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The purpose of the present paper is to give a characterization of almost an-
alytic tensor fields in an almost complex manifold. For a contravariant vector
field, it is defined as a vector field $X$ such that it makes the structure tensor
field $F$ invariant $i$ . $e.,$ $XxF=0$ where $Xx$ denotes the operator of Lie differentia-
tion with respect to $X$.

Our characterization of a contravariant almost analytic vector field is different
from the above one.

In \S 1 we shall give the definition of pure tensor fields. In \S 2 we shall state
some properties about the complete lift of tensor fields introduced by K. Yano and
S. Kobayashi [9] and Lie derivative. In \S 3, in terms of components, we shall
deal with almost analytic tensor fields and prove an important lemma by which
almost analytic tensor fields can be characterized. \S 4 wilI be devoted to a chara-
cterization of almost analytic tensor fields. Some applications will be given in
the last section.

1. Pure tensor flelds

Throughout this paper by $M$ we shall always mean an n-dimensional almost
complex manifold with a local coordinate $(x^{1},\cdots,x^{n})$ and by $F$ a structure tensor
field of type $(1, 1)$ . Following notations and terminologies of [9] let $T(M)=\cup T_{x}(M)$

$\emptyset\in K$

be the tangent bundle over $M$ and let $T_{q}^{p}(M)$ be the space of tensor fields of
type $(p, q),$ $i$ . $e.$ , contravariant degree $p$ and covariant degree $q$, on $M$ . We put

$\sigma(M)\equiv\sum_{p.q}\sigma_{q^{P}}(M)=\mathcal{J}^{*}(M)\otimes\sigma_{*}(M)$

where $\mathcal{J}^{*}(M)\equiv\sum_{p}\mathcal{J}_{0^{P}}(M)$ and $\mathcal{J}^{*}(M)\equiv\sum_{q}\mathcal{J}_{q^{0}}(M)$ .
An element of $\sigma_{0^{1}}(M)$ is a vector field and is denoted by $X,$ $Y$ or $Z$ .
An element of $\sigma_{1^{0}}(M)$ is a l-form and is denoted by $x*,$ $Y^{*}$ or $z*$ .
An element of $7_{0^{0}}(M)$ is a function (of $C^{\infty}$) and is denoted by $f$.
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Of course, our structure tensor field $F$ is an element of 7 $1^{1}(M)$ and since it
can be considered as an endomorphism of $7_{0^{1}}(M)$ , we shall denote its image of
$X\in 7_{0^{1}}(M)$ by $FX$ . Similarly we shall define $FX^{*}$ for $X^{*}\in\sigma_{1^{0}}(M)$ (cf. \S 4). An
element $T$ of $\sigma_{q}p(M)$ is a tensor field of type $(p, q)$ and can be considered as a
multilinear mapping of

$\sigma_{0^{1}}(M)\times\cdots\times\sigma_{0^{1}}(M)\times\sigma_{1^{0}}(M)\times\cdots\times\sigma_{1^{0}}(M)$ into $\sigma_{0^{0}}(M)$

( $7_{1^{0}}(M)p$ times, $7_{0^{1}}(M)q$ times).

Then we shall define a pure tensor field as follows. If a tensor field $T$, say,
of type$(1,2)$ satisfies

(1.1) $T(X, Y, Z^{*})=-T(FX, FY, Z^{*})=-T(X, FY, FZ^{*})$

for any $X,$ $Y\in 7_{0^{1}}(M)$ , any $Z^{*}\in 7_{1^{0}}(M)$ ,

then we shall call $T$ a pure tensor [8].

In terms of components, (1. 1) is equivalent to

(1. 2) $Tjk^{i}=-FJ^{a}Fk^{b}T_{ab^{i}}=-Fk^{a}Fb^{i}Tja^{b}$

or

(1. 3) $FJ^{a}T_{ak^{i}}=Fk^{a}Tja^{i}=F_{a^{j}}Tjk^{a}$ .

2. Lie derivations and complete lifts

Let $X$ and $Y$ be two elements in $7_{0^{1}}(M)$ . The Lie derivative with respect

to $X$ has the following properties:

(2. 1) $Xx(S\otimes T)=(XxS)\otimes T+S\otimes(XxT)$ for $S,$ $T\in T(M)$ ,

(2. 2) $Xxf=Xf$ for $f\in \mathcal{J}_{0^{0}}(M)$ ,

(2. 3) $Xxdf=dXxf$ for $f\in 7_{0^{0}}(M)$ ,

(2. 4) $XxY=[X, Y]$ ,

(2. 5) $[Xx, X_{Y}]=X_{[X.Y]}$,

(2. 6) $ Xx\omega$ $=d\circ ex\omega+fx\circ d\omega$ for any differential form $\omega$

where $d$ denotes exterior differentiation and $fX$ skew-derivation.
Owing to K. Yano and S. Kobayashi [ $ 9\rceil$ , the complete lift is a linear mapping

of $\sigma(M)$ into $7(T(M))$ and if we denote the complete lift of $\tau\in\sigma(M)$ by $T^{c}$ ,

then we have the following properties:

(2. 7) $XxcT^{c}=(XxT)^{c}$ for $\tau\in\sigma_{q}p(M)$ ,

(2. 8) $(FT)^{c}=F^{c}T^{c}$ for a pure tensor field $T\in 7_{q}^{P}(M)$ (for $FT$ see \S 4),

(2. 9) $T^{c}(X_{1}^{c},\cdots,X_{q^{c}},X_{1}^{*c},\cdots,X^{*}p^{c})=(T(X_{1},\cdots,X_{q},X_{1^{*}},\cdots,Xp^{*}))^{c}$
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where $Xt\in T_{0^{1}}(M),$ $X_{i^{*}}\in \mathcal{J}_{1^{0}}(M),$ $T\in T_{q}p(M)$ .
By (1. 1) and (2. 9), we have the following

Proposition. If $T$ in an almost complex manifold with a structure tensor field $F$ is
a pure tensor field, then $T^{c}$ is also a pure tensor field in $T(M)$ with the almost complex
structure tensor field $F^{c}$ .

3. Almost analytic tensor fields

In this section, we shall prove a lemma which is essential for our characteri $\cdot$

zation of almost analytic tensor fields.
Let $T$ be a pure tensor field of type $(p, q)$ and in terms of components, we

shall denote $T$ and $F$ by

$T=Tjq\cdots j_{1}^{t_{P}\cdots i_{1}}\frac{\partial}{\partial x^{ip}}\otimes\cdots\otimes\frac{\partial}{\partial x^{i_{1}}}\otimes dx^{J_{q}}\otimes\cdots\otimes dx^{j_{1}}$ and $F=FJ^{i}\frac{\partial}{\partial x^{i}}\otimes dx^{j}$

respectively.

Now Tachibana’s operator $\Phi_{h}$ is defined for $T$ as follows

(3. 1) $\Phi_{h}T_{j_{q}\ldots j_{1}^{ipj_{1}}}=F_{h^{r}}\partial_{r}T_{jq\ldots J_{1}^{ip\cdots\oint_{1}}}-\partial_{h}\tilde{T}_{jq\ldots j_{1}^{ipi_{1}}}+\sum_{r^{r}1}^{q}(\partial_{j_{f}}F_{h^{l}})T_{j_{q}\ldots l\ldots j_{1}^{ipi_{1}}}$

$+\sum_{r\rightarrow 1}^{p}(\partial_{h}F\iota^{i_{f}}-\partial\iota F_{h^{j_{r}}})T_{j_{q}\ldots J_{1}^{ipli_{1}}}$

where $\tilde{T}j_{q}\ldots j_{1}^{ipi_{1}}=FT=F;_{s}^{l}Tj_{q}\ldots l\ldots j_{1}^{ipi_{1}}(r=1,\cdots,p, s=1,\cdots, q)$ .
If $\Phi_{h}Tj_{q}\ldots j_{1}^{ipi_{1}}=0$ , then $T$ is called an almost analytic tensor field or $T$ is

almost analytic. This is a generalization of analytic tensor fields in a K\"ahlerian

manifold to an almost complex manifold [1], $[41, [7]$ .
First of all, we consider two vector fields $X=X^{i}\frac{\partial}{\partial x^{i}}$ and $Y=Y^{j}\frac{\partial}{\partial x^{j}}$ . By the

definition of Lie derivation, we have

(3. 2) $Xx\tilde{Y}^{j}-X\tilde{x}Y^{i}$

$=X^{r}\partial_{f}(Ft^{i}Y^{t})-F_{t^{S}}Y^{t}\partial_{S}X^{i}-[(F_{t^{f}}X^{t})t$

$=Y^{t}[X^{r}\partial_{\gamma}Ft^{i}-F_{t^{S}}\partial_{S}X^{i}+F_{s^{i}}\partial tX^{s}]$

$-X^{t}[Ft^{r}\partial_{r}Y^{i}-\partial t(F^{i},Y^{r})+(\partial tFl^{i}-\partial\iota F_{t^{i}})Y^{l}]$

$=(XxF_{t^{j}})Y^{t}-X^{t}\Phi_{t}Y^{i}$

from which we have

(3. 3) $Xx(Ft^{i}Y^{t})-(XxFt^{i})Y^{t}=X^{-}xY^{i}-X^{t}\Phi tY^{i}$

which is equivalent to

(3. 4) $p_{t^{j}X\tilde{x}Y^{t}=X\tilde{x}Y^{i}-X^{t}\Phi Y^{i}}t$ .
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Consequently, if $Y$ is a contravariant almost analytic vector field, we have

(3. 5) $F_{t^{j}}XxY^{t}=X\overline{x}Y^{i}$ .
Conversely, if (3. 5) holds good for any $x\in\sigma_{0^{1}}(M),$ $Y$ is contravaziant almost
analytic. In fact, from (3. 4). we have $X^{t}\Phi_{t}Y^{i}=0$ i.e., $\Phi_{t}Y^{i}=0$ .

Secondly, we consider a covariant pure tensor field of type $(0, q)$

$T=Tj_{q}\ldots j_{1}dx^{jq}\otimes\cdots\otimes fx^{j_{1}}$ . Just as for (3. 1), we have

(3.6) $Xx\tilde{T}_{j_{q}\ldots j_{1}}-X\tilde{x}T_{j_{q}..j_{1}}$

$=X^{s}\partial_{s}\tilde{T}_{j_{q}\ldots j_{1}}+\sum_{r-1}^{q}\tilde{T}_{j_{q}\ldots s..j_{1}}\partial_{j_{r}}\tilde{X}^{s-}(\tilde{X}^{s}\partial_{t}T_{j_{q}\ldots j_{1}}+\sum_{r-1}^{q}T_{j_{q}\ldots t..j_{1}}\partial_{j_{r}}\tilde{X}^{t})$

$=X^{s}\partial_{S}\tilde{T}_{j_{q}\ldots j_{1}}+\sum_{r-1}^{q}\tilde{T}_{j_{q}\ldots s..j_{1}}\partial_{j_{r}}\tilde{X}^{s-}[F_{s^{t}}X^{s}\partial_{t}T_{j_{q}\ldots j_{1}}+\sum_{r-1}^{q}\tau_{j_{q}..t\ldots j_{1}(\partial_{j_{r}}F_{s^{t}})X^{s}}$

$+\sum_{r-1}^{q}T_{j_{q}\ldots t..j_{1}}F_{S}^{t}\partial_{j_{r}}X^{s}]$

$=-X^{s}(F_{s^{l}}\partial_{t}T_{j_{q}\ldots j_{1}}-\partial_{s}\overline{T}_{j_{q}..j_{1}}+\sum_{r-1}^{q}T_{j_{q}..t\ldots j_{1}}\partial_{j,}F_{s^{t}})=-X^{s}\Phi_{s}T_{j_{q}\ldots j_{1}}$ .
Accordingly if $T$ is covariant almost analytic, then from (3.6), it follows that

(3.7) $Xx\overline{T}_{j_{q}..j_{1}}=X\tilde{x}T_{j_{q}..j_{1}}$ .
Conversely, if (3. 7) holds good for any $x\in\sigma_{0^{1}}(M)$ , then the pure tensor field

$T$ becomes an almost anlytic tensor field.
Finally, we consider a pure tensor field of type $(_{\sim}p. q)$

$T=T_{j_{q}\ldots j_{1}^{ipt_{1}}}\frac{\partial}{\partial x^{ip}}\otimes\cdots\otimes\frac{\partial}{\partial x^{i_{1}}}\otimes dx^{j_{q}}\otimes\cdots\otimes dx^{j_{1}}$ .

For this tensor field, from the forms of (3. 2) and (3. 6), it will be expected that
the following equation holds good for any vector field $X\in 7_{0^{1}}(M),$ $i$ . $e.$ ,

(3. 8) $ x_{X}\overline{\tau}_{j_{q}\ldots j_{1}^{ipi1-4\tilde{x}T_{j_{q}\ldots j_{1}^{ipi_{1}}}=\sum_{r-1}^{p}(txF_{s^{ir}})\tau_{j_{q}\ldots J_{1}^{ipsi1-X^{s}\Phi_{S}T_{j_{q}\ldots j_{1}^{ipi_{1}}}}}}}\cdot\cdot\cdots\cdots\cdots$ .
Indeed, it is verified by straightforward calculation but since it is complicated,

we shall not go into it.
Thus we have the following

LEMMA. In an almost complex manifold, a ptere tensor fleld $T$ of type $(p, q)$ is
almst analytic if and only if it satisfies

$Xx\tilde{T}_{j_{q}\ldots j_{1}^{ipi_{1}}}=x_{\overline{X}}\tau_{j_{q}\ldots j_{1}^{ipi_{1}}}+\sum^{p}(XxF_{s^{ir}})T_{j_{q}\ldots j_{1}^{ipsi_{1}}}r-1$

for any vector field $X\in 7_{0^{1}}(M)$ .

4. A characterization of almost analytic tensor fields

We now define the notation of contraction $C_{(1)^{(r)}}$ for two tensor fields

$S=S_{J^{i}}\frac{\partial}{\partial_{X^{i}}}\otimes dx^{j}$ and $T=Tj_{q}\ldots j_{1}^{ipi_{1}}\frac{\partial}{\partial x^{ip}}\otimes\cdots\otimes\frac{\partial}{\partial x^{i1}}\otimes dx^{j_{q}}\otimes\cdots\otimes dx^{j_{1}}$ as follows
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$C_{(1)}(r)S\otimes T$

$\equiv S_{J^{i}}T_{j_{q}\ldots j_{1}^{ipt_{1}}}<\frac{\partial}{\partial x^{i_{r}}},$ $dx^{j}>\frac{\partial}{\partial x^{i}}\otimes\frac{\partial}{\partial x^{ip}}\otimes\cdots\otimes\frac{\partial}{\partial x^{i_{r+1}}}\otimes\frac{\partial}{\partial x^{i_{\gamma-1}}}\otimes\cdots\otimes\frac{\partial}{\partial x^{i_{1}}}$

$\otimes dx^{j_{q}}\otimes\cdots\otimes dx^{j_{1}}$

where (1) of $C_{(1)^{(r)}}$ denotes the $1-st$ covariant index of $SJ^{i}$ and $(r)$ denotes the
r-th contravariant index of $Tj_{q}\ldots J_{1}^{ip}$ If $S=F$ and $T$ is a pure tensor field, then
by (1. 3), $C(1)(\gamma)F\otimes T(r=1,2, \cdots p)$ are all the same tensor field, so we denote it
briefly by $FT$ . Similarly for a covariant tensor field $T=Tj_{q}\ldots j_{1}dx^{j_{q}}\otimes\cdots\ovalbox{\tt\small REJECT} x^{j_{1}}$ , we
define as follows

$C^{(1)}(r)S\otimes T\equiv Sj^{i}Tj_{q}\ldots j_{1}<\frac{\partial}{\partial x^{i}},$ $dx^{j_{r}}>dx^{j}\mathfrak{U}x^{j_{q}}\otimes\cdots \mathfrak{U}x^{j,+1}\mathfrak{U}x^{j_{r-1}}\otimes\cdots\otimes x^{j_{1}}$

but when $S=F$ and $T$ is a pure tensor field, for the same reason, we denote it
briefly by $FT$.

Then, by virtue of Lemma in \S 3, we can characterize almost analytic tensor
fields in an almost complex manifold $M$ with a structure tensor field $F$ as in the
following.

(1) A contravariant almost analytic vector field $Y$ is a vector field satisfying

$XxFY=X_{F}xY+(XxF)Y$ for any $X\in\sigma_{0^{1}}(M)$

which is equivalent to

$F[X, Y]=[FX$, Yl for any $X\in \mathcal{J}_{0^{1}}(M)$ .
(2) A covariant almost analytic tensor field $T$ is a pure tensor field of type

$(0, q)$ satisfying

$XxFT=X_{F}xT$ for any $X\in \mathcal{J}_{0^{1}}(M)$ .
(3) An almost analytic tensor field of mixed type $T$ is a pure tensor field of

type $(p, q)$ satisfying

$XxFT=X_{F}xT+\sum_{r-1}^{p}C_{(1)}(r)(\# xF)\otimes T$ for any $X\in\sigma_{0^{1}}(M)$ .
Remark. For an almost analytic tensor field $T$ of type $(p, q)$ and a contrava-

riant almost analytic vector field $X$, from (3), it follows that

$XxFT=X_{FX}T$ .
Hence if a pure tensor field $T$ of type $(p, q)$ satisfies this equation for any cont-

ravariant almost analytic vector field $X$, then $T$ is an almost analytic tensor field.

5. Applications

(1) It is well known that the set of all contravariant almost analytic vector
fields is involutive. Indeed, let $Y$ and $Z$ be two contravariant almost analytic
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vector fields, then by Jacobi’s identity, the following equation:

$F[X, [YZ]]=[FX, [YZ]]$ for any $x\in\sigma_{0^{1}}(M)$

can be easily verified and hence $[Y, Z]$ is almost analytic. This also follows
from (2. 5).

(2) If a covariant tensor field $T$ of type $(0, q)$ is almost analytic, by (2) in
\S 4, we have

$X_{X}FT=x_{FX}T$ for any $x\in\sigma_{0^{1}}(M)$ .
But since $F(FT)=-T$, if we put $Y=FX$, then we have

$XxF(FT)-x_{FX}FT=x_{FY}T-x_{Y}FT=0$ .
Hence $FT$ is also almost analytic [7].

(3) Since $Xx$ commutes with every contraction of a tensor field, if a cova-
riant tensor field $T$ of type $(0, q)$ and a contravariant vector field $Y$ are both
almost analytic, then we have

$xFfT\ell T=\ell(x_{X}FT-x_{FX}T)=0$ for any $X\in 7_{0^{1}}(M)$ .
Hence $cYT$ is also almost analytic

In particular, suppose $M$ is an $*0$-space, a kind of an almost Hermitian
manifold (cf. [1]).

It is known that in a compact $*0$-space a skew-symmetric covariant almost
analytic tensor field is closed [5]. Consequently in a compact $*0$-space, for a
skew-symmetric covariant almost analytic tensor field $T$ and a contravariant almost
analytic vector field $X$, we have immediately

$XxT=0$ by virtue of (2. 6) for $T[5]$ .
In this case, although $FX$ is not necessarily analytic, if we notice that $FT$ is

skew-symmetric, from (2) in \S 4, it follows that $x_{FX}T=0$ .
(4) Let $T$ be an almost analytic tensor field of type $(p, q)$ in an almost complex

manifold $M$, then from (3) in \S 4, we have

$x_{X}FT=x_{FX}\tau+\sum_{r-1}^{q}C_{(1)}(r)(x_{X}F)\otimes T$ for any $x\in\sigma_{0^{1}}(M)$

from which, by (2. 7) and (2. 8), we have

X $x^{c}F^{c}T^{c}=XF^{c}x^{c}T^{c}+\sum_{r-1}^{q}C(1)(r)(x_{X^{c}}F^{c})\otimes T^{c}$ for any $x\in\sigma_{0^{1}}(M)$ .
On the other hand, by virtue of Proposition in \S 2, $T^{c}$ is also a pure tensor

field of the same type in the tangent bundle $T(M)$ .
Accordingly, it follows that the complete lift of an almost analytic tensor

field of type $(p, q)$ in $M$ is also almost analytic in $T(M)$ . For a contravariant
vector field see [3].
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