar{c}/4)\lambda_j(\lambda_j - \lambda_i)\bar{e}_j \wedge e_j.$$

Case IV., then, similarly, we find that it is zero except possibly in the following cases, that is, for k=i and $l \neq i$, $j(i \neq j)$, we get

(4.9)
$$(R(e_i, \bar{e}_j) \cdot R)(e_i, e_l) = (\lambda_i \lambda_j - \tilde{c}/4) \lambda_l (\lambda_j + \lambda_i) (\bar{e}_j \wedge e_l - e_j \wedge \bar{e}_l).$$

and for k=i and l=j(i+j), we get

K. Sekigawa

(4.10)
$$(R(e_i, \bar{e}_j) \cdot R)(e_i, e_j) = 2(\lambda_i \lambda_j - \bar{c}/4)\lambda_j(\lambda_j + \lambda_i)\bar{e}_j \wedge e_i$$
$$-2(\lambda_i \lambda_j - \bar{c}/4)\lambda_i(\lambda_j + \lambda_i)e_j \wedge \bar{e}_i.$$

Therefore, from (4.5), (4.6), (4.7), (4.8), (4.9) and (4.10), we see that the condition (*) is equivalent to

(4.11)

$$\begin{pmatrix}
(\lambda_i \lambda_j + \tilde{c}/4)\lambda_l(\lambda_j - \lambda_i) = 0 & \text{for } l \neq i, \ j(i \neq j) \\
(\lambda_i \lambda_j - \tilde{c}/4)\lambda_l(\lambda_j + \lambda_i) = 0 & \text{for } l \neq i, \ j(i \neq j) \\
(\lambda_i \lambda_j + \tilde{c}/4)\lambda_j(\lambda_j - \lambda_i) = 0 & \text{for } i \neq j \\
(\lambda_i \lambda_j - \tilde{c}/4)\lambda_i(\lambda_j + \lambda_i) = 0 & \text{for } i \neq j \\
(\lambda_i \lambda_j - \tilde{c}/4)\lambda_i(\lambda_j - \lambda_i) = 0 & \text{for } i \neq j \\
(\lambda_i \lambda_j - \tilde{c}/4)\lambda_j(\lambda_j + \lambda_i) = 0 & \text{for } i \neq j, \ i, \ j, \ l = 1, \dots, n
\end{cases}$$

However, if M is of complex 2-dimensional, then the condition (*) is equivalent to $(4.11)_3$, $(4.11)_4$, $(4.11)_5$ and $(4.11)_6$.

Thus, from $(4.11)_3$ and $(4.11)_6$, we have

(4.12)
$$\lambda_{j^2}(\lambda_{i^2}-\bar{c}/4)=0$$
 for $i \neq j$.

and moreover, from $(4.11)_4$ and $(4.11)_6$, we have

(4.13)
$$\lambda_i^2(\lambda_j^2 - \tilde{c}/4) = 0 \quad \text{for } i \neq j.$$

Thus, we have the following

THEOREM 4.1. Let M be a complex hypersurface satisfying the condition (*) in a space \tilde{M} of constant holomorphic sectional curvature \tilde{c} of complex dimension n+1.

Then, the following statesments are valid. Where $n \ge 2$.

(i) If $\tilde{c} > 0$, then k(x) = 0, or 2n at each point $x \in M$, that is, M is totally geodesic in \tilde{M} , or an Einstein space of Ricci curvature $\rho = n\tilde{c}/2$.

Hence, M is a locally symmetric space.

(ii) If c < 0, then k(x)=0 at each point $x \in M$, that is, M is totally geodesic in \overline{M} , hence also is a locally symmetric space.

(iii) If $\tilde{c} = 0$, then k(x) = 0, or 2 at each point $x \in M$.

PROOF. (i) From (4.12), we see that k(x) is constant on M. If $k(x) \neq 0$, 2n, then, there exist zero characteristic root and nonzero characteristic root of A. Now, let λ_j be a zero characteristic root and λ_i be a nonzero one.

Then, from (4.12), we get $\lambda_i^2 = \tilde{c}/4$. However, then from (4.13), we have

$$\lambda_i^2(\lambda_j^2 - \tilde{c}/4) = -(\tilde{c}/4)^2 \neq 0,$$

This is a contradiction.

56

Thus, we see that k(x) = 0, or 2n at each point $x \in M$. If k(x) = 2n, then, from (3.4.), we have

 $S(X, Y) = -\tilde{c}/2g(X, Y) + (n+1)\tilde{c}/2g(X, Y) = n\tilde{c}/2g(X, Y).$

That is, $S(X, Y) = n\tilde{c}/2g(X, Y)$, for all tangent vectors X and Y to M. Therefore, M is an Einstein space of Ricci curvature $\rho = n\tilde{c}/2$. (ii) and (iii) are evident.

On the other hand, B. Smyth [4]., has proved the following theorem.

THEOREM 4.2. If $n \ge 2$, then

(i) $P^n(C)$ and the complex quadric Q^n are the only complex hypersurfaces of $P^{n+1}(C)$ which are complete and Einstein,

(ii) $D^n(resp. C^n)$ is the only simply-connected complex hypersurface of D^{n+1} (resp. C^{n+1}) which is complete and Einstein.

Thus, from Theorem 4.1. and Theorem 4.2., we have the following

THEOREM 4.3. If $n \ge 2$, then

(i) let M be a complete complex hypersurface of $P^{n+1}(C)$ which satisfies the condition (*), then M is $P^{n}(C)$, or Q^{n} .

(ii) let M be a simply-connected complete complex hypersurface of D^{n+1} which satisfies the condition (*), then M is D^n .

Remark. If $c \neq 0$ and $n \geq 2$, then we can show that the condition (*) is equivalent to the condition, $R(X, Y) \cdot S = 0$.

NIIGATA UNIVERSITY

References

- 1. A. FIALKOW: Hypersurfaces of a space of constant curvature, Ann. of Math. 39 (1938), 762-785.
- 2. S. KOBAYASHI and K. NOMIZU: Foundations of Differential Geometry, Vol. I, Interscience Publishers, New York, 1963.
- 3. K. NOMIZU: On hypersurfaces satisfying a condition on the curvature tensor, Tôhoku Math. J., 20 (1968), 46-59.
- 4. B, SMYTH: Differential geometry of complex hypersurfaces, Ann. of Math. 85 (1967), 246-266.